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Geometry of fluid motion

Boris Khesin∗

May 2003

Abstract

We survey two problems illustrating geometric-topological and Hamiltonian meth-
ods in fluid mechanics: energy relaxation of a magnetic field and conservation laws
for ideal fluid motion. More details and results, as well as a guide to the literature
on these topics can be found in [3].

1 Energy relaxation.

The first problem we are going to discuss is related to topological obstructions to energy
relaxation of a magnetic field in a perfectly conducting medium. A motivation for this
problem is the following model of a star. The magnetic field is supposed to be frozen in
the perfectly conducting medium (plasma) filling the star, i.e. the topology of the field’s
trajectories does not change under the fluid flow. On the other hand, the magnetic energy
can and does change, and the conducting fluid keeps moving (due to Maxwell’s equations)
until the excess of magnetic energy over its possible minimum is fully dissipated (this
process is called “energy relaxation”). It turns out that mutual linking of magnetic lines
may prevent complete dissipation of the magnetic energy. The problem is to describe the
energy lower bounds of the magnetic field in terms of topological characteristics of its
trajectories.

More precisely, consider a divergence-free (magnetic) vector field ξ in a (simply con-
nected) bounded domain M ⊂ R

3 tangent to the boundary ∂M . The energy of the field ξ
is the square of its L2-norm, i.e., the integral

E(ξ) =

∫

M

(ξ, ξ) d3x.

Let us act on the field ξ by a volume-preserving diffeomorphism h. Given divergence-free
field ξ, the main problem is to give a good lower bound for the energy infhE(h∗ξ) of the
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Figure 1: C1, C2 are axes of the tubes; Q1, Q2 are the corresponding fluxes.

push-forward field h∗ξ in terms of topology of the field ξ. (Here we minimize the energy
over the action of all volume-preserving diffeomorphisms h of M .)

1.A. Helicity bounds the energy. A topological obstruction to the energy
relaxation can be seen in the example of a magnetic field confined to two linked solitori.
Assume that the field vanishes outside those tubes and the field trajectories are all closed
and oriented along the tube axes inside. To minimize the energy of a vector field with
closed orbits by acting on the field by a volume-preserving diffeomorphism, one has to
shorten the length of most trajectories. In turn, the shortening of the trajectories implies
a fattening of the solitori (since the acting diffeomorphisms are volume-preserving).

For a linked configuration, as in Fig.1, the solitori prevent each other from endless
fattening and therefore from further shrinking of the orbits. Therefore, heuristically, in the
volume-preserving relaxation process the magnetic energy of the field supported on a pair
of linked tubes is bounded from below and cannot attain too small values.

To describe the first obstruction to the energy minimization we need the following
notion.

Definition 1.1 [8] The helicity of the field ξ in the domain M ⊂ R
3 is

H(ξ) =

∫

M

(ξ, curl−1ξ) d3x,

where ( , ) is the Euclidean inner product, and A = curl−1ξ is a divergence-free vector
potential of the field ξ, i.e., ∇× A = ξ, divA = 0.

1.2 Example. Consider a magnetic (that is, divergence-free) field ξ which is identically
zero except in two narrow linked flux tubes whose axes are closed curves C1 and C2. The
magnetic fluxes of the field in the tubes are Q1 and Q2 (Fig.1). Suppose further that there
is no net twist within each tube or, more precisely, that the field trajectories foliate each of
the tubes into pairwise unlinked circles. One can show that the helicity invariant of such
a field is given by

H(ξ) = 2 lk(C1, C2) ·Q1 ·Q2,
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where lk(C1, C2) is the linking number of C1 and C2 [8]. Recall, that the (Gauss) linking
number lk(C1, C2) of two oriented closed curves C1, C2 in R

3 is the signed number of the
intersection points of one curve with an arbitrary (oriented) surface spanning the other
curve.

Theorem 1.3 [2] For a divergence-free vector field ξ,

E(ξ) ≥ C · |H(ξ)|,

where C is a positive constant dependent of the shape and size of the compact domain M .

The proof is a composition of the Schwarz inequality and the Poincaré inequality, ap-
plied to the potential vector field A = curl−1ξ.

1.4 Remark. One can give a metric-free definition of helicity as follows. Let M be a
simply connected manifold with a volume form µ, and ξ a divergence-free vector field on
M . The latter means that the Lie derivative of µ along ξ vanishes: Lξµ = 0, or, which is
the same, the substitution iξµ =: ωξ of the field ξ to the volume form µ is a closed 2-form:
dωξ = 0. On a simply connected manifold M the latter means that ωξ is exact: ωξ = dα for
some 1-form α (called a potential). (If M is not simply connected, that we have to require
that the field ξ is null-homologous, i.e., that the 2-form ωξ is exact. If M has boundary,
we require that ξ is tangent to it.)

Definition 1.5 [2] The helicity H(ξ) of a null-homologous field ξ on a three-dimensional
manifold M (possibly with boundary) equipped with a volume element µ is the integral of
the wedge product of the form ωξ := iξµ and its potential:

H(ξ) =

∫

M

dα ∧ α, where dα = ωξ.

An immediate consequence of this pure topological (metric-free) definition is the fol-
lowing

Theorem 1.6 [2] The helicity H(ξ) is preserved under the action on ξ of a volume-
preserving diffeomorphism of M .

In this sense H(ξ) is a topological invariant: it was defined without coordinates or a
choice of metric, and hence every volume-preserving diffeomorphism carries a field ξ into
a field with the same helicity.

1.B. What is helicity? V. Arnold proposed the following ergodic interpretation
of helicity in the general case of any divergence-free field (when the trajectories are not
necessarily closed or confined to invariant tori) as the average linking number of the field’s
trajectories. Let ξ be a divergence-free field on M and {gt : M → M} its phase flow. We
will associate to each pair of points in M a number that characterizes the “asymptotic
linking” of the trajectories of the flow {gt} passing through these points. Given any
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Figure 2: The long segments of the trajectories are closed by the “short paths.”

two points x1, x2 in M and two large numbers T1 and T2, we consider “long segments”
gtx1(0 ≤ t ≤ T1) and gtx2(0 ≤ t ≤ T2) of the trajectories of ξ issuing from x1 and x2.
Close these long pieces by the shortest geodesics between gTkxk and xk. We obtain two
closed curves, Γ1 = ΓT1

(x1) and Γ2 = ΓT2
(x2); see Fig.2. Assume that these curves do

not intersect (which is true for almost all pairs x1, x2 and for almost all T1, T2). Then the
linking number lkξ(x1, x2;T1, T2) := lk(Γ1,Γ2) of the curves Γ1 and Γ2 is well-defined.

Definition 1.7 [2] The asymptotic linking number of the pair of trajectories gtx1 and gtx2

(x1, x2 ∈M) of the field ξ is defined as the limit

λξ(x1, x2) = lim
T1,T2→∞

lkξ(x1, x2;T1, T2)

T1 · T2
,

where T1 and T2 are to vary so that Γ1 and Γ2 do not intersect.

It turns out that this limit exists (as an element of the space L1(M×M) of the Lebesgue-
integrable functions on M ×M) and is independent of the system of geodesics (i.e., of the
Riemannian metric), see [12].

Theorem 1.8 [2] The helicity of a divergence-free vector field ξ on a simply connected
manifold M with a volume element µ is equal to the average self-linking of trajectories of
this field, i.e., to the asymptotic linking number λξ(x1, x2) of trajectory pairs integrated
over M ×M :

H(ξ) =

∫

M

∫

M

λξ(x1, x2) µ1µ2.

1.C. Energy estimates. As we have seen above, a nonzero helicity (or average
linking of the trajectories) of a field ξ provides a lower bound for the energy. However,
heuristically, there should be a lower bound for the energy for a field which has at least
one linked pair of solitori as in the example above, even if the total helicity vanishes. One
of the the best results in this direction is as follows.
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Theorem 1.9 [6] Suppose a vector field ξ in R
3 has an invariant torus T forming an

nontrivial knot of type K. Then

E(ξ) ≥

(

16

π · Vol(T )

)1/3

·Q2 · (2 · genus(K) − 1),

where Q = Flux ξ is the flux of ξ through a crossection of T , Vol(T ) is the volume of the
solid torus, and genus(K) is the genus of the knot K.

Recall, that for any knot its genus is the minimal number of handles of a spanning
(oriented) surface for this knot. For an unknot the genus is 0, since one can take a disk as
a spanning surface. For a nontrivial knot one has genus(K) ≥ 1 and, therefore, the above
energy is bounded away from zero: E(ξ) > 0.

1.10 Remark. Note that there are no restrictions on the behavior of the divergence-free
field inside this invariant torus, and hence this result has a wide range of applicability. In
particular, it is sufficient for the field to have at least one closed linked trajectory of the
elliptic type. The latter means that its Poincaré map has two eigenvalues of modulus 1.
Then the KAM theory implies that a generic elliptic orbit is confined to a set of nested
invariant tori. Hence any such orbit ensures that the energy of the corresponding field has
a non-zero lower bound. The question remains whether the presence of any nontrivially
linked closed trajectory (of any type: hyperbolic, non-generic, etc.) or the presence of
chaotic behavior of trajectories for a field could provide a positive lower bound for the
energy (even if the averaged linking of all trajectories totals zero) and therefore could
prevent a relaxation of the field to arbitrarily small energies.

The rotation field in the three-dimensional ball is an example of an opposite type: all its
trajectories are pairwise unlinked. It was suggested by A. Sakharov and Ya. Zeldovich, and
proved by M. Freedman (see [5]), that this field can be transformed by a volume-preserving
diffeomorphism to a field whose energy is less than any given ε.

2 Euler equations and geodesics.

2.A. Geodesics on Lie groups. In [1] V. Arnold suggested a general framework
for the Euler equations on an arbitrary group, which we recall below. In this framework
the Euler equation describes a geodesic flow with respect to a suitable one-sided invariant
Riemannian metric on the given group.

More precisely, consider a (possibly infinite-dimensional) Lie group G, which can be
thought of as the configuration space of some physical system. (Examples from [1]: SO(3)
for a rigid body or the group SDiff(M) of volume-preserving diffeomorphisms for an ideal
fluid filling a domain M .) The tangent space at the identity of the Lie group G is the
corresponding Lie algebra g. Fix some (positive definite) quadratic form, the “energy,” on
g. We consider right translations of this quadratic form to the tangent space at any point
of the group (the “translational symmetry” of the energy). This way the energy defines a
right-invariant Riemannian metric on the group G. The geodesic flow on G with respect
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Figure 3: The vector ξ in the Lie algebra g is the velocity at the identity e of a geodesic
g(t) on the Lie group G.

to this energy metric represents the extremals of the least action principle, i.e., the actual
motions of our physical system.1

To describe a geodesic on the Lie group with an initial velocity v(0) = ξ, we transport its
velocity vector at any moment t to the identity of the group (by using the right translation).
This way we obtain the evolution law for v(t), given by a (non-linear) dynamical system
dv/dt = F (v) on the Lie algebra g (Fig.3).

Definition 2.1 The system on the Lie algebra g, describing the evolution of the velocity
vector along a geodesic in a right-invariant metric on the Lie group G, is called the Euler
equation corresponding to this metric on G.

2.B. Example: fluid motion. The main example is the Euler equation for
incompressible fluid filling some domain M in R

n. The fluid motion is described by a
velocity field v(t, x) and a pressure field p(t, x) which satisfy the classical Euler equation:

∂tv + (v · ∇)v = −∇p, (2.1)

where divv = 0 and the field v is tangent to the boundary of M .
The flow (t, x) → g(t, x) describing the motion of fluid particles is defined by its velocity

field v(t, x):
∂tg(t, x) = v(t, g(t, x)), g(0, x) = x.

The chain rule immediately gives ∂2
ttg(t, x) = ∂tv + (v · ∇)v, and hence the Euler equation

is equivalent to
∂2

ttg(t, x) = −(∇p)(t, g(t, x)),

while the incompressibility condition is det(∂xg(t, x)) = 1. The latter form of the Euler
equation (for a smooth g(t, x)) exactly means that it describes a geodesic on the set of
volume-preserving diffeomorphisms. Indeed, the acceleration of the flow (∂2

ttg), being given
by a gradient (−∇p), is orthogonal to all divergence-free fields, the tangent space to this
set.

A similar equation describes an ideal incompressible fluid filling an arbitrary manifold
M equipped with a volume form µ. It turns out that the group-geodesic point of view,

1For a rigid body one has to consider left translations, but in our exposition we stick to the right-
invariant case in view of its applications to the groups of diffeomorphisms.
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developed in [1] is quite fruitful for topological and qualitative understanding of the fluid
motion, as well as for obtaining various quantitative results related to stability.

As an illustration we consider here the question of first integrals of the Euler equation
on manifolds of different dimension.

2.C. Conservation laws in ideal hydrodynamics. The Euler equation
of an ideal fluid (2.1) filling a three-dimensional simply connected manifold has the helicity
(or Hopf) invariant, discussed in Section 1.A. This invariant describes the mutual linking
of the trajectories of the vorticity field curlv, and has the form

J(v) = H(curl v) =

∫

R3

(curl v, v) d3x

in the Euclidean space R
3.

For an ideal two-dimensional fluid one has an infinite number of conserved quantities.
For example, for the standard metric in R

2 one has the enstrophy invariants

Jk(v) =

∫

R2

(curl v)k d2x =

∫

R2

(∆ψ)k d2x, for k = 1, 2, . . . ,

where curl v = ∂v1

∂x2
− ∂v2

∂x1
is a vorticity function of a 2D flow.

It turns out that helicity-type integrals do exist for all odd-dimensional ideal fluid
flows, and so do enstrophy-type integrals for all even-dimensional flows. (In a sense, the
situation here is similar to the dichotomy of contact and symplectic geometry in odd-
and even-dimensional spaces.) Let M be a manifold equipped with a volume form µ and
Riemannian metric (., .), and we consider the motion of an ideal fluid filling M . First,
define the 1-form u as the pointwise inner product with vectors of the velocity field v with
the help of the Riemannian metric on the manifold M :

u(ξ) = (v, ξ) for all ξ ∈ TxM.

Theorem 2.2 ([11] for R
n and [4] for any M) The Euler equation of an ideal incompressible

fluid on a Riemannian manifold Mn (possibly with boundary) with a measure form µ has
(i) the first integral

I(v) =

∫

M

u ∧ (du)m

in the case of an arbitrary odd-dimensional manifold M (n = 2m+ 1); and
(ii) an infinite number of functionally independent first integrals

If(v) =

∫

M

f

(

(du)m

µ

)

µ

in the case of an arbitrary even-dimensional manifold M (n = 2m), where the 1-form
u and the vector field v are related by means of the metric on M , and f : R → R is an
arbitrary function of one variable.
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The fraction (du)m/µ for n = 2m is a ratio of two differential forms of the highest degree
n. Since the volume form µ vanishes nowhere, the ratio is a well-defined function on M
(which may depend on time t). The integral of the function f evaluated at this ratio gives
a generalized momentum (i.e., a weighted volume between different level hypersurfaces) of
the function (du)m/µ.

2.3 Example. For the standard metric in R
n the integrals assume the following form. Let

v be the velocity vector field of the fluid in the domain M ⊂ R
n. Define the components

of the generalized curl (or vorticity 2-form) of v by setting ωij := ∂vi

∂xj
−

∂vj

∂xi
. Then one has

(i) the first integral

I(v) =

∫

M

∑

(i1...i2m+1)

εi1...i2m+1vi1ωi2i3 . . . ωi2mi2m+1
dnx

if the dimension n is odd: n = 2m+ 1;
(ii) an infinite number of independent first integrals

Ik(v) =

∫

M

(det ‖ωij‖)k dnx

if the dimension n is even: n = 2m.
Here det ‖ωij‖ is the determinant of the skew-symmetric matrix ‖ωij‖, the summation

in (i) goes over all permutations of the set (1 . . . 2m + 1), and εi1...i2m+1 is the Kronecker
symbol equal to the parity of the permutation (i1 . . . i2m+1). (The momenta Ik correspond
to the choice f(z) = z2k in the theorem above.)

This theorem follows, practically without calculations, from the definition of the coad-
joint action of the diffeomorphisms group, when formulated in the invariant and coordinate-
free way.

2.D. Hamiltonian framework for the Euler equations. The differen-
tial-geometric description of the Euler equation as a geodesic flow on a Lie group has a
Hamiltonian reformulation.

Fix the notation E(v) = 1
2
〈v, Av〉 for the energy quadratic form on g which we used to

define the Riemannian metric. Identify the Lie algebra and its dual with the help of this
quadratic form. This identification A : g → g

∗ (called the inertia operator) allows one to
rewrite the Euler equation on the dual space g

∗.
It turns out that the Euler equation on g

∗ is Hamiltonian with respect to the natural
Lie–Poisson structure on the dual space [1]. Moreover, the corresponding Hamiltonian
function is minus the energy quadratic form lifted from the Lie algebra to its dual space
by the same identification: −H(m) = − 1

2
〈A−1m,m〉, where m = Av. Here we are going

to take it as the definition of the Euler equation on the dual space g
∗. (The minus is

related to the consideration of a right-invariant metric on the group. It changes to plus for
left-invariant metrics.)

Definition 2.4 (see, e.g., [3]) The Euler equation on g
∗, corresponding to the right-

invariant metric E(m) = 1
2
〈Av, v〉 on the group, is given by the following explicit formula:

dm

dt
= −ad∗

A−1mm,
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as an evolution of a point m ∈ g
∗.

2.5 Remark. For the ideal fluid the Lie algebra g = SVect(M) consists of divergence-
free vector field in M . The corresponding dual space g

∗ = Ω1(M)/Ω0(M) is the space of
cosets of 1-forms on M modulo exact 1-forms. The group coadjoint action is the change of
coordinates in the 1-form, while the corresponding Lie algebra action is the Lie derivative
along a vector field. The Euler equation (2.4) on the dual space has the form

∂t[u] = −Lv[u],

where [u] ∈ Ω1(M)/Ω0(M) stands for a coset of 1-forms and the vector field v is related
with a 1-form u by means of a Riemannian metric on M . The latter equation for a coset [u]
can be rewritten as an equation for a representative 1-form modulo a function differential
dp:

∂tu+ Lvu = −dp,

where one can recognize the elements of the Euler equation (2.1) for an ideal fluid.
The invariance of the integrals in Theorem 2.2 essentially follows from their coordinate-

free definition. The latter means that the integrals are invariant with respect to coordinate
changes, and hence, are invariants of the corresponding Euler equations.

2.E. Geodesic description for various equations. A similar Arnold-
type description as the geodesic flow on a Lie group can be given to a variety of conservative
dynamical systems in mathematical physics. Below we list several examples of such systems
to emphasize the range of applications of this approach. (This list is by no means complete.
There are plenty of other interesting systems, e.g., super-equations or gas dynamics.) The
choice of a groupG (column 1) and an energy metric E (column 2) defines the corresponding
Euler equations (column 3).

Group Metric Equation

SO(3) < ω,Aω > Euler top
SO(3)+̇R

3 quadratic forms Kirchhoff equations for a body in a fluid
SO(n) Manakov′s metrics n−dimensional top

Diff(S1) L2 Hopf (or, inviscid Burgers) equation
Virasoro L2 KdV equation
Virasoro H1 Camassa − Holm equation

Virasoro Ḣ1 Hunter − Saxton (or Dym) equation
SDiff(M) L2 Euler ideal fluid

SDiff(M)+̇SVect(M) L2 Magnetohydrodynamics
Maps(S1, SO(3)) H−1 Landau − Lifschits equation

Note that in some cases these systems turn out to be not only Hamiltonian, but also
bihamiltonian, and the geodesic description helps in describing the corresponding Poisson
pairs (this is the case, e.g., for the systems related to the Virasoro group, see [10, 7]). More
detailed descriptions and references can be found in the book [3].
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