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NEW RESULTS IN VELOCITY AVERAGING

FRANÇOIS GOLSE

Abstract. This paper discusses two new directions in velocity
averaging. One is an improvement of the known velocity averaging
results for L1 functions. The other shows how to adapt some of
the ideas of velocity averaging to a situation that is essentially a
new formulation of the Vlasov-Maxwell system.

1. Velocity averaging: a quick tour

Velocity averaging designates a procedure by which one can prove
compactness (or smoothing) effects on the macroscopic quantities cor-
responding to a phase-space, microscopic density that satisfies some
kinetic equation. The prototype of all such results is as follows:

Theorem 1. Let p ∈ (1,∞). Let F ⊂ Lp
loc(R

D × RD; dxdv) be a
bounded set such that{

v · ∇xf
∣∣ f ∈ F} is bounded in Lp

loc(R
D ×RD; dxdv) .

Then, for each φ ∈ Cc(R
D), the set{∫

f(x, v)φ(v)dv
∣∣ f ∈ F} is relatively compact in Lp

loc(R
D; dx) .

This result is essentially Theorem 1 in [21] — the result there is given
only for p = 2 but its extension to all p ∈ (1,∞) follows from an easy
interpolation argument and the Fréchet-Kolmogorov Lp compactness
criterion (Theorem IV.8.20 and IV.8.21 in [13]).

In fact, one can show that, under the same assumptions as in The-
orem 1, the family of averages in v is bounded in W s,p

loc (RD) for all
s ∈ (1, inf(1 − 1

p
, 1

p
)): see [20] — this holds in fact for a class of mea-

sures in v that is more general than φ(v)dv and allows treating both
the steady and the evolution problems at once, by taking X = (t, x),
V = (w, v) and measures of the form dµ(V ) = δw=1 ⊗ φ(v)dv.

Later on, this result was extended by R. DiPerna and P.-L. Lions, in
the following manner:
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Theorem 2. Let m > 0 be an integer and let f ∈ L2
loc(R

D×RD; dxdv)
be such that

v · ∇xf =
∑
|α|=m

∂α
v gα where gα ∈ L2

loc(R
D ×RD; dxdv)

with the usual multi-index notation. Then, for each test function φ ∈
C∞

c (RD)

x 7→
∫
f(x, v)φ(v)dv belongs to the Sobolev class H

1/2(m+1)
loc (RD) .

Extensions of Theorem 2 to Lp with p ∈ (1,∞) were done succes-
sively in [12] using Littlewood-Paley decompositions and Besov spaces;
the analogous compactness result can be found in [32]; a slightly more
convenient decomposition better adapted to Cauchy problems can be
found in [3] — see chapter 1 of [7] for a survey. More precise interpo-
lation results for the Lp case (1 < p < ∞) can be found in [9]. The
optimality of the regularity results in the Lp case has been discussed
in [28].

Analogues of Theorems 1 and 2 for partial differential operators other
than the simple advection operator v · ∇x can be found in [15], [19].
Another presentation, based on microlocal defect measures (a variant
of Wigner measures in [30]) can be found in [14]; this reference has the
advantage of showing some analogy between compensated compactness
and velocity averaging.

The main application of velocity averaging so far is obviously the
mathematical theory of nonlinear kinetic models. Following the publi-
cation of [21] and [20], several open problems in this area were solved
— such as the global existence of solutions to the Boltzmann equa-
tion [11], to the BGK model [31] or to the Vlasov-Maxwell system [10]
without restriction on the size of the initial data — or were put in a
more promising formulation. For instance, since the work of Hilbert
[24], the problem of deriving the equations of fluid dynamics from the
Boltzmann equation was addressed by using asymptotic expansions
that could not handle the appearance of singularities in the limiting
equations and thus were limited to trivial hydrodynamic regimes (near-
equilibrium states, short times etc.) With the new compactness tools
provided by the velocity averaging method and the notion of “renor-
malized solution” proposed by DiPerna and Lions, this problem was
reduced to compactness statements that were inherently global (see
the program outlined in [2] or the survey talk [35]).

Even though the general procedure of velocity averaging above clearly
provides valuable information on all the topics listed above, it must be
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adapted to the problem under consideration. The purpose of this pa-
per is to present two such extensions of the classical velocity averaging
method which may be of independent interest.

Section 2 below describes a new result obtained in the course of a
collaboration with Laure Saint-Raymond on the Navier-Stokes hydro-
dynamic limits for the Boltzmann equation, while section 3 summa-
rizes ongoing work with François Bouchut and Christophe Pallard on
the Vlasov-Maxwell system.

2. Velocity averaging in L1

A fundamental difficulty when applying the velocity averaging me-
thod to kinetic models is that the phase-space density f ≡ f(x, v) of
particles that is the unknown function satisfying a kinetic equation is
by construction a (nonnegative) L1

x,v function — indeed,
∫∫

f(x, v)dxdv
is the total number of particles in the system.

Unfortunately, Theorem 1 does not hold for p = 1. Pick any bounded
sequence gn ≡ gn(x, v) in L1(RD × RD, dxdv) that converges weakly
to δ0(x) ⊗ δv∗(v), where v∗ 6= 0. Let fn be the unique L1

x,v solution of
the equation fn + v · ∇xfn = gn. Both fn and v · ∇xfn are bounded
sequences of L1

x,v, but an elementary computation shows that

(1)

∫
χ(x)

(∫
fn(x, v)ψ(v)dv

)
dx→ ψ(v∗)

∫ +∞

0

e−tχ(tv∗)dt

for each test function χ ∈ Cc(R
D). In particular the sequence of ve-

locity averages is not even weakly relatively compact in L1
loc(R

D) since
it converges in the sense of distributions to a density carried by the
half-line R+ · v∗. (This example can be found in [20], pp. 123–124).

In retrospect, this is not very surprising: all proofs of Theorem 1
known to this date are based on the following microlocal argument. Let
ξ∗ ∈ RD \ {0}; if v · ∇xf ∈ L2

x,v, then x 7→ f(x, v) is microlocally H1

in the direction ξ∗ for each v /∈ (Rξ∗)⊥; since (Rξ∗)⊥ is dv-negligeable,
the effect of these bad directions disappears after averaging in v. This
small divisor argument fails in L1 because the size of a function in L1

cannot be inferred from the size of its Fourier coefficients — nor from
the size of its coefficients in any decomposition other than the Fourier
one, because L1 has no unconditional basis.

However, the analogue of Theorem 1 for p = 1 holds under the
additional assumption of equiintegrability.

Theorem 3. Let F ⊂ L1
loc(R

D × RD; dxdv) be an equiintegrable set
such that{

v · ∇xf
∣∣ f ∈ F} is equiintegrable in L1

loc(R
D ×RD; dxdv) .
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Then, for each φ ∈ Cc(R
D), the set{∫

f(x, v)φ(v)dv
∣∣ f ∈ F} is relatively compact in L1

loc(R
D; dx) .

Theorem 3 is essentially Proposition 3 of [20]; this formulation of
velocity averaging is the one best adapted to the Boltzmann equation
and is one of the main ingredients in the construction of global renor-
malized solutions for arbitrarily large initial data: see [11]. Indeed,
because of Boltzmann’s H theorem, the unknown phase-space density
F in the Boltzmann equation satisfies

∫∫
F lnFdxdv ≤ C, which gives

the equiintegrability of well-chosen approximating sequences Fn.
However, Theorem 3 can be considerably improved: in fact it is

enough to rule out possible concentrations in the variable v only. Such
a result is nearly optimal: after all, concentrations in the variable v
tend to annihilate the effect of averaging in v.

We first define more precisely the notion of “equiintegrability in the
variable v”.

Definition 1. A bounded set F in L1
loc(R

D
x ×RD

v ) is said to be locally
equiintegrable in v if and only if, for each η > 0 and each compact
K ⊂ RD×RD, there exists α > 0 such that, for each measurable family
(Ax)x∈RD of measurable subsets of RD satisfying supx∈RD |Ax| < α, one
has ∫ (∫

Ax

1K(x, v)|f(x, v)|dv
)
dx < η

for each f ∈ F .

For instance, any set F that is bounded in L1
loc(dx;L

p
v) with p > 1 is

locally equiintegrable in v in the sense of the definition above. An easy
adaptation of the de La Vallée-Poussin equiintegrability criterion (see
[29] p. 38) shows that a set F is locally equiintegrable in v provided
that it is bounded in L1

loc(dx;L
Φ
v ) where LΦ designates the Orlicz space

of measurable functions g such that Φ(|g|) ∈ L1, with Φ : R+ → R+ a
convex function such that Φ(z)/z → +∞ as z → +∞.

Our main new result in this section is

Theorem 4. Let F be a bounded set in L1
loc(R

D
x ×RD

v ) that is locally
equiintegrable in v and such that the set

{v · ∇xf | f ∈ F} is also bounded in L1
loc(R

D
x ×RD

v ) .

Then

• the set F is locally equiintegrable in RD
x ×RD

v (in both variables
x and v);
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• for each ψ ∈ Cc(R
D), the set of velocity averages

(2)

{∫
f(x, v)ψ(v)dv

∣∣ f ∈ F} is relatively compact in L1
loc(R

D) .

A complete proof of this theorem can be found in [22]; the first state-
ment is one of the main ingredients in the proof of the global incom-
pressible Navier-Stokes limit of the Boltzmann equation (from DiPerna-
Lions renormalized solutions of the Boltzmann equation to Leray solu-
tions of the Navier-Stokes equations): see [23]. A first important step
in this direction is the following special case of Theorem 4: if F is a
bounded set in L1

x(L
∞
v ) such that the set {v · ∇xf | f ∈ F} is bounded

in L1
x,v, then the set of velocity averages {

∫
f(x, v)ψ(v)dv

∣∣ f ∈ F}
is locally equiintegrable in RD

x . This observation already appeared in
[34].

Let us say a few words about the proof of Theorem 4. It is based
on the next two lemmas. The first one bears on the dispersion effects
for the transport operator: a variant of it appears in [1] or [8]. The
following statement is Proposition 1.11 in [7].

Lemma 1. Let φ0 ≡ φ0(x, v) ∈ Lp
x(L

q
v) for some 1 ≤ p < q ≤ +∞,

and let φ ≡ φ(t, x, v) be the solution of the Cauchy problem

(3) ∂tφ+ v · ∇xφ = 0 , φ(0, x, v) = φ0(x, v) , x, v ∈ RD .

Then, for all t ∈ R∗,

(4) ‖φ(t, ·, ·)‖Lq
x(Lp

v) ≤ |t|−D(
1
p
−1

q
)‖φ0‖Lp

x(Lq
v) .

The next lemma is an interpolation formula involving the fictitious
time variable t as the interpolation parameter; it is reminiscent of the
definition by J.-L. Lions of “spaces of traces” as interpolation spaces
between a Hilbert space H and the domain of an operator A that is
the infinitesimal generator of a semigroup on H: see [27].

Lemma 2. For each f ≡ f(x, v) ∈ L1(RD × RD) such that v · ∇xf
belongs to L1(RD ×RD) and each φ0 ∈ L∞(RD ×RD), one has

(5)

∫∫
f(x, v)φ0(x, v)dxdv =

∫∫
f(x, v)φ(t, x, v)dtdxdv

−
∫ t

0

∫∫
φ(s, x, v)v · ∇xf(x, v)dsdxdv ,

for all t ∈ R∗, where φ is the solution of (3).
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These two lemmas can be applied with φ0(x, v) = 1A(x) to control∫
A

∣∣∣∣∫ f(x, v)dv

∣∣∣∣ dx ≤ ∫∫ 1A(x)|f(x, v)|dxdv

where A ⊂ RD
x is a set of small measure. This gives the equiinte-

grability of the set of velocity averages without much difficulty. With
some additional work — essentially using again the equiintegrability in
v and the Bienaymé-Chebyshev inequality — one arrives at the first
statement in Theorem 4.

The second statement there is a straightforward consequence of the
following amplification of Theorem 3:

Theorem 5. Let F ⊂ L1
loc(R

D × RD; dxdv) be an equiintegrable set
such that{

v · ∇xf
∣∣ f ∈ F} is bounded in L1

loc(R
D ×RD; dxdv) .

Then, for each φ ∈ Cc(R
D), the set{∫

f(x, v)φ(v)dv
∣∣ f ∈ F} is relatively compact in L1

loc(R
D; dx) .

See [22] for a proof. This result is a corollary of Theorem 3 based on
the elementary inequality ‖(λI + v · ∇x)

−1‖L(L1
x,v) = 1/λ.

3. Velocity averaging and the Vlasov-Maxwell system

3.1. A quick presentation of the Vlasov-Maxwell system. The
(relativistic) Vlasov-Maxwell system is the kinetic equation that models
the collisionless dynamics of charged particles accelerated by their self-
consistent electro-magnetic field. It reads

(6)

∂tf + v(ξ) · ∇xf = −(E + v(ξ) ∧B) · ∇ξf ,

∂tE − curlxB = −jf ,
divxE = ρf ,

∂tB + curlxE = 0 ,

divxB = 0 ,

with v(ξ) = ξ√
1+|ξ|2

and the notations

(7) ρf =

∫
f(t, x, ξ)dξ , jf =

∫
f(t, x, ξ)v(ξ)dξ .

Here, f(t, x, ξ) is the density of particles which, at time t, are located
at x with momentum ξ, E(t, x) and B(t, x) are respectively the electric
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and magnetic fields at time t and position x while v(ξ) is the (relativis-
tic) velocity in terms of the momentum ξ — the speed of light and the
mass of the particles are normalized to 1.

This system for the unknown (f(t, x, ξ), E(t, x), B(t, x)) is posed in
R+ ×R3

x ×R3
ξ and is completed by the initial conditions

(8) f|t=0 = fI , E|t=0 = EI , B|t=0 = BI .

The main results known to this date on (6) are

• the global existence of weak (and even renormalized) solutions,
proved by R. DiPerna and P.-L. Lions [10];

• existence and uniqueness of classical solutions under the as-
sumption that supp f(t, x, ·) is bounded for each t > 0, proved
by R. Glassey and W. Strauss [16].

Subsequently, the global existence and uniqueness of classical solu-
tions to (6) was established in [17] under the weaker assumption that
the macroscopic energy density satisfy

(9)

∫ √
1 + |ξ|2fdξ ∈ L∞loc(R+;L∞(R3)) .

Finally, R. Glassey and W. Strauss established the global existence and
uniqueness of classical solutions to (6) for small (in some sense) initial
data in [18], by proving that (9) holds for such initial data.

The main open problem on (6) is to prove (or disprove) the same
result as in [16] without assuming (9) or the support condition for all
t > 0:

“Let fI , EI and BI be compactly supported and C∞. Does there
exist a unique global C∞ solution to the Cauchy problem (6)-(8)?”

The analogous problem for the Vlasov-Poisson system has been solved
by Pfaffelmoser [33]:

(10)
∂tf + ξ · ∇xf = ∇xφ · ∇ξf ,

∆xφ = ρf .

Let us briefly compare both systems. In the case of (6), the conser-
vation of energy is

(11)

∫∫ √
1 + |ξ|2f(t, x, ξ)dxdξ + 1

2

∫
(|E|2 + |B|2)(t, x)dx = Cst ,

while in the case of (10) it becomes

(12)

∫∫
1
2
|ξ|2f(t, x, ξ)dxdξ + 1

2

∫
|∇xφ|2(t, x)dx = Cst .

In both cases, the Vlasov equation satisfies the Maximum Principle,
meaning that ‖f‖L∞t,x,ξ

= ‖fI‖L∞x,ξ
.
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However, if one assumes that f(t, x, ξ) = 0 for all t, x and |ξ| > R,
one sees that ρf and jf ∈ L∞t (L2

x) and in the case of the Vlasov-Poisson
system, the standard ellipticity estimate for the Poisson equation im-
plies that the electric field E = −∇xφ satisfies E ∈ L∞t (H1

x). In the
case of the Vlasov-Maxwell system, what plays the role of the Poisson
equation is the Maxwell system of equations for (E,B) which is noto-
riously hyperbolic. In other words, by going from (10) to (6), it seems
that one “looses a derivative” on the fields, which is not very encourag-
ing. Yet, with the first Glassey-Strauss result [16], the state of the art
on the Vlasov-Maxwell system is essentially on par with what it was on
the Vlasov-Poisson system before Pfaffelmoser’s breakthrough: all that
is missing is an estimate preventing the ξ-support of f to spread to in-
finity in finite time, as was done in [33] for the simpler Vlasov-Poisson
system (10).

This indicates somehow that the argument in [16] contains somehow
a way to win back the derivative on the fields lost in the manner ex-
plained above. My purpose in the remaining part of this paper is to
explain why this can be seen as some kind of velocity averaging result,
albeit not of the type presented in section 1.

3.2. Non resonant wave + transport systems. Consider a coupled
system consisting of a linear wave equation and a transport equation,
of the form

(13)
�t,xu = f ,

(∂t + v(ξ) · ∇x)f = P (t, x, ξ,Dξ)g ,

where �t,x = ∂2
t − ∆x. The unknowns in that system are the real-

valued functions u ≡ u(t, x, ξ) and f ≡ f(t, x, ξ), while the source term
in the right-hand side of the transport equation involves a given real-
valued function g ≡ g(t, x, ξ). The notation P (t, x, ξ,Dξ) designates
a (smooth) linear differential operator in the variable ξ only, while
v ≡ v(ξ) is a smooth RD-valued vector field on RM .

The system (13) is posed for all (t, x, ξ) ∈ R∗
+×RD×RM . Associated

to this system are the initial conditions

(14)

u|t=0 = uI ,

∂tu|t=0 = u′I ,

f|t=0 = fI ,

where the functions uI , u
′
I , fI , together with g, are the initial data of

the Cauchy problem (13)-(14).
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The system (13) is called “non resonant” if and only if

(NR) for each compact K ⊂ RM , vM := sup
ξ∈K

|v(ξ)| < 1 .

The significance of this condition comes from its physical meaning:
massive particles with phase-space density f are transported at a speed
v(ξ) which is less than the speed of light corresponding to the prop-
agation of singularities for the potential u. This is obviously verified
in the case of the (relativistic) Vlasov-Maxwell system, as can be seen
from the formula v(ξ) = ξ√

1+|ξ|2
.

It has been speculated for some time after the publication of [16]
that the reason to believe that the Vlasov-Maxwell system does not
develop singularities in finite time is that singularities of the fields are
propagated by the Maxwell system of equations at the speed of light
while the singularities of the phase-space density of particles f are
propagated by the transport equation at a speed that is less than the
speed of light: hence both kinds of singularities cannot interact in any
nonlinear way, which suggests that these singularities may not exist in
the first place. However, these ideas were never put on mathematical
terms, and the next theorem may be a first step in this direction.

Theorem 6. Let f and g ∈ L2
loc(R

∗
+×RD×RM), and assume that the

initial data fI ∈ L2
loc(R

D ×RM), that u′I ∈ L2
loc(R

M
ξ ;H1

loc(R
D)) while

uI ∈ L2
loc(R

M
ξ ;H2

loc(R
D)). Let P (t, x, ξ,Dξ) be a linear differential op-

erator of order m ∈ N on RM
ξ with smooth coefficients. Pick χ ≡ χ(ξ)

a test function in Cm
c (RM) and let v ≡ v(ξ) be in Cm(RM) and satisfy

the nonresonant condition (NR).
Then, if (13)-(14) hold, the ξ-average

ρχ(t, x) =

∫
u(t, x, ξ)χ(ξ)dξ

belongs to H2
loc(R

∗
+ ×RD).

This result might seem somewhat shocking at first sight, since ev-
erything behaves as if the operator �t,x was elliptic. In fact it is, mi-
crolocally outside of the wave cone, and this is where the non-resonance
condition (NR) helps, but this does not explain everything — eg. that
the gain in regularity be independent of the order of the ξ-derivatives
in the transport equation. To see this, compare the result in Theorem
6 with the one implied by Theorem 2, under the assumption that the
map ξ 7→ v(ξ) has no critical point on the support of χ (which is easily
verified in the case where v(ξ) = ξ√

1+|ξ|2
):
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• by applying the analogue of Theorem 2 for evolution problems
to the transport equation in (13)

(t, x) 7→
∫
f(t, x, ξ)χ(ξ)dξ ∈ H1/2(m+1)

loc (R∗
+ ×RD) ;

• by averaging in ξ the wave equation in (13) and applying the
standard energy estimate for the wave equation, one finds that

ρχ(t, x) ∈ H1+1/2(m+1)
loc (R∗

+ ×RD) .

Even in the most favorable case m = 0 this result is worse than that of
Theorem 6; further, the gain of regularity depends on m. On the other
hand, this result, unlike Theorem 6, still holds when condition (NR)
breaks down.

The key argument in the proof of theorem 6 is that some well chosen
combinations of the wave operator �t,x and of the transport operator
∂t + v(ξ) · ∇x are elliptic in the variables t and x.

Lemma 3. For χ ∈ Cm
c (RM), let v ≡ v(ξ) in Cm(RM) satisfy the non-

resonant condition (NR), and let λ ∈ R. The two following conditions
are equivalent:

• λ satisfies the condition

(15) v2
M < λ < 1 , where vM = sup

ξ∈suppχ
|v(ξ)| ;

• for each ξ ∈ supp χ, the second order differential operator

(16) Qλ
ξ = λ�t,x − (∂t − v(ξ) · ∇x)(∂t + v(ξ) · ∇x)

is elliptic.

When λ verifies any of these conditions, the symbol qλ
ξ of the operator

Qλ
ξ satisfies the following uniform ellipticity estimates: for all m ∈ N

(17) sup
ξ∈ suppχ

sup
ω2+|k|2>0

(ω2 + |k|2)

∣∣∣∣∣Dm
ξ

(
1

qλ
ξ (ω, k)

)∣∣∣∣∣ < +∞ .

Once Lemma 3 is established, the proof of theorem 6 is based upon
controlling Qλ

ξu by the usual energy estimate for the wave equation.
Finally, the uniform ellipticity estimates (17) are used to control the
various contributions to the ξ-average ρχ after integrating by parts to
bring all ξ-derivatives to bear on either χ or 1/qλ

ξ .
Observe that the proof of Theorem 2 involves multiplying the rhs.

of the transport equation — namely the functions gα — by

Dm
v

(
1

v · k

)
= O

(
|k|m

|v · k|m+1

)
;
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as in Lemma 3 one gets a function of k that is homogeneous of degree
−1, except for the effect of the small divisor |v · k

|k| |
m+1 which is taken

care of by integrating in v at the expense of loosing some of the decay
in the Fourier variable k. Likewise, in Lemma 3, one gets a function
of k that is homogeneous of degree −1, except that, under the non-
resonance condition (NR), there is no small divisor effect fighting the

regularizing effect of the term Dm
ξ

(
1

qλ
ξ (ω,k)

)
. This is why the amount

of regularity gained in Theorem 6 does not depend on the order of the
ξ-derivative in the rhs. of the transport equation, unlike in Theorem
2.

Small divisors appear in this situation only when the non-resonance
condition is not verified uniformly in |ξ| or, equivalently, when averag-
ing in ξ involves all ξ’s and not a compact set: see Theorem 7 below.

The interested reader is referred to [4] for a more thorough discussion
of this result and extensions to Lp with p 6= 2, and to [5] for complete
proofs.

3.3. Liénard-Wiechert potentials and the Vlasov-Maxwell sys-
tem. It remains to explain how Theorem 6 can be used on the Vlasov-
Maxwell system.

In order to satisfy the initial conditions (8), we first choose a vector
field AI ≡ AI(x) such that

(18) curlxAI = BI , divxAI = 0 ,

and define A(I) ≡ A(I)(t, x) by

(19)

�t,xA
(I) = 0 ,

A
(I)
|t=0 = AI ,

∂tA
(I)
|t=0 = −EI .

Solve then for u ≡ u(t, x, ξ) the Cauchy problem for the wave equation

(20)

�t,xu = f ,

u|t=0 = 0 ,

∂tu|t=0 = 0 .

Elementary computations show that

(21) φ =

∫
udξ , A = A(I) +

∫
uv(ξ)dξ

are respectively the scalar and vector potentials satisfying the wave
equations

�t,xφ = ρf , �t,xA = jf ,
X–11



the Lorentz gauge condition

(22) ∂tφ+ divxA = 0 ,

and giving the electromagnetic field by the formulas

(23)

E = −∂tA−∇xφ = −∂tA
(I) − ∂t

∫
uv(ξ)dξ −∇x

∫
udξ ,

B = curlxA = curlxA
(I) + curlx

∫
uv(ξ)dξ .

The system (6) can be somewhat simplified by using this formulation
of the Maxwell equations. It becomes

(24)
∂tf + v(ξ) · ∇xf = ∇ξ · [−(E + v(ξ) ∧B)f ] ,

�t,xu = f ,

where (E,B) are given in terms of u by (23). The initial conditions are

(25) f|t=0 = fI , u|t=0 = ∂tu|t=0 = 0 .

Introducing u(t, x, ξ) is not a mere mathematical trick; in fact the
function u has a physical meaning: it is the distribution of Liénard-
Wiechert potentials (see [26]) created by the charged particles under
the initial phase-space distribution fI .

One can check, by applying Theorem 6 assuming that the initial data
(fI , EI , BI) has finite total energy (11), that fI ∈ L∞x,ξ and that a global
solution constructed by DiPerna-Lions [10] satisfies the finite support
assumption

(26) there exists R ∈ R∗
+ such that f(t, x, ξ) = 0 whenever |ξ| > R ,

that one gains the lost derivative back. In other words, under these
assumptions, one finds that E and B are in H1

loc(R+×R3). Of course,
in order to have classical solutions, one needs to show that E and B are
in W 1,∞

loc (R+×R3), but the present discussion can be seen as a first step
in a new formulation of [16], where the main ideas are hidden by highly
technical explicit computations involving the elementary solution of the
Maxwell system of equations.

3.4. A conditional regularity result. The approach described above
— especially the formulation of the Vlasov-Maxwell system in terms of
Liénard-Wiechert potentials — allows one to significantly simplify the
conditional regularity result in [16]: see [6]. However, the question of
global existence of classical solutions to the 3D Vlasov-Maxwell system
remains open as of now, in spite of a promising new formulation due
to Klainerman-Staffilani [25].

X–12



In fact, reasoning along the lines of [15] shows that the classical
formulation of velocity averaging (as in Theorem 2) could be useful
when the speed of the particle approaches the speed of light, leading
to a loss of ellipticity in the operator Qλ

ξ above. Here is a first result
in that direction; however the idea of interpolating between Theorem
2 and Theorem 6 has not been pushed very far in the proof of this —
still conditional — regularity result.

Theorem 7. Consider initial data (fI , EI , BI) such that fI ∈ L∞(R3×
R3), fI ≥ 0 a.e., EI and BI ∈ H1

loc(R
3) satisfy

(27) divxBI = 0 , divxEI =

∫
fIdξ ,

and the finite energy condition

(28)

∫∫ √
1 + |ξ|2fIdxdξ + 1

2

∫
(|EI |2 + |BI |2)dx < +∞

holds. Let (f, E,B) be a weak solution of the system (6)(the existence
of which is predicted by [10]). If the macroscopic energy density satisfies

(29)

∫ √
1 + |ξ|2fdξ ∈ Lp

loc(R+ ×R3) , with p ∈]3
2
, 2]

then the electromagnetic field has regularity given by

(30) E and B ∈ Hs
loc(R

∗
+ ×R3) , with s <

2p− 3

2p+ 4
.

See [4] and [5] for the proof.
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eraging does not help in the quest for smooth solutions to the Vlasov-
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to S. Klainerman who showed me his idea of winning back the lost
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References

[1] C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in
3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non
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