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On the stationary Boltzmann equation.*

L. Arkeryd f

Abstract. For stationary kinetic equations, entropy dissipation can sometimes
be used in existence proofs similarly to entropy in the time dependent situation.
Recent results in this spirit obtained in collaboration with A. Nouri, are here
presented for the nonlinear stationary Boltzmann equation in bounded domains
of IR™ with given indata and diffuse reflection on the boundary.

1 Preliminaries and results

In the approach to existence problems for the time-dependent Boltzmann equa-
tion introduced by R. DiPerna and P. L. Lions [7], conservation laws and entropy
control are fundamental to obtain necessary a priori bounds and compactness
properties. In the corresponding stationary problems, only the flows of such
quantities are under control, and these are not by themselves enough to imply
the desired results. However, energy control or similar properties are available
from moment flows, and mass control may be forced onto the problem at a price.
To replace an unavailable entropy bound, there is a weaker and more involved
entropy dissipation control.

Using such devices, the last few years with A. Nouri, we have been developing
an approach to stationary existence in an L!- context for nonlinear Boltzmann
related equations, also far from maxwellian equilibrium. Concerning the pertur-
bation of a global maxwellian equilibrium on the other hand, that case has been
systematically studied already from the late 1960ies onwards. Methods of a more
general type can then be used, such as Hilbert space techniques and contraction
mappings, the pioneers being H. Grad [9] and J. P. Guiraud [10], cf also [14], [12].

To introduce the observation behind the present large data approach, let us
consider the stationary Boltzmann equation (cf [6]) in Q C IR",

v-Vef(x,0) =Q(f, f), z€QueR", (1.1)

where ) is a strictly convex, bounded domain with C!- boundary. The nonneg-
ative function f represents the density of a rarefied gas, x is the position, and v
*MSC classification 76P05

tDepartment of Mathematics, Chalmers Institute of Technology, S-41296 Gothenburg, Swe-
den.




the velocity. The operator @) is the nonlinear Boltzmann collision operator,
QUf: )W) = [ Jsu1 Bv — v, 0)(f(2,0") f (2, 0) — f(z,0) f(2,v:))dvido =
=Q*(f, f) — fv(f).

The unit sphere in IR" is denoted by S™ !, and the pre- and post-collisional
velocities are connected by

b vt [v—u,
v =0 (v,v,,0) 1= 5 50
! ! U+ Uy "U_U*|
= v, 0) = - 1.2

The function B is the kernel of the classical nonlinear Boltzmann operator,
v =2, [P blo) with —n<B<2, beLl(S""), blo)>c>0, ae.
The inward and outward boundaries in phase space are

00" = {(z,v) € 90 x R";v - n(x) > 0},
00~ ={(z,v) € 00 x R";v -n(z) <0},

where n(z) denotes the inward normal on 9.
Given a function f; > 0 defined on 90" and a diffuse reflection operator R,
solutions f to (1.1) are sought with boundary conditions

flz,v) = ORf+ (1 =0)fp)(z,v), (z,v) €N, (1.3)

for some 0 < # < 1, i.e. a mixture of diffuse reflection and a boundary source.
Energy control and entropy dissipation control by boundary value integrals, follow
from suitable applications of Green’s identity. Here the entropy dissipation is

I
fere

The entropy dissipation is zero for a maxwellian approximating a Dirac mea-
sure, so in general it does not give any information about mass concentrations.
But if on sufficiently large sets, f, > ¢; > 0 together with f') fI < ¢y, then e(f)
behaves similarly to [ f1In f, and helps to control concentrations. That is often
the case in stationary problems. It has turned out that this is enough to obtain
existence for the Povzner [3], [13] and Enskog [11] equations in bounded domains
in IR™, and for the Boltzmann equation in a slab under no other restrictions than
Grad’s angular cut-off b € L (S"7!), and n > 1. A typical result in the slab case
is the following ([2], [4]).

e(f) = / B(fa’ff’ — ffHn dzdvdv,do,
Qx IR2m x Sn—1



Theorem 1.1. Consider the stationary Boltzmann equation in a slab,

5
x
For hard forces (B > 0) and given the 3-moment [(1 + |v|)? fdzdv = M, there
18 a weak solution to the Boltzmann equation with B-moment M, satisfying a
Mazwellian diffuse reflection boundary condition (0 = 1). Also with 8 = 0 and
the indata f, on the boundary satisfying some mild integrability conditions, there
1s a weak solution to the Boltzmann equation in the slab with moment M and
boundary profile fy, i.e. with f = kf, on the ingoing boundary for some k > 0.

fz,v) =Q(f, f)(z,v), z €[0,L], v e R"

The references [2], [4] also contain the same type of results for soft forces, but
with renormalized solutions, as well as additional generalizations.

The basic compactness argument used to prove the above cases, is not fully
available for the Boltzmann equation itself in more than one space dimension.
However, in the spatially n-dimensional case the entropy dissipation estimate
still allows different but weaker control mechanisms , which also lead to existence
results (see [5]). In contrast to the earlier cases based on our original method,
so far complete results are here only obtained when the velocities smaller than
some 1 > 0 are eliminated. This is connected with the mass only being uniformly
controlled by energy away from velocity zero, but not in a neighbourhood of zero.
If we were to keep the small velocities, then a variant of the limiting procedure
employed, would still work but, besides admitting the desired solution of the
boundary value problem, would also allow the (unwanted) alternative of a total
collapse of mass at velocity zero.

Mathematically, the imposed small velocity cutoff is a serious problem, but
physically less so, if e.g. the velocities were removed only below a Planck scale.
Physically more serious is the lack of interesting uniqueness results of any gener-
ality, a problem on the other hand shared with the time dependent theory in its
present state.

The n-dimensional existence result of [5] may be stated as follows. For n > 0
given, introduce the cut-off for small velocities,

Xn (v, v, 0) =0 if |v] < nor |v.] <nor |v| <nor |v,| <n,

Xn(v,vs,0) =1 else.

Theorem 1.2. Suppose that f, > ae~%" for some a,d > 0 and a.a. (xz,v) € 0QT,
and that

/ [v-n(x)(1+v*+1In" fy(z,v)) + 1] fs(z,v)dzdv < co.
(=v)edt

Then the Boltzmann equation boundary value problem (1.1), (1.3) with collision
kernel By, has an L'-solution for 0 < 0 < 1.
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In the theorem, solutions are understood in renormalized sense or an equiva-
lent one, such as mild, exponential, or iterated integral form (cf [7], [1]). The last
two solution concepts in particular, are used in the present proof. Test functions
¢ are taken in L>®(Q2 x IR") with compact support, with v - 7,9 € L®( x R"),
continuously differentiable along characteristics, and vanishing on 0€2~.

The removal of the small velocity truncation in Theorem 1.2 seems to require
fresh ideas, whereas the technical restrictions on B, f;, and €2 may be considerably
relaxed. Under the formulation above, however, it is possible to lay bare the new
technical developments without distraction, whereas those ideas would have to
be mixed with other heavy but familiar devices in the case of more general B, f,
and €2 , making the proofs harder to penetrate.

2 On the proof of existence in the IR"-case

Without loss of generality, the existence proof for Theorem 1.2 will now be dis-
cussed in the case n = 3, 6 = 0. The first step in the proofis to solve the equation
with an extra absorption term «f in the equation. The weak form of the equation
then becomes

/Q Rg[—afo‘ + [ e + QU f)]e(z, v)dzdv =
—/ vn(z) fop(z, v)drdv — / vn(z) fCo(x,v)dzdv.
o0t

a0~

The collision integral [ Q(f, f)¢dv vanishes for ¢ = 1,v,v? and is non-
positive for ¢ = In f. This leads to a priori a-dependent estimates of mass
[ f, energy [ fv®, and entropy [ flnf. Using fixed point arguments and de-
vices related to techniques from the time-dependent case, they imply that the
a-approximation has a non-negative solution f°.

Again using the weak form, we can estimate outgoing mass flow a priori by
ingoing mass flow independently of o > 0. The exponential form of the equation
is

Fo(@,0) = filz — 57 (z,0), v)e Fotaal@r ) @rm)is

0
+/ QT (f*, f) (@ — Tv,v)e” fff(a+”(fa)(”“””))dtdr.

—st(z,v)

Here s* is the time it takes to reach the ingoing boundary point along the char-
acteristic (z — sv,v). It follows that

fbe_fu S f(il?,’l)) S foutgoingefya

and so the exponential form gives uniform estimates of f® along characteristics
outside a small set; given € > 0 there is a constant C. independent of «, so
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that outside a set (depending on «) of characteristics of measure ¢, it holds that
f* < C.. For f, replaced by zero outside the nicely bounded characteristics, the
weak limit fo = w — lim f2 , increases with 1/e.

With the final limit f = s-lim f. of these approximate solutions as a candidate
for a true solution, it remains to prove that it satisfies the desired problem. We
use the iterated integral form of the equation, where it is easy to suppress the
solution along whole characteristics, by setting the test function equal to zero
along them,

0
[ e een@asan s [ ([ e
+Q(f, e + fv-Vupl(z + ov,v)do) | v-n(z) | dzdv = 0.

The iterated collision integral is well defined even when Q is not integrable. The
replacement of the test functions by zero along certain characteristics is possible,
since the test functions are in L*> and only required to be differentiable along
characteristics.

One difficulty with the removal procedure just described, is the following.
Consider the collision frequency v = [ do [ Bf®dv,. It may happen at a point
x € Q along a retained characteristic for f®, that other characteristics through
the point z € ) are not retained. This may decrease the collision frequency at x,
which is an integral in the second velocity variable v,. For an approximation of
the present type to deliver the correct equation, the effect of that decrease should
disappear in the final limit. The second step in the proof consists in a study of
the interaction between what is retained and what is removed. Finally the third
step in the proofis a check that the final L!-limit of the approximations by itself
solves the boundary value problem.

A key part of step two and the whole proof, is a lemma quantifying in what
sense the contribution of the large f®-values is small, from those space points that
support a "non-negligible amount of good” characteristics. In a following lemma
the influence from the large f®-values of all remaining relevant space points, is
then also shown to be negligible in the limit. It is a key observation in the study,
that the possibly bad behaviour along a particular small set of characteristics, in
the limit does not influence the behaviour based on the rest of phase space, in
spite of the mixing non-linear character of the collision operator.

Now to a more detailed presentation of those lemmas. Let (,, be a character-
istic through = € ) in direction v, and let v = 7. Denote by X&(y) the subset
of Q consisting of those 'reasonably non-tangential’ characteristics in direction y
for which f¢ is 'reasonably bounded with the collision frequency integral along
(v also reasonably bounded’ and this for 'most |v|’. (Consult the complete proof
in [5] for precise definitions here.) Fix V' >> 7, and restrict in velocity space to



those v with n < |v| < V. Set

fr=f*if f* > A fy:=0 else,

ap(z) = max{1,log 2z} and inductively a;;(z) = max{1,loga;(z)}.
O, = {z € fWS|U|SV f2(x,v)dv > 0},

Ou iy = {2 € Ogr;imeas{p € S%z € X2(n)} > 2},

Lemma 2.1. Let V,i,n be given in IN and sufficiently large. For X large enough
with respect to V., i,n, it holds that

/ / F8 (@, v)dvdz < gy(i,m, A), (2.1)
(0] n<|v|<V

where the function g; does not depend on «,

QLT,M A

ci®n%a;z (N)

ot A= =000

with ¢ not depending on V,i,n, A, a.

en

The lemma holds for A = ¢¢  with i* exponentials, and n > e . A discus-
sion of the idea of proof can be found at the end of this paper.

For v € 52, set
A’y,a,i,n,)\ = X’f? (fy) ﬂ (Oa,)\ \ Oa,i,n,)\)-

The contribution of the large f*-values at the other relevant space points, namely
those with "good characteristics but only a negligible amount” of them, is "mostly”
small in the following simple way.

Lemma 2.2. There is a subset I, ;.\ of S* such that | Ig i |< \/% and

J

Proof. Let x4 denote the characteristic function of a set A.

/52 /A / £ (@, v)dvdzdy = / ( / (@, v)dv /S Xy (2)7)

< 4—_7r//f§‘(x,v)dvda: < ‘
1 Q 7

Here the earlier mentioned energy estimate (uniform in « ) is used for the last
inequality. So for the inner integral,

/A / £9(x, v)dvdz >

1
Az, v)dvde < —, € Iyinn.
/f)\( ) \/{ fy 717)\

ECT NP

V>0,0,m,A

1

Vi

7506,8,m,A
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only holds for directions v defining a set I, | in S? with an area bounded by
%. For v € I, on the other hand

/ /f/\xvdvd 7

With these two lemmas, the tools are at hand to prove that the truncation
limit f really satisfies the present boundary value problem for the Boltzmann
equation, i.e. the third, concluding step in the proof of Theorem 1.2. In order
to prove that f is a solution to (1.1), (1.3) in the hard force case, it is enough to
prove that the absolute value of the left-hand side of

7azn)\

O

[ oo fonoojaxaos [ ([ i@t

N~ J—st(Xw)

+fv- V0| (X + ov,v)do) | v-n(X) | dXdv =0
is smaller than e for any € > 0. Start from the equation for xg f*, where e =
(ix, k, ;) with the sequences (i) and (M) increasing to 1nﬁn1ty, and xg is the
characteristic function of the remaining phase space, when a suitable small set of

characteristics given by €, are deleted using Lemma 2.1-2.
Since xg commutes with v-</,, the approximated problem in weak form gives

Lvm (XE, fo) (X, v)v - n(X)d X dv

0
+/ (/ a(U-l—s [Xek (fa,fa)(P
N~ J—st(Xw)
X8 SV - Va)(X + ow,v)do) | v-n(X) | dXdv = 0.

By the construction the first term tends to

/a (9)X0) [0+ n(X) | dXao,

when « (subsequence) tends to zero, and then k tends to infinity. Also the last
term

0
/ / oL X ya oy G o(X + ov,v)do | v-n(X) | dXdv
00~ J—st(Xw
tends to
0
/ / fv- V(X +ov,v)do [ v-n(X) | dXdv,
a0 —st(Xw
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when a@ — 0, and then k¥ — oco. The convergence of the collision term in an essen-
tial way depends on Lemma 2.1-2, and follows by an elaboration of the methods
from the time-dependent case ([7], [8]). The soft force case is similarly proved.

Let us end with a discussion of the proof of Lemma 2.1. The properties in
that lemma are deduced from local aspects of the entropy dissipation control.

A decomposition of the angular directions is needed. Take i = 27 for j € IN.
Split S? into ¢ disjoint neighborhoods Sy, ..., S; with piecewise smooth boundaries,

A7 c
Sy |= —, diam(S;) < —, '
| Sk | (k)_ﬂ <k<

Z-J
=Sy =95, for some 1< <q,

where ¢ > 4 is an i-independent constant. Consider x € Oy ;1. Take
1 <k <isuch that |I,| > 3—?, where

L= Sy n{pe S%ze X2},
By the underlying construction —1I,, = S; N {u € S?;x € X*(u)}. Define
V. :={v e R* n<|v|<V, where f{(z,v) is the largest, and
iz, v)dv = i_5/ ¥z, v)dv}.
n<|v|<V

Va

It holds that
4 .
| Ve |< §7T(V3 — %),

Divide I, into four quarters of equal area, and defined by two orthogonally
intersecting geodesics in S?. Let the direction Oz, in velocity space IR®, be par-
allel to the element 7, € S? defining the intersection of those two orthogonal
geodesics. For v in V, consider the plane in velocity space IR®, defined by v and
Oz. In this plane denote the (normalized) coordinate of v in the ~,-direction by
¢ and the orthogonal coordinate by £&. We assume V' >> 7).

The proof of the estimate (2.1) is split into several cases, depending on the

position of v in this plane. The presentation here illustrates the technique in the
simplest case

(i): [ & [< rand [¢] =7,

where r = %. For symmetry reasons it is enough to consider £ > 0 and ¢ > 7.
Take v, with ¥ <| v, |[< &, with o in that quarter of —I, corresponding to

&€ < 0 and (¢ < 0, and with the f®-values also ’'reasonably bounded with
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respect to n’ at the boundary points of the characteristic through = in the v,-
direction. (For details see the complete proof in [5].) Take o € S? such that for
V'(v,v,0) as defined by (1.2), ‘V,| belongs to I, |V'| > n, and (¢’ > 0. Such o’s
form a set of surface area of magnitude > i=2. For each v, already chosen, also
restrict the set of ¢’s so that the f*-values also are 'reasonably bounded with
respect to »’ at the boundary points of the characteristic through z in the V'-
direction. (Again, for details see the complete proof.) For these v the measure of
the corresponding (v, o) under the present construction is greater than or equal
to i, and fo(V'(v,vs,0)) < n.

Denote by
di™t
Wy :={veV, [ <r, (>n, measTy, > 5 —1,
where
A
Ty := {(v.,0) as defined above; f*(z,V,(v,v.,0)) < s
az(A)

and by

W= {v € Ve [£] <7, (20} \ War.
(i)(a) For v € Wy, (vs,0) € Ty, and writing f* = f,

" as (A
‘;/‘;/ Z 2752) Z
Here given n, the second inequality holds for A large enough, and implies
In L2 > a4()). Moreover,

ag()\).

1L
! gl ! A ! f f f ff*
Tl o s e S "am S s 2
Hence
2n I
fﬁm (ffi = f'fi)In ff,7

where ¢, is a positive lower bound of b, and ¢ = 1if 0 < 3 < 2, & = (2V)P if
—3 < < 0. And so by a uniform entropy dissipation control, integration of this
last inequality for € O inx, v € Wy and (v, 0) € Ty, gives that

/ iz, v)dzdv < ¢ i’
a 1M, W1 g a4()\)
(i)(b) For v € W9, consider as a new set of v,, the set {V/(v,v,,0); (vi,0) ¢

Ty} with elements now denoted by v!. Its volume is of order of magnitude at



least 5=2. From this set of v}, define v'" and v! either as in (i)(a), or take v"
correspondingly but with (¢!’ < 0, so that, again with f* = f,

V' (v, 05, 0)], V(w00 0) >, f(,0) = —

for A large enough, and f(z,v") < n. Since the volume of v} is of magnitude
> i3, there is no loss of generality to restrict the domain of (v},o) so that
f(z, o) < f(z,v). Hence,

fz,0) f(a,0}) = flz,0") f(z,0)) 2 fla,0)(@(X) = n) > f(z,0)as(N),
for A so large that a;(A) — as(A) > n. Moreover,

@) i@t e
T o) (@) = n

for A large enough, so that

b L@ ) (o)
Fla, o), oF)

Thus again by the uniform entropy dissipation control,

> az(A),

2 0,3()\).

4
/ [z, v)dzdv < S

a i,m,A W2 az()\)a?’()\) .
Together (a) and (b) give for case (i) that
n 1
iz, v)drdy < i’ ( + ).
/(;a,i,n,)\ /77§|U|§V:|f|§7‘aCZn * ( ) 0/4()\) GQ(A)GE;()\)

This estimate is of the type in the lemma. Adding the other cases, the statement
of the lemma follows in a controlled number of steps.
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