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BELLMAN APPROACH TO SOME
PROBLEMS IN HARMONIC ANALYSIS

A. VOLBERG

Abstract : The stochastic optimal control uses the differential equation of
Bellman and its solution - the Bellman function. Recently the Bellman func-
tion proved to be an efficient tool for solving some (sometimes old) problems
in harmonic analysis.

1 Bellman equation for stochastic optimal control.

Let us start with the problem of control of rather general stochastic pro-
cess. The main reference is the book of N. Krylov “Optimal control of diffu-
sion process”, Springer 1980. Let z! be a stochastic process in R? satisfying
the following stochastic differential equation

¢ ¢
ot =1 —|—/ oo, z%)dw’ —|—/ b(a®, z%)ds . (1)
0 0

Here t is the time, w' is a d;-dimensional Wiener process, o = o(a,y) is a
d x dy matrix, b is a d-dimensional vector. The process a! is supposed to be
the control that we have to choose.

We denote by A C R% the set of admissible controls, that is the domain
where « runs.

The choice of stochastic process o usually (it will be also d-dimensional)
gives us different “motions” - different solutions of (1). Of course, the ques-
tions of existence and uniqueness of solutions immediately arise, but we just
assume the existence and the uniqueness.

Suppose we are given the profit function f*(y) : on the trajectory z*, for
the time interval [t, ¢ + At], the profit is

o (2 AE + o(AY) .
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Therefore, on the whole trajectory we earn

/OO fee(zh)dt .

0

We want to choose the control @ = {a°} to maximize the average profit
v (x) = ]E/ Fo (2t dt + tm E(F(z")) ,
0 —00

for the process starting at x. Here F F' > 0, is a bonus function - one gets it
when one retires.

The optimal average gain is what is called the Bellman function for sto-
chastic control :
v(z) =supV(x) .
It satisfies a well known Bellman differential equation. Bellman PDE is based
on two things :
1) Bellman’s principle,
2) Ito’s formula.

1) Bellman’s principle states that

Vi >0, v(z) =supE [/t e (x%)ds + v(zh)
a 0

Let us fix t > 0, and let us consider an individual trajectory. The profit for
the interval [0, ¢] is given by
t
/ o (2*)ds .
0

Suppose that the trajectory has reached the point, say y, at the moment t.
Then the maximal average profit we can gain starting at the moment ¢ at y
is exactly v(y). Indeed, since the increments of w® for s > t do not depend on
w”, 7 < t, and they behave as corresponding increments after time 0, and the
equation (1) is time invariant, there is no difference between starting at time
0 or at time ¢. Applying the full probability formula to take into account all
possible endpoints y = x?, we get exactly the Bellman principle.

2) Ité’s formula (the version we need).
Let us fix a moment of time s, and a small increment As. We want to

estimate the difference v(z°*2%) — v(z?). Recall that w® = (wf,--- ,w3)7,
denote Aw,ﬁ = wz+As — wy, Aw® = wstAs — ws.
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Using Taylor’s formula (we think that Bellman’s v is smooth, which might
not be the case) we will have to consider (among others) the term

d
> a—”(gﬁ) Zakj(as,xS)Aw;+

After averaging over the probability, the first term will vanish —Aw; are
independent of x° and have zero averages.

The second term can be rewritten as E(L$ (z°)v)(z%)As, where the first
order differential operator £§(z) is given by

L(z):= Zbk(a,x)— .

Another term that will appear is

1 0? s s
5; a.’L‘Z;x] (zk: ijAwk) (Ek: JzkA’wk) .

After averaging over the probability, only terms with E(Aw)? = As will
not vanish. This gives rise to E (£$"(z*)v) (2*)As, where the second order
differential operator £5(x) is given by

d
. 02
o — ()
L (x) : MZ:la (a,x)iaxiawj , where
3 13
a’(a,z) = 5 Zaik(a,x)ajk(a,x) i
k=1

The higher order Taylor terms will give As to powers greater than 1, and,
obviously they sum up to o(1), and can be omitted.

Gathering all together we get
t
E(v(z')) = v(z) + E / £°° (2% )o(2*)ds | )
0
where L%(z) = L (z) + L ().
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¢ is called the drift.
Putting this into the Bellman principle one gets

0= sup [ /0 ot (a9 ds + / e (ws)v(:vs)ds] .

0

Dividing by ¢ and letting ¢ tend to zero one gets Bellman’s PDE :

sup [LY(z)v(z) + f(z)] = 0.

acA

Of course, to justify taking the limit one has to make some assumptions, so
the above presentation is just a scheme.

Supersolutions : We always think that /' > 0 is convex. We have an “obs-
tacle problem” in  C R? :

{ zlég[ﬁa(x)v(x) + f*(z)] =0,z € Q, )
flz)> F(x), z€Q.

In our applications we will be more interested in supersolutions of the Bell-
man equation (2) :

a€cA (4)

sup[L(z)V (z) + f*(2)] £ 0,2 € Q,
V(z) > F(z), z€Q.

Lemma 1.1 Let V solve (4) and let v be the Bellman function, then V > v
in €.

Proof : The first line of (3) states that —L%(z)V (z) > f*(z). Using (2)
one gets

V(z) =EV(z') - E /0 (LY (25)V)(2*)ds

¢
> EF(z') + ]E/ f (z*)ds.
0

Writing tﬁ of both parts, we get V(z) > v*(z). It rests to take the supre-
—00

mum over the control process «. e
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2 Harmonic analysis Bellman functions.

2.1 A, weights and associated Carleson measures. Bu-
ckley’s inequality.

We call a nonnegative function on R an A,, weight (dyadic A, weight
actually) if
(w); < Crele® VjeD. (5)

Here D is a dyadic lattice on R, ( - ); is the averaging over J.

We are going to illustrate our use of Bellman function technique by a
collection of examples, the first of which is the result of Buckeley [1] that
can be found (along with “continuous analogs”) in the paper of Fefferman-
Kenig-Pipher [2].

Theorem 1 Let w € As. Then

I (w)e, — (w)e_\?
\ﬂep,mz(—wz ) e < Cy (6)

where Cy depends only on Cy in (5). Here £y are right and left sons of £ € D.

‘Who moves ?

Ty, 2 = (w); , (logw),
Q1 = <w>son ofJ — <w>J = ‘051‘ = %|<w>J_ - <w>J+|

Function of profit can be read off (6) if one notices that |17| > --- is the
¢<I,
LeD

average over the lines of life. Each line of life initiates at I and then proceeds
to I, (e; = +1 or e; = —1), then to L., (g5 = +1 or g5 = —1), etc.

Thus ‘}—‘ > -+ plays the role of E [°---. This allows us to choose the
£<I,
LED

correct profit function

o 4oz
fo) =5
Bonus function F' = 0 here.
Bellman equation reads now
8 2
sup [(d%a,a) + %] =0 (7)
a=(a1,a2) 7
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to be solved in
0= {(:1:1,332) 1< pe ™ < cl} (8)

with the obstacle condition
v(z) >0 Vre. 9)

We are not going to solve (7) - (9). Instead, we will write down a supersolu-
tion.

Theorem 2 The dyadic Bellman function B? is always a supersolution of
an obstacle problem. In other words, always

Bl(z) >wv(z) , 2€Q. (10)

Theorem 3 Suppose there is no drift. If Q is conver and x — f*(x) is
convex, then any supersolution V of the obstacle problem majorizes B? :

V(z) > B%z), z€9Q. (11)

In other words, under convexity assumptions and no drift assump-
tion, one has
v> infV  >BY>0inQ. (12)

Vis a supersolution
V>F

We have to explain what is B?. We are doing this for our example of Buckley
estimate. It is defined the same way in each of the subsequent problems.

Bd(w1,$2) = Sup{|}_| ; (<w>f+<;>:w>f—> |l :

(w) =z, , (logw); = x5 , (w); < C1e1°8%) ] for every J € D, J < I} .

To find ¢, one needs to compute sup B%(z), where Q = {x = (21,25) : 1 <
e

167" < ¢1}. The domain is not convex, and apparently Theorem 3 is not
applicable because of this, but we are going to find a supersolution in {2 which
is concave in a wider - and convex - domain Q = {z = (21, 22) : 1 < z7e7 "2},
For such supersolutions V inequality (11) still holds : B¢ < V.
Here is a possible V' :

V(.’L‘l,mg) = 861 (1 — 6_) .

T
In fact,
272 _ %2 e®2 2
T O\ g (5 0
2
—dV =8¢, > 8¢y > — ,

er2 2 €
p i 0 ,0 0 0
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which means that (—d*Va,a) > 85%2% in €. Concavity in € is also clear.
1
Therefore,

1
co <sup B <supV < 8¢;(1— =) .
Q Q 1

2.2 A two-weight inequality

VJeD (u)y;(V); <1=VIeD
ﬁz [{w)er = (el [(V)er = (W)e-| |]€]

<1,
LeD

< Cu)y*(v).

‘Who moves ?

z1,22 = (u);, (V).

As in the previous problem f*(z) is easy to find :
f(x) = Ao [aef .

Bonus function F' = 0 here again.
Bellman equation

sup  [(d*va, @) + 8las] |aa|]] =00 > 0inQ = {z = (21, 32) : 0 < 21, 25 w122 < 1} .

a=(a1,02)

Supersolution positive in  and concave in Q= {z = (z1,22) : 21 > 0,29
>0} :

V(l‘l,LUQ) = A\/ilflil?g — Bil?lil?g s
with suitable A, B(A = 32, B = 8 works.)

B \%
¢ = sup 20 ) V@ T) g

zeQ  /T1T2 zeQ A/T1T2 '
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2.3 John-Nirenberg inequality : Bellman equation with
a drift but with f¢=0.

VI eD(p— (p)s)s <5=>VIeD
<6<P>I < 056(50)1 ]

‘Who moves ?

z1 = (), T2 = (o= (@)} =

Notice that (¢ = n)

+ — + _ 2
=Bl o) == 2 - (B2 — (et

On the other hand
t+1 t+1
=gt +/ odw® —i—/ bds .
t t

Thus drift b stands for E(zt!|zt)—2? (in the case of discrete time). Therefore,
0 \.
bla,x) = ( 2) in our case.
Notice that f* = 0 as there is no ‘}—‘ > ... in the functional. Bellman

<I
equation in this case has a form
1 ov
sup [—(dzva,a> ——a?| =0.
a=(a1,a2) BIQ
In other words :
Pv _ g &
33)% Oxo Ox10x2
<0, (13)
&%v v
Ox10x2 Baﬂg
in Q5 = {.’IJ = (.7)1,.712),.’1)1 eR 0 <z < 5}
The obstacle condition is
v(z) > F(z) = ™ in Qs (14)
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Denote Bf the dyadic Bellman function of a corresponding problem.

One can compute vs; as well as try to use Theorems 2 and 3. Let us see
what will happen. (What follows is taken from the work in preparation of
L. Slavin and V. Vasyunin.)

First of all

v = inf {Vs: Vs > €™ in Qs}.

vs is a supersolution

Secondly, such an infimum must have the following property : the matrix in
(13) must be degenerate, namely

0%v ov 0%v 0%v \?
—9 - =0.
<8$% 05 ) ((9.7}% ) (Bxlaxg ) 0 (15)

The solutions of (15) which are greater than e* in {25 can be all written
down.
Consider,

1 =4/ —
905:‘1('/1"17'7"2) = q%ewl—kmﬁad S e< 17q Z ]. .
— /€

They satisfy (15) and (13) in Q5 and ¢ (x1, 22) > €** in Q. > Q.
One can now easily see that

vs = inf = = )
é 5e<1, Pe,q 2 ©s.1
g1

Unfortunately, Theorem 2 is applicable :

_ L—v 0 — &y 6551-1-\/5—%2—\/5

B? > ys = 16
5 = Us 1_\/3 ( )

but Theorem 3 is not applicable.
However, quite unexpectedly vs; = ¢4 is equal to non-dyadic Bellman
function. Let us introduce it by imitating our dyadic definition

Bs(x1,29) = sup{(e’)1 : (p)1 = 1 ,
(o= (o)1) =22, S}g((@ —{@)s)*)s <0} .

We call the attention of the reader to two things :
1) intervals I, J are not dyadic anymore,
2) sup{(¢ — {p)s)?)s is the norm squared of ¢ in the space BMOs(J),
J<I

||(p||2BM02(J)'
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The fact that
Bs =wvs = s

means that the constant of John Nirenberg for the norm BM O, is equal to
1 (if one looks at s, one sees that it exists only for 0 < § < 1). One can
also calculate the best constant in John-Nirenberg inequality (e®) < Cjef¥).

Obviously, C; = %

2.4 Burkholder-Bellman function

VI €D {g)ry — (@1 | < [{(F)rr — ()]
= VI € D such that |(g);| < [{f)/]
one has
(g < @=1)"(f")1,p=2.

The constant (p—1)? is sharp. This is a famous theorem of Burkholder which
he proved by constructing the corresponding Bellman function. He found it
by solving a corresponding Bellman PDE - a complicated one.

We would like to show a simple “heuristic” method of solution.

‘Who moves ?

w1 =(g)s, x2=(f)s, s =(f]")s .
Our rules say that f*(z) = 0, EF(z!, 2%, 2%) ~ E|g|’. Denoting by F; the
o-algebra generated by dyadic subintervals of I of length 27" |I|,t = 2", we
can write E|g|? ~ E|(Ex,|F;)[P = E|zt|? which gives us the correct bonus
function F(zy, s, x3) = |21 P
Notice that A = {a = (a1, a2, a3) : |a1| < |az|} now.

This is because |a1| = 1[(g) s+ — (9)s_], lo2| = £[(f)s+ — (f)s—|, and we
are given that the first quantity is always majorized by the second one.
So we have the Bellman equation

sup {d*va,a) =0
lag|<lesl,
a3

in Q= {z: (x1,22,23) : |22/ < 23} (convex), with obstacle condition
v(%1, T2, 23) > |71
We want to know what is the smallest 5 such that

|z1 P < v(xq, 22, 23) in O
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V satisfies (17), and
v(x1, T2, x3) < Bz in QN {|zy| < |z2|}?
Burkholder found it ([3]) :
(w1, 9, 23) = PP (p — 1P (|| + [ )P

(| = (p = Dwa]) + (p = 1)Pa3

and S = (p — 1)?. We will see now an “easy” method to find this Bellman
function and the constant.
First step is the reduction of number of variables :

o(x,y) = sup [v(z,y,2) — B2 .
2 (y,2)EQ

Properties : 1) sup (d*pa,a) =0 .

a=(a1,a3)
lagl<lag]

Explanation : the supremum of concave functions is not concave, but gi-

ven a concave function one can get another concave function by taking the
supremum over one of the variables.

2) S0($,’y) = SL|IIT [’U(.’L‘,y,Z) - ﬁZ] Z |$|p - /8|y|p )
z2|ylP
3) o(Az, Ay) = No(z,y) .

Consider the quadratic form (d*>pa, @) in a fixed point (z,y) € R2. It is
negative in a cone {|a;| < |az|}. We already saw in 2.3 that the Bellman
function tends to have a degenerate quadratic form at each point. Assume
that (d®pa, o) degenerates in {|ay| < |as|}. Then, obviously, it degenerates
only on the boundary of this come (otherwise it would not be negative in the
whole cone.)

By the third property of ¢ it is unlikely that in say I quadrant, the
degeneration happens in northeast direction. In fact, the degeneration in this
direction seems more pertinent to linear function then to a function which is
homogeneous of order p.

So we may try to consider ¢ with degeneration in northwest direction in
the I quadrant, northeast direction in the /1 one, northwest again in the 177
one, and northeast again in the IV one. Such functions have the form

o(z,y) = g(|z| + |y])(|z] — plyl)
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with some unknown constant p and unknown function g. But g is “almost”
known because ¢ is homogeneous of order p (its third property). Therefore,

Pro(@,y) = (2l + [y)P~ (=] = plyl) ,
with unknown constants 7, p. And v > 0.

Lemma 2.1
d2<)0’7,,0 <0 V(IL‘,y) € R2av|a1| < |a2| <P > p— L.

It is a direct calculation.
Sop>p—1.
We must now find the smallest 3 := 77 such on R?

v(ll + [y~ (2] = plyl) > Jaf? = 77ly [P

with some v >0, p+1 > P.
Put [z + |y =1, [yl =S €[0,1].
Minimum 77 such that there exists v > 0 such that

Y1 = (p+1)s)— (L =98P +7Ps»>0,s€[0,1] .

—_ 1 1 _
Takes_p+1§p.Then72p 1.

Because we want the smallest 7 let us try 7 = p — 1, which forces also
p=p—1

Now f,(s) :=y(1 —ps) — (1 — s)? + (p — 1)PsP.

Does there exists v > 0 such that

f+(s) >0, s€[0,1] (17)
Notice that f,(%) = 0. Then to have (19) one needs f’(%) = 0. This gives
T\p Ti\p
Y=p"Tlp-1)7". (18)

To check that (19) holds with ~ from (20) it is enough to check that £ >0
on [t,1] with ¢ < %.

But f3 (s) = 0 implies (15*)"? = (p — 1)?, and s0 s < .

We finally get all constants involved in ¢(z,y). After that we see that

v(,y,2) =p*P(p = 1) (la] + [y}~ (|2 = (p — Dly])
+p—1"Z = ¢(z,y) +77Z

is the function we need.
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3

Conclusions

The Bellman functions built for one problem can be used for another
one.

Examples are numerous by now. See, for example, [4], [5]. Also one

can combine Bellman functions using superposition to obtain the Bellman
function of more and more complicated problems, see, for example, [6]. A
thorough exposition of Bellman function technique, see in [7]. New creatures
from the Bellman’s zoo can be found in [8] along with the stochastic optimal
control explanations.

In [9] one sees one more example of how this technique works in domains

apparently far from its origins. Paper [10] gives another such example.
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