
S E M I N A I R E

Equations aux
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THE MOTION OF THE FREE SURFACE OF A LIQUID

Hans Lindblad

1. Introduction

We consider Euler’s equations

(1.1)
(
∂t + vk∂k

)
vj = −∂jp, j = 1, ..., n in D, where ∂i = ∂/∂xi

describing the motion of a perfect incompressible fluid in vacuum:

(1.2) divv = ∂kvk = 0 in D

where v = (v1, ..., vn) and D ⊂ [0, T ]×Rn are to be determined. Here vk = δkivi = vk and we have used
the summation convention that repeated upper and lower indices are summed over. We also require
the boundary conditions on the free boundary ∂D;

(1.3)
{

p = 0, on ∂D
(∂t + vk∂k)|∂D ∈ T (∂D),

The first condition says that the pressure vanishes outside the domain. The second condition says that
the boundary should move with the velocity of the fluid particles at the boundary.

Given a simply connected bounded domain D0 ⊂ Rn and initial data v0, satisfying the constraint
divv0 = 0, we want to find a set D ⊂ [0, T ]× Rn and a vector field v solving (1.1)-(1.3) and satisfying
the initial conditions

(1.4)
{ {x; (0, x) ∈ D} = D0

v = v0, on {0} × D0

Let Dt = {x; (t, x) ∈ D} and, for each t, let N be the exterior unit normal to the free surface ∂Dt.
Christodoulou[C2] conjectured the initial value problem (1.1)-(1.4), is well posed in Sobolev spaces
under the assumption

(1.5) ∇N p ≤ −c0 < 0, on ∂D, where ∇N = N i∂xi .

(1.5) is a natural physical condition since the pressure p has to be positive in the interior of the
fluid. It is essential for the well posedness in Sobolev spaces. Taking the divergence of (1.1):

(1.6) −4p = (∂jv
k)∂kvj , in Dt, p = 0, on ∂Dt
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In the irrotational case (1.5) always hold. Then (curlv)ij =∂ivj−∂jvi =0 so 4p<0 and hence p>0 and
(1.5) hold by the strong maximum principle. Furthermore, Ebin[E1] showed that the equations are ill
posed when (1.5) is not satisfied and the pressure is negative.

Wu[W1,W2] proved well posedness in Sobolev spaces in the irrotational case when the curl vanishes.
Ebin[E2] announced an existence result when one adds surface tension to the boundary condition. In
[CL] we proved a priori bounds in Sobolev spaces in the general case of non vanishing curl. Recently, in
[L1, L2] we prove existence. This lecture outlines the energy estimates using the two different methods
in [CL] respectively [L1,L2].

The incompressible perfect fluid is to be thought of as an idealization of a liquid. For small bodies
like water drops surface tension should help holding it together and for larger denser bodies like stars
its own gravity should play a role. Here we neglect the influence of such forces. Instead it is the
incompressibility condition that prevents the body from expanding and it is the fact that the pressure
is positive that prevents the body from breaking up in the interior. Let us also point out that, from
a physical point of view one can alternatively think of the pressure as being a small positive constant
on the boundary instead of vanishing. What makes this problem difficult is that the regularity of the
boundary enters to highest order. Roughly speaking, the velocity tells the boundary where to move
and the boundary is the zero set of the pressure that determines the acceleration. For more physical
and historical background, including further references, we refer to [W2] and [CL].

2. Lagrangian coordinates.

We start by introducing Lagrangian coordinates in which the boundary becomes fixed. Let Ω be a
domain in Rn and let f0 : Ω → D0 be a diffeomorphism that is volume preserving; det(∂f0/∂y) = 1.
Assume that v(t, x) and p(t, x), (t, x) ∈ D are given satisfying the boundary conditions (1.3). The
Lagrangian coordinates x = x(t, y) = ft(y) are given by solving

(2.1)
dx

dt
= v(t, x(t, y)), x(0, y) = f0(y), y ∈ Ω

Then ft : Ω → Dt is a volume preserving diffeomorphism, since divv = 0, and the boundary becomes
fixed in the new y coordinates. Let us introduce the notation

Dt =
∂

∂t

∣∣∣
y=constant

=
∂

∂t

∣∣∣
x=constant

+ vk ∂

∂xk
,(2.2)

for the material derivative and
∂i =

∂

∂xi
=

∂ya

∂xi

∂

∂ya
.(2.3)

In these coordinates Euler’s equation (1.1) and the incompressibility condition (1.2) become

(2.4) D2
t xi = −∂ip, and κ = det (∂x/∂y) = 1,

where x = x(t, y), p = p(t, y), and the boundary condition (1.3) and the initial condition (1.4) become

(2.5) p
∣∣∣
∂Ω

= 0, and x
∣∣∣
t=0

= f0, Dt x
∣∣∣
t=0

= v0.

In fact, recall that Dt det (M) = det (M) tr (M−1DtM), for any matrix M depending on t so

(2.6) Dt det (∂x/∂y) = det (∂x/∂y)
∂ya

∂xi

∂Dtx
i

∂ya
= ∂iDtx

i = divDtx = divv = 0

Note that p is uniquely determined as a functional of x by (2.4)-(2.5). In fact taking the divergence of
Euler’s equations (2.4) using (2.6) gives

(2.7) 4p = −(∂iDtx
j)(∂jDtx

i).
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3. Energy conservation.

Since det (∂x/∂y) = 1 it follows from introducing Lagrangian coordinates,

(3.1)
∫
Dt

g dx =
∫

Ω

g dy, so
d

dt

∫
Dt

g dx =
∫
Dt

Dtg dx

We note that if v is a solution of Euler’s equations, Dtvi = −∂ip and p vanish on the boundary then

(3.2)
d

dt

∫
Dt

|v|2 dx = 2
∫
Dt

viDtvi dx = −2
∫
Dt

vi∂ip dx = 2
∫
Dt

(divv)p dx− 2
∫

∂Dt

vNp dS = 0

where vN = Niv
i is the normal component of v. For further use we also note that

(3.3) Dt

∫
∂Dt

g dS =
∫

∂Dt

(Dtg − g∇NN iDtxi) dS

if dS is the induced surface measure.

4. The linearized equations.

Differentiating (2.3) and using the formula for the derivative of the inverse of a matrix, DtM
−1 =

−M−1(DtM)M−1, gives

(4.1) [Dt, ∂i] = −(∂iDt xk)∂k

Differentiating (2.4), using (4.1) and (2.6) gives the linearized equations:

(4.2) D2
t vi − (∂kp)∂iv

k = −∂iq, and divv = 0, q
∣∣∣
∂Ω

= 0

where v = Dtx and q = Dt p. Note that here q is determined as a functional of v. In fact using the
divergence free condition for v and taking the divergence of (4.2) gives us an equation for q:

(4.3) 4q = ∂i

(
(∂kp)∂iv

k
)
− 2(∂iDt xk)

(
∂kDt vi − (∂kDt xl)∂lv

i
)

+ (∂i∂kp)∂kvi

We can now think of x and p as given and solve (4.2)-(4.3) for v and q. It follows from (4.1) that if
curlvij = ∂ivj − ∂jvi then

(4.4) Dt curlvij = curl(Dtv)− (∂iDt xk)∂kvj + (∂jDt xk)∂kvi,

where curl(Dtv) vanishes if v is a solution of Euler’s equations (2.4) and even if v is just a solution of
(4.2) it can be controlled by terms similar to the other terms on the right hand side of (4.4). Similarly,
the divergence of Dtv can be controlled using (4.1) and (4.2). Hence we will be able to obtain estimates
for the divergence and the curl of v and of Dtv. We will see in section 7 that this together with estimates
for derivatives that are tangential at the boundary gives estimates for all first order derivatives ∂v.

In the next sections we will get energy estimates similar to the one in section 3. The main difference
between (4.2) and (2.4) is the additional term in the left hand side. This term is an operator of order
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one acting on v so its not lower order and will have to be included in the energy. Note that since q and
p vanishes on the boundary it follows that the ∂q and ∂p point in the normal direction and so by (4.2)

(4.5) D2
t vi − (∇Np)Nk∂iv

k = −(∇Nq)Ni, on ∂Ω

where N is the exterior unit conormal and ∇N = N i∂i is the normal derivative. The second term in the
left will contribute with a positive term to the energy only because of the sign condition (1.5). The right
hand side of (4.2) or (4.5) will be lower order but difficult to control. First, in sections 5 and 6, we will
ignore this term and then afterwards in the following sections explain how to deal with it. Following
[CL], in sections 8 and 9 ,we will deal with it by projecting the equation onto the tangent space of the
boundary so the right hand side of (4.5) vanishes. Following [L1,L2], in sections 10 and 11, we will
explain how to deal with it by projecting the equation along gradients onto divergence free vector fields
so the right hand side of (4.2) vanishes again. These projections are quite different in nature since the
first projection is local and the second is non-local.

5. Energy estimates in the irrotational case.

In the irrotational case ∂ivk = ∂kvi and 4vi = 0 so (4.5) become:

(5.1) D2
t vi − (∇Np)∇Nvi = −(∇Nq)Ni, on ∂Ω, and 4vi = 0, in Ω

Since 4vi = 0 for each i it follows that v is completely determined by its boundary values and so the
normal derivative ∇N can be considered as an operator on the boundary only. Hence the first equation
in (5.1) makes sense restricted to the boundary. Furthermore, on function satisfying 4v = 0 the normal
derivative is a positive symmetric operator on the boundary since by the divergence theorem

(5.2)
∫

∂Dt

w∇Nv dS =
∫
Dt

∇w · ∇v dx

The natural energy to use in the irrotational case is then

(5.3) E(t) =
∫

∂Dt

|Dtv|2ν dS +
∫

∂Dt

v∇Nv dS, ν = (−∇Np)−1

This energy is positive because of the sign condition (1.5).

6. Energy estimates in the general case.

In the general case we can just replace the second term in the energy (5.3) by the right hand side
of (5.2) to obtain:

(6.1) E(t) =
∫

∂Dt

|Dtv|2ν dS +
∫
Dt

|∇v|2 dx

Differentiating (6.1), using (3.1) and (3.3), we obtain

(6.2)
dE

dt
= 2

∫
∂Dt

(Dtv
i)D2

t vi ν dS + 2
∫
Dt

δijδkl(∂ivk)Dt∂jvl dx +
∫

∂Dt

|Dtv|2(Dtν − ν∇NN jDtxj) dS,

VI–4



where the last term comes from that the measure on the boundary changes with time. Writing Dt∂jvl =
∂lDtvj + Dt curlvjl + [Dt, ∂l]vj and using the divergence theorem we obtain

(6.3)
dE

dt
= 2

∫
∂Dt

(Dtv
i)

(
D2

t vi ν + Nk∂iv
k
)
dS

+2
∫
Dt

−(∂i divv)Dtv
i+δijδkl(∂ivk)

(
Dt curlvjl−(∂lDt xn)∂nvj

)
dx+

∫
∂Dt

|Dtv|2(Dtν−ν∇NN jDtxj) dS

where the terms on the second row either vanish or are controlled by the energy itself using the second
part of (4.2) and (4.4). Since ν−1Nk = −∂kp it follows that

(6.4)
dE

dt
= 2

∫
∂Dt

(Dtv
i)

(
D2

t vi − (∂kp)∂iv
k
)
ν dS + O(E) = 2

∫
∂Dt

(Dtv
i)∂iq ν dS + O(E)

by (4.2) or (4.5). The main difficulty is now to control this term, i.e. the right hand side of (4.5). In
order to do this we have to modify the energy above. Furthermore in order to get estimates for higher
derivatives we also have to obtain higher order energies.

7. Estimates of derivatives of a vector field by the
divergence, the curl and tangential derivatives.

We claim that there is a constant C such that

(7.1) |∂v| ≤ C
(
|divv|+ |curlv|+

∑
S∈S

|Sv|
)

where S is a set of vector fields that span the tangent space of the boundary at the boundary and the
full tangent space in the interior.

Since S span the full tangent space in the interior when the distance to the boundary d(y) ≥ d0

we may assume that d(y) < d0. Let Ωa = {y; d(y) > a} and let Dt
a be the image of this set under

mapping y → x(t, y). Let N the exterior unit normal to ∂Dt
a. Then qij = δij −N iN j is the inverse of

the tangential metric. Since the tangential vector fields span the tangent space of the level sets of the
distance function we have qijaiaj ≤ C

∑
S∈S SiSjaiaj , where here Si = Sa∂xi/∂ya. We claim that for

any two tensor βij :

(7.2) δijδklβkiβlj ≤ Cn

(
δijqklβkiβlj + |β̂|2 + (trβ)2

)
where β̂ij = βij − βji is the anti symmetric part and trβ = δijβij is the trace. To prove (7.2) we may
assume that β is symmetric and trace less. Writing δij = qij + N iN j we see that the estimate for
such tensors follows from the estimate N iN jNkN lβkiβlj = (N iNkβki)2 = (qikβki)2 ≤ nqijqklβkiβlj .
(This inequality just says that (tr(Qβ))2 ≤ n tr(QβQβ) which is obvious if one writes it out and use
the symmetry. )

8. Projection onto the tangential components.

Following [CL], we define the projection onto tangential components. For a (0, r) tensor α let the
projection onto the tangential components be given by

(8.1) (Πα)i1...ir = Πj1
i1
· · ·Πjr

ir
αj1...jr , where Πj

i = δj
i −NiN

j
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where N is the unit normal to the boundary. Then if q vanishes on the boundary it follows that the
tangential derivative ∂q = (Π∂)q also vanishes there. Furthermore

(8.2) (Π∂2q)ij = θij∇Nq,

where θij = Πk
i ∂kNj is the second fundamental form of the boundary. In fact,

0 = ∂i∂jq = Π i′

i ∂i′Π
j′

j ∂j′q = Π i′

i Π j′

j ∂i′∂j′q − (∂iNj)Nk∂kq −Nj(∂iN
k)∂kq = (Π∂2q)ij − θij∇Nq

since Nk∂iN
k = ∂i(NkNk)/2 = 0. Similarly, one can prove higher order versions of (8.2):

(8.3) Π∂rq = O(∂r−1q)

We also define the tangential quadratic form

(8.4) Q(α, α) = qi1j1 · · · qirjrαi1...ir
αj1...jr

, where qij = δij − Ñ iÑ j

and Ñ is some extension of the normal to the interior, satisfying |Ñ | ≤ 1. The tangential quadratic
form is related to the projection by

(8.5) 〈Πα, Πβ〉 = Q(α, β), on ∂Ω

Furthermore, one can prove higher order versions of (7.1)-(7.2):

(8.6) |∂rv|2 ≤ C
(
|∂r−1 divv|2 + |∂r−1 curlv|2 + δijQ(∂rvi, ∂

rvj)
)

9. Energies using the projection onto the tangential components.

Following [CL], the basic idea is now to modify the energy (6.1) so it only contains tangential
components on the boundary

(9.1) E(t) =
∫

∂Dt

|ΠDtv|2νdS +
∫
Dt

|(Π̃∂)v|2 dx +
∫
Dt

|curlv|2 dx

where Π is the projection onto the tangent space of the boundary and Π̃ is some extension of the
projection to the interior. Because the divergence vanishes and because the curl is controlled by the
energy we can estimate all components of ∂v by the energy using (7.1)-(7.2).

When differentiating (9.1) we get a boundary term similar to the term on the right of (6.4) but
with the projection onto the boundary:

(9.2)
dE

dt
= 2

∫
∂Dt

〈ΠDtv,Π
(
D2

t v − (∂kp)∂vk
)
〉 ν dS + O(E) = 2

∫
∂Dt

〈ΠDtv,Π∂q〉 ν dS + O(E)

Since ∂q = (∇Nq)N is normal the projection of this to the tangent space of the boundary vanishes so
the leading order term in the right hand side of (9.2) vanishes.

The higher order energy norms are now defined by

(9.3) Er(t) =
∫

∂Dt

Q(∂r−1Dtv, ∂r−1Dtv) νdS +
∫
Dt

δijQ(∂rvi, ∂
rvj) dx +

∫
Dt

|∂r−1 curlv|2 dx
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It follows from (8.6) that since divv = 0;

(9.4) ‖∂rv‖L2(Dt) ≤ CEr.

Differentiating (9.3) using (4.2), (9.4) and (8.5) yields
(9.5)
dEr

dt
= 2

∫
∂Dt

Q
(
∂r−1Dtv, ∂r−1(D2

t v − (∂kp)∂vk)
)
dS + O(Er) = 2

∫
∂Dt

〈Π∂r−1Dtv,Π∂rq〉 ν dS + O(Er)

Using (8.3) one can estimate Π∂rq by ∂r−1q on the boundary. Estimates for this in terms of the energy
can be obtained from simple elliptic estimates for (4.3), see [CL]. Finally we obtain the energy estimate

(9.6)
∣∣∣dEr

dt

∣∣∣ ≤ CEr

which gives an energy bound.
Note that the projection plays an essential role here in the case of non vanishing curl. In fact, if

∂rv is in L2 in the interior then the best we can get for the solution of (4.3) is that ∂rq is in L2 in the
interior and restricting to the boundary we loose half a derivative so we can not expect ∂rq to be in L2

on the boundary.

10. Projection onto divergence free vector fields.

In [L1,L2] a different type of, non-local, projection is being used. The orthogonal projection onto
divergence free vector fields in the inner product

(10.1) 〈u, w〉 =
∫
Dt

δiju
iwj dx

is given by

(10.2) Pui = ui − ∂ i pu, 4pu = divu, pu

∣∣∣
∂Ω

= 0.

In fact

(10.3) 〈u, ∂q〉 =
∫
Dt

ui∂iq dx =
∫

∂Dt

uiNi q dS −
∫
Dt

(∂iu
i)q dx

vanishes if q vanishes on the boundary and u is divergence free.

11. Energies using the projection onto the tangential components.

Following [L1], let A be the operator on divergence free vector fields defined by

(11.1) Awi = P
(
− ∂i(wk∂kp)

)
Then A is a positive symmetric operator, if condition (1.5) holds. In fact, if u and w are divergence
free then

(11.2) 〈u, Aw〉 = −
∫
Dt

ui∂i(wk∂kp) dx = −
∫

∂Dt

uNwN (∇Np) dS, where wN = Niw
i
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Now, If we project (4.2) onto divergence free vector fields then the right hand side vanishes and we
obtain

(11.3) P (D2
t vi) + Avi = P

(
− (∂i∂kp)vk

)
where the right hand side clearly is lower order in v. For the equation (11.3) we now define a different
type of energy

(11.4) E(t) = 〈Dtv,Dtv〉+ 〈v,Av〉

The main difficulty with proving existence, regularity and estimates for (11.3) is that A is of order one
and positive but it is not elliptic. In fact A vanishes on compactly supported divergence free vector
fields, and there are such vector fields outside the class of irrotational vector fields. However, this
difficulty is being dealt with by applying tangential vector fields and using (7.1) together with that the
curl and the divergence of Av vanishes, see [L1].
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