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Abstract

For several classes of pseudodifferential operators with operator-valued
symbol analytic index formulas are found. The common feature is that
usual index formulas are not valid for these operators. Applications are
given to pseudodifferential operators on singular manifolds.

1. Introduction Analytical index formulas play an important part in the
study of topological characteristics of elliptic operators. They complement index
formulas expressed in topological and algebraical terms, and often enter in these
formulas as an ingredient. For elliptic pseudodifferential operators (ΨDO) on
compact manifolds, such formulas were found by Fedosov [4]; later, analytical
index formulas for elliptic boundary value problems were obtained in [5]. These
formulas involve an integral, with integrand containing analytical expressions
for the classical characteristic classes entering into the co-homological formulas.

In 90-s a systematic study started of topological characteristics of operators
on singular manifolds - [7], [8], [10], [12], [13], [18] etc. Even before these papers
had appeared, it became clear that analysis of operators on singular manifolds
must involve many-level symbolic structure with a hierarchy of operator-valued
symbols responsible for the singularities (see [3],[9],[14-16], etc.). Each of these
symbols contributes to the index formulas. In some, topologically simple, cases,
such contributions can be separated, and thus the problem arises of calcula-
tion of the index for ΨDO with operator-valued symbol. However, even one-
dimensional examples show that the usual formulas, originating from the scalar
or matrix situation, may be unsuitable in the operator-valued case. Let A be
the Toeplitz operator on the real line R, with symbol a(x), i.e. it acts in the
Hardy space H2(R) by the formula

Au = Pau

where P : L2 → H2 is the Riesz projection. Under the condition that the
symbol a(x) is smooth, invertible and stabilises to 1 at infinity, the operator
A is Fredholm and its index equals ind A = −(2πi)−1

∫
a(x)−1a′(x)dx. If we
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consider a Toeplitz operator in the space of vector-functions, so that the symbol
is a matrix, the same formula for the index holds, with a natural modification:

ind A = −(2πi)−1

∫
tr (a(x)−1a′(x))dx, (1)

where tr is the usual matrix trace. However, when we move to an even more
general case, of functions with values in an infinite-dimensional Hilbert space,
so that a(x) is an operator in this space, the formula (1) makes sense only under
the condition that a−1a′ belongs to the trace class. If this is not the case, (1)
makes no sense, so even if the Toeplitz operator happens to be Fredholm, one
needs another formula for the index to be found (and justified). We call such
formulas unusual.

In the present paper we consider a class of ΨDO with operator symbols and
find analytical index formulas for elliptic operators in this class. The formulas
depend on the quality of the symbol, and are derived by means of cyclic co-
homology approach. Some operators arising in analysis on singular manifolds
fit into our scheme. Thus, we find index formulas for Toeplitz operators with
operator-valued symbols, for cone Mellin operators and for edge ΨDO arising
in analysis on manifolds with edge-type singularities. Our abstract approach to
the index formulas requires less structure from the operator symbols compared
with the traditional one (see, e.g., [7], [13-16]), therefore we present here a new
version of the edge calculus.

2. The algebraical scheme We recollect some constructions from the K-
theory for operator algebras and cyclic cohomologies (see [1],[2].) Let S be a
Banach *-algebra with unit, M(S) be the set of matrices over S. The groups
Kj(S), j = 0, 1 are the usual K-groups in the theory of Banach *-algebras. In
particular, K1(S) consists of equivalence classes of invertible matrices in M(S),
i.e., elements in GL(S). If S does not have a unit, one attaches it and thus
replaces M(S) by M(S)+ in the latter definition. The K-cohomological group
K1(S) consists of equivalence classes of ’quantisations’, i.e. unital homomor-
phisms of the algebra of matrices over S to the Calkin algebra in some Hilbert
space H, or, what is equivalent, *-linear mappings τ : M(S) → B(H), multi-
plicative up to a compact error. Each element [t] ∈ K1(S) defines the index
homomorphism ind [τ ] : K1(S) → Z, associating to the matrix a ∈ GL(S) the
index of the operator τ(a). Thus we have the integer index coupling between
K1(S) and K1(S): [τ ] × [a] = ind τ(a). Again, if S is non-unital, the unit is
attached.

For a normed *-algebra S, the group Ckλ(S) of cyclic cochains consists
of (k + 1)- linear continuous functionals ϕ(a0, a1, ..., ak), cyclic in the sense
ϕ(a0, a1, ..., ak) = (−1)kϕ(a1, a2,..., a0). The Hochschild co-boundary operator
b : Ckλ(S)→ Ck+1

λ (S) generates, in a usual way, co-homology groups HCkλ(S).
There is also a coupling of HC2k+1

λ (S) and K1(S) (see [2], Ch.III.3):

[ϕ]×k [a] = γk(ϕ⊗ tr )(a−1 − 1, a− 1, a−1 − 1, a− 1, ...., a−1 − 1, a− 1), (2)

where tr is the matrix trace and γk is the normalisation constant, chosen in [2]
to be equal to (2i)−1/22−2k−1Γ(k + 3

2 ). In this context, the problem of finding
an analytic index formula for a given ’quantisation’ [τ ] ∈ K1(S) consists in
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determining a proper element [ϕ] = [ϕ[τ ]] in the cohomology group of some
order, [ϕ] ∈ HC2k+1

λ (S) such that

[τ ]× [a] = [ϕ]×k [a], [a] ∈ K1(S), (3)

or even a cyclic cocycle ϕ ∈ C2k+1
λ (S) such that (3) holds.

Unfortunately, for ∗-algebras arising in concrete analytical problems, the
cyclic co-homology groups are often not rich enough to carry the index classes
one needs. Therefore, one has to chose some ’natural’ dense local subalgebra
S0 ⊂ S, equipped with a norm, stronger than the initial norm in S, having
rich enough cyclic co-homologies. On the level of K-groups this substitution
is not felt, since the natural inclusion ι : S0 → S generates isomorphism ι∗ :
K1(S) → K1(S0), but in co-homologies this may produce analytical index
formulas. Moreover, the choice of the dimension 2k + 1 of the target cyclic
cohomology group may depend on the properties of the subalgebra S0. An
example of this can be found in [2], II.2.α, III.6.β. There, for the dense local
subalgebra S1 = C1

0 (R1) in the C∗-algebra S = C0(R1), one associates to the
Toeplitz quantisation [τ ] the class [ϕ[τ ]

1 ] ∈ HC1
λ(S1),

ϕ
[τ ]
1 (a0, a1) = −(2πi)−1

∫
tr (a0da1). (4)

Coupling with this class gives the standard formula (1) for the index of the
Toeplitz operator. However, the cocycle (4) is not defined on larger subalgebras
in S, for example on the Lipschitz class Sγ = Cγ0 (R1), 0 < γ < 1, so one can’t
use (1) for calculating the index. To deal with this situation, it is proposed
in [2] to consider the image of [ϕ[τ ]

1 ] in HC2l+1
λ (S1) under l times iterated

suspension homomorphism S : HCkλ(S)→ HCk+2
λ (S) which is consistent with

the coupling (3):

[ϕ]×k [a] = S[ϕ]×k+1 [a], [a] ∈ K1(S), [ϕ] ∈ H2k+1
λ (S),

with properly chosen l. This produces cocycles ϕ[τ ]
2l+1 on S1, functionals in 2l+2

variables, which give new analytical index formulas for the Toeplitz operators
with differentiable symbols - see the formula on p. 209 in [2]. These cocycles, for
2l+1 > γ, admit continuous extension to the algebra Sγ , thus defining elements
in HC2l+1

λ (Sγ) and giving index formulas for less and less smooth functions.

3. Operator-valued symbols In this paper we deal only with operators
acting on functions defined on the Euclidean space. For this situation, we de-
scribe here algebras of operator-valued symbols and develop the corresponding
pseudodifferential calculus.

In the literature, there exist several versions of operator-valued pseudodif-
ferential calculi, each adopted to some particular, more or less general, situation
(see, e.g., [3],[14], [19]). Each time the problem arises, of finding a convenient
description for the property of improvement of the symbol under the differenti-
ation in co-variables.

Let us, in the most simple case, in L2(Rn) = L2(Rm × Rk), consider the
pseudodifferential operator a(x,Dx) with a symbol a(x, ξ) = a(y, z, η, ζ), zero
order homogeneous and smooth in ξ, ξ 6= 0, which we treat as an operator
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in L2(Rm, L2(Rk)) with operator valued symbol a(y, η) = a(y, z, η,Dz). Dif-
ferentiation in η, η 6= 0, produces the operator symbol ∂ηa of order −1, one
more η-differentiation gives the symbol ∂2

ηa of order −2, etc. We refer to this
effect by saying that the quality of the operator symbol is improved under η-
differentiation. Usually, in concrete situations, this property is described by in-
troducing proper scales of ’smooth’ spaces, usually, the weighted Sobolev spaces
in Rk, and describing the spaces where the differentiated operator symbol acts.
This, however, requires a rather detailed analysis of action of ’transversal oper-
ators’ a(y, z, η,Dz) in these scales and becomes fairly troublesome in singular
cases. At the same time, these extra spaces are in no way reflected in index for-
mulas and are superfluous in this context. Our approach is based on describing
the property of improvement of operator valued symbol under differentiation
not by improvement of smoothness but by improvement of compactness. So, in
the above example, suppose that the symbol a has compact support in z vari-
able. Then, if the differential order γ of the operator is negative, the operator
symbol a(y, η) is a compact operator, and its singular numbers sj(a(y, η)) decay
as O(jγ/k). Each differentiation in η variable, lowering the differential order,
leads to improvement of the decay rate of these s-numbers; after N differenti-
ations, the s-numbers of the differentiated symbol decay as O(j(γ−N)/k). The
decay rate as |η| → ∞ of the operator norm of the differentiated symbol also
improves under the differentiation. This justifies the introduction of classes of
symbols in the abstract situation.

So, let K be a Hilbert space. By sp = sp(K), 0 < p < ∞ we denote the
Shatten class of operators T in K for which the sequence of singular numbers
(s-numbers) sj(T ) = (λj(T ∗T ))1/2 belongs to lp. In the definition below, as well
as in the formulations, N is some sufficiently large integer. We do not specify
the particular choice of N in each case, as long as it is of no importance.

Definition 3.1. Let γ ≤ 0, q > 0. The class Sγq = Sγq (Rm × Rm′ ,K) consists
of functions a(y, η), (y, η) ∈ Rm × Rm′ , such that for any (y, η), a(y, η) is a
bounded operator in K and, moreover,

‖Dα
ηD

β
ya(y, η)‖ ≤ Cα,β(1 + |η|)−|α|+γ , (5)

|Dα
ηD

β
ya(y, η)| q

−γ+|α|
≤ Cα,β . (6)

for |α|, |β| ≤ N .

Note here that when M is a k-dimensional compact manifold and a(y, z, η, ζ)
is a classical symbol of order less than γ on Rm × M , the operator symbol
a(y, η) = a(y, z, η,Dz) acting in K = L2(M) belongs to Sγk for any N . For
−γ + |α| − q > 0 the derivatives in (5), (6) belong to trace class and for −γ +
|α|−q > m the integral of its trace class norm with respect to η converges. Also
the classes Sγk behave themselves in a natural way under multiplication.

We are going to sketch the operator-valued version of the usual pseudodif-
ferential calculus. The main difference of this calculus from the usual one is the
notion of ’negligible’ operators. In the scalar case, one considers as negligible
the infinitely smoothing operators. In our case, we take trace class operators as
negligible, and it is up to a trace class error, that the classical relations of the
pseudodifferential calculus will be shown to hold. This is sufficient for the needs
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of index theory. For a(y, y′, η) ∈ Sγq (R2m × Rm,K), we define the ΨDO as

(OPS(a)u)(y) = (a(y, y′, Dy)u)(y) = (2π)−m
∫ ∫

ei(y−y
′)ηa(y, y′, η)u(y′)dηdy′,

(7)
where u(y) is a function on Rm with values in K.

The main technical tool in the calculus is the following proposition giving a
sufficient condition for a ΨDO to belong to trace class.

Proposition 3.2. Let the operator-valued symbol a(y, y′, η) in R2m × Rm be
smooth with respect to y, y′, let all y, y′-derivatives Dβ

yD
β′

y′ a up to some (suf-
ficiently large) order N be trace class operators with trace class norm bounded
uniformly in y, y′. Suppose that g(y), h(y) = O((1+|y|)−2m). Then the operator
ha(y, y′, Dy)g belongs to s1(L2(Rm; K)).

Remark. Note that we do not impose on the symbol any smoothness conditions
in η variable. This proves to be useful in concrete applications.

If symbols belong to the classes Sγq , the usual properties and formulas in the
pseudodifferential calculus hold, with our modification of the notion of negligible
operators. The proofs are based on Proposition 3.2.

Theorem 3.3. (Pseudo-locality) Let the symbol a(y, y′, η) belong to Sγq (R2n ×
R
n) for some q > 0, γ ≤ 0, let h, g be bounded functions with disjoint sup-

ports, at least one of them being compactly supported. Then ha(y, y′, D)g ∈
s1(L2(Rm; K)).

The usual formula expressing the symbol of the composition of operators via
the symbols of the factors also holds in the operator-valued situation.

Theorem 3.4. Let the symbols a(y, η),b(y, η) belong to Sγq (R2m × Rm) for
some q > 0, γ ≤ 0 and h(y) = O((1 + |y|)−m−1). Then, for N large enough, the
operator hOPS(a)OPS(b) −hOPS(cN ) belongs to trace class, where

cN = a ◦N b =
∑
|α|≤N

(α!)−1∂αη aDα
y b. (8)

A version of Theorem 3.4 will also be used, where the function h is not
present, but instead of this, as y → ∞, the symbol a tends, sufficiently fast,
to a symbol a0 ∈ Sγq not depending on η: there exists a (smooth) function
h(y) = O((1 + |y|)−m−1) such that h(y)−1(a(y, η)− a0(y)) ∈ Sγq . In the course
of the paper, it is in this sense we will mean that the symbol stabilises at infinity.

Now we introduce the notion of ellipticity for our operators.

Definition 3.5. The symbol a(y, η) ∈ S0
q (Rm × Rm) stabilizing in y at infinity

is called elliptic if for |y|+ |η| large, a(y, η) is invertible and ‖a−1‖ ≤ C.

For small |η|+ |y|, the symbol a(y, η)−1 is not necessarily defined. As usual,
one often needs a regularising symbol defined everywhere and coinciding with
a−1 for large η. This can also be done in our calculus, however the cut-off and
gluing operations, used freely in the standard situation, are not so harmless
now: even the multiplication by a nice function of η variable may throw us out
of the class S0

q . Therefore we have to be rather delicate when operating with
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cut-offs. We give the proof here just to show some tricks used in dealing with
operator-valued symbols.

Proposition 3.4. Suppose that the symbol a ∈ S0
q (Rm × Rm) is elliptic. Then

there exists a symbol r0(y, η) ∈ S0
q (Rm×Rm), such that r0(y, η) = a(y, η)−1 for

large |y|2 + |η|2 and the symbols r0a− 1 and ar0 − 1 belong to S−1
q .

Proof Suppose that a is invertible for |y|2 + |η|2 ≥ R2. The inequalities
of the form (5), (6) hold for a(y, η)−1 for such η. Thus we have to take care
of small |y|2 + |η|2 only. Fix some η0, |η0| ≥ R. Due to (3.2), the symbol
s(y, η) = 1− a(y, η0)−1a(y, η) belongs to sq for |η| ≤ R. Set

r′0(y, η) = a(y, η0)−1 exp(s(y, η) + s(y, η)2/2 + · · ·+ s(y, η)N/N), (9)

where the expression under the exponent is the starting section of the Taylor
series for − log(1 − s). From (9) it follows that r′0 belongs to S0

q , is invertible,
and, moreover, r′0(y, η)−a−1(y, η) ∈ s q

N
for |y|2 + |η|2 ≥ R2. Now take a cut-off

function χ ∈ C∞0 ({|ρ| < 2R}) which equals 1 for |ρ| ≤ R and set

r0(y, η) = χ((|y|2 + |η|2)1/2)r′0(y, η) + (1− χ((|y|2 + |η|2)1/2))a(y, η)−1.

the symbols r0a − 1 and ar0 − 1 do not improve their properties under η–
differentiation, since the cut-off function prevents this, but they already belong
to s q

N
for all (y, η), together with all derivatives, and therefore (6) holds, for

given N .

Remark. Proposition 3.6 illustrates usefulness of introducing symbol classes
with only a finite number of derivatives subject to estimates of the form (5),
(6). Even if for the symbol a in the Definition 3.1, estimates (5), (6) hold for
all α, β, they hold only for derivatives of order up to N for our regularizer r0.

The notion of ellipticity is justified by the following construction of a more
exact regularizer, inverting the give ΨDO up to a trace class error.

Theorem 3.1. Let the symbol a ∈ S0
q stabilise in y at infinity and be elliptic.

Then there exists a symbol r(y, η) ∈ S0
q such that

OPS(a)OPS(r)− 1, OPS(r)OPS(a)− 1 ∈ s1(L2(Rm,K)).

The proof follows the usual ’scalar’ reasoning. However, in the scalar calcu-
lus, the number of terms retained in the composition formula depends only on
the dimension m of the space while in our operator-valued calculus it depends
also on the number q involved in the definition of the symbol class.

4. Preliminary index formulas and K1-theoretical invariants As it fol-
lows from Theorem 3.7, a ΨDO with elliptic symbol in the class S0

q is Fredholm.
In fact, it is already well known for a long time that this is the case even for a
much wider class of operator-valued symbols. Under our conditions, we will be
able to investigate what the index of such operators can depend on.

We start by establishing an analytical index formulas for elliptic symbols.
The first formula is rather rough, preliminary, and it will be improved later.
This is the abstract operator-valued version of the ’algebraic index formula’
obtained for the matrix situation in [4] and later for some concrete operator
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symbols in [7]. In what follows, the symbols are supposed to belong to classes
S0
q , with N large enough.

Proposition 4.1. Let a(y, η) ∈ S0
q (Rm ×Rm; K) be an elliptic operator symbol

stabilizing in y at infinity, r(y, η) is the regularizer constructed in Theorem 3.7,
A,R be the corresponding operators in L2(Rm,K). Then, for M large enough,

ind A =
1

(2π)m

∫
Rm×Rm

tr [(a ◦M r− r ◦M a)]Mdydη, (10)

where tr denotes the trace in the Hilbert space K.

The proof is based on the classical formula ind A = Tr (AR − RA), where
the right-hand side is calculated in the terms of the symbols a, r. It follows the
reasoning of [5], with modifications caused by the operator valued specifics.

Analyzing this preliminary index formula, we find out, on which character-
istics of the symbol the index actually depends.

Proposition 4.2. Denote by Eq = Eq(SR) the class of norm-continuous
invertible operator-valued functions on the sphere SR = {(y, η), |y|2 + |η|2 =
R2} having first order η-derivatives in sq. Let a,a′ ∈ S0

q be elliptic symbols
stabilizing at infinity and invertible for |y|2 + |η|2 ≥ R2. Suppose that the
restrictions b and b′ of these symbols to the sphere SR are homotopic in Eq.
Then ind OPS(a) = ind OPS(a′).

The proof is based on lifting the homotopy of the spherical restrictions of
symbols to the homotopy in the whole space, and then applying (10).

As a result of our considerations, we can see that the index of the ΨDO with
operator-valued symbol depends only on the class of the symbol in K1(Eq(SR)),
thus defining a homomorphism

IND : K1(Eq(SR))→ Z. (11)

5. Reduction of index formulas The analytical index formula (10) has
a preliminary character; it involves higher order derivatives of the symbol and
its regularizer. Moreover, it does not reflect the algebraic nature of the index.
In fact, (10) contains integration over the ball, while we already know (see
Proposition 4.2) that the index depends only on the homotopy class of the
symbol on the (large enough) sphere. In other words, (10) does not describe the
homomorphism (11) from K1 for the symbol algebra to Z. Thus a reduction of
the formula is needed.

The starting point in this reduction is the result of Fedosov [6] establishing
the formula of the required nature for the case of the space K of finite dimension:

ind A = cm

∫
SR

tr ((a−1da)2m−1), cm = − (m− 1)!
(2πi)m(2m− 1)!

; (12)

in the integrand, taking to power is understood in the sense of exterior product.
Taking into account Theorem 4.2, we can consider (12) not as the expression

for the index of operator but as a functional on symbols defined on the sphere.
To use the strategy outlined in Sect.2, we represent (12) by means of a cyclic
cocycle in a local C∗-algebra.
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We define several algebras consisting of operator-valued functions on the
sphere S = SR, continuous in the norm operator topology on the (infinite-
dimensional) Hilbert space K. For 1 ≤ q < ∞, the subalgebra Sq consists of
once differentiable functions with η-derivative belonging to the class sq(K). An
ideal S0

q in Sq is formed by the functions having values in sq(K). The smallest
subalgebra S0

0 consists of functions with finite rank values, with rank uniformly
bounded over S.

We introduce our initial cyclic cocycle: for a0,a1, . . . ,a2m−1 ∈ S0
0 we set

τ2m−1(a0,a1, . . . ,a2m−1) = (−1)m−1cm

∫
S

tr (a0da1 . . . da2m−1). (13)

The trace in (13) always exists, since at least one factor is a finite rank operator.
In a natural way, the cocycle (13) extends to the algebra S0 obtained by

attaching a unit to S0
0: for ãj = λj1 + aj , λj ∈ C,aj ∈ S0

0, we have

τm(ã0, . . . , ã2m−1) = τm(a0, . . . ,a2m−1). (14)

Next, the cocycle τm in (14) extends by continuity to the algebra S0
q, for any

q < 2m− 1. Moreover, for an element ã ∈ GL(S0
q),

IND ([ã]) = τm(ã−1 − 1, ã− 1, . . . , ã− 1). (15)

To find the index formula for the algebra Sq, q < 2m − 1, take some a ∈
GL(Sq). For any y, |y| ≤ 1, fix some η0(y) so that |y|2 + |η0(y)|2 = 1, so that
η0(y) depends continuously on y. For the symbol a0(y, η) = a(y, η0(y)), the
index vanishes, since, after the natural continuation to the whole of R2m, it
defines an invertible multiplication operator. Thus, for

ã(y, η) = a(y, η)a−1
0 (y, η), (16)

we have IND ([ã]) = IND ([a]). This gives us

IND ([a]) = τm(ã−1 − 1, ã− 1, . . . , ã− 1),a ∈ GL(Sq), (17)

with ã defined in (16).
Now we apply the strategy depicted in Sect.2, to construct index formulas

for even wider classes of symbols. For doing this, we will use a specific alge-
braical realisation of the homomorphism S in cyclic co-homologies, introduced
in [2]. For an algebra S, the graded differential algebra Ω∗(S) is defined in the
following way. Denote by S̃ the algebra obtained by adjoining a unit 1 to S.
For n ∈ N, n ≤ 1, let Ωn be the linear space

Ωn = Ωn(S) = S̃⊗S S⊗n; Ω = ⊕Ωn.

The differential d : Ωn → Ωn+1 is given by

d((a0 + λ1)⊗ a1 ⊗ . . .⊗ an) = λ1⊗ a0 ⊗ . . .⊗ an ∈ Ωn+1.

The product, defined in a natural way, satisfies ã0da1 . . . dan = ã0 ⊗ a1 ⊗ . . .⊗
an, aj ∈ S, and gives Ω the structure of a graded differential algebra. According
to [2], any cyclic cocycle τ ∈ Cnλ (S) of dimension n can be represented as

τ(a0, . . .an) = τ̂(a0da1 . . . dan),
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where τ̂ is a closed graded trace of dimension n on Ω(S). In our particular case,
this representation is generated by

τ̂(ω) = (−1)m−1cm

∫
S

tr ω, ω = ã0da1 . . . da2m−1.

For q ≤ 2m, τ̂ is a graded closed trace of dimension 2m − 1 on Ω(S0
q); for

q ≤ 2m− 1 the trace τ̂ and the cocycle τ , extend to the unitalisation of S0
q.

We consider the representation of the homomorphism S on the cocycle level,
in the terms of the above model. Consider the graded differential algebra Ω(S)⊗
Ω(C). For a cyclic cocycle τ ∈ Cnλ (S) and cyclic cocycle σ ∈ Cpλ(C), following
[2], we define the cup product τ]σ ∈ Cn+p

λ (S⊗ C) = Cn+p
λ (S) by setting

τ]σ(a0, . . . ,an+p) = (τ̂ ⊗ σ̂)((a0 ⊗ e)d(a1 ⊗ e) . . . d(an+p ⊗ e)), (18)

Here, e is the unit in C, i.e. the element 1 + 01 ∈ C̃, τ̂ , σ̂ are graded closed
traces of degree, respectively, n and p in Ω(S),Ω(C) representing τ, σ and thus
only terms of bidegree (n, p) survive in (18). In particular, for σ = σ1 ∈ C2

λ(C),
σ1(e, e, e) = 1, the cup product with σ1 generates the homomorphism S in
cyclic co-homologies. For an even integer p = 2l, we consider σl = σ]l1 where ]l
denotes taking to the power l in the sense of ] operation. Cup multiplication
with σl generates the iterated homomorphism Sl in cyclic cohomologies of the
algebra S. Combinatorial calculations give an explicit expression for Slτn, and
therefore, the index formulas.

Theorem 5.1For a ∈ Eq = GL(Sq), denote

α2l(a) = (l!)−1

∫
SR

tr
[
(
d

dt
)l(b−1(1− tc)−1db)2m−1|t=0

]
, (19)

α′2l(a) = tr
∫
SR

(c + b−1db)2m−1+l, (20)

where b(y, η) = a(y, η)a(y, η0(y))−1, c = (b − 1)(b−1 − 1) and in (20) only
the term of degree 2m − 1 is naturally preserved under integration. Then for
2l+2m−1 > q the form in the integrand in (19) and the integral in (20) belong
to trace class and

IND [a] = cm,lα2l(a) = cm,lα
′
2l(a), cm,l = −(2πi)−m

l!(m+ l − 1)!
(2m+ 2l − 1)!

. (21)

6. Applications In this section we show how the results of Sect.5 enable one
to derive, in an uniform way, index formulas for some concrete situations.

6.1 Toeplitz operators Toeplitz operators on the line (or, what is equivalent,
on the circle) with operator-valued symbols form an important ingredient in the
study of ΨDO on manifolds with cone- and edge-type singularities (see, e.g., [3],
[10]). Let b(y) be a function on the real line R1, with values being operators in
the Hilbert space K, differentiable and stabilising sufficiently fast at infinity:

b = 1+k, k(y),k′(y) ∈ sq(K); ‖k(y)‖ =O((1 + |y|)−q); ||k′(y)||, |k(y)|q = O(1).
(22)
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We consider the Toeplitz operator Tb in the Hardy space H2(R1,K), Tbu =
Pbu, P : L2 → H2. The general scheme applied to the cocycle τ(k0,k1) =
−(2πi)−1

∫
tr (k0dk1) gives new index formulas.

Theorem 6.1. If l > 2q, b = 1 + k is an invertible symbol in and (22) holds
then the index of Tb equals

ind Tb = (2l + 1)c1,l
∫

tr ((b−1 − 1)l(b− 1)lb−1db). (23)

In particular, when b(y) = 1 + k(y) is a parameter dependent elliptic ΨDO
on a compact k-dimensional manifold M , with k being an operator of negative
order −s, the conditions (22) are satisfied with any q > k/s. This was the
situation considered in [11].

6.2 Cone Mellin operators Cone Mellin operators (CMO) are involved into
the local representation for singular pseudodifferential operators near conical
points and edges. In an abstract setting, CMO in L2(R+,K) have the form

(Au)(t) =
1

2πi

∫
Γ

dz

∫ ∞
0

(t/t1)za(t, z)u(t1)
dt1
t1
,

where Γ is any fixed vertical line Γ = Γβ = {<z = β}, the choice of β determines
the choice of the weighted L2 space where the operator is considered. The Mellin
symbol a(t, z) is supposed to be a bounded operator in K for all (t, z) ∈ R+×Γ.
We say that it belongs to the class Mµ

q , µ ≥ 0, if ‖∂αt ∂νz a(t, z)‖ = O((1 +
|z|)−ν+µ) and |∂αt ∂νz a(t, z)| q

ν−µ
= O(1) uniformly in t, moreover, for t ∈ (0, c]

and for t ∈ [C,∞) the symbol does not depend on t.
The change of variables y = log t, η = iz, transforms CMO to a ΨDO

considered in Sect.3 with symbol in the class Sµq . Thus, elliptic symbols, i.e.,
those for which, for (t, ζ) outside some compact in R+ × Γ, a(t, z) is invertible,
with uniformly bounded inverse, give Fredholm operators. The index for such
operators can be found by (19), (20), m = 1, with proper l. In the co-ordinates
(t, z) this produces, for the CMO with elliptic symbol a(t, z), 2l > q,

ind A = (2l + 1)c1,l
∫
L

tr [((b(t, z)−1 − 1)(b(t, z)− 1))lb(t, z)−1db(t, z)],

where L is a contour such that on and outside it, a(t, z) is invertible, b(t, z) =
a(t, z)a(t, z0)−1, and z0 is chosen, so that a(t, z0) is invertible for all t.

A more topological index formula for CMO, see [6] ind A = 1
2πi

∫
R+×Γ

Ch(Ind a),
where Ch(Ind a)= tr ((dr + r(da)r)da) is the Chern class of the symbol a
and r(t, z) is a ’good’ regularizer (ar − 1, ra − 1 belong to trace class for all
(t, z) ∈ R+ × Γ and vanish outside some compact set) is easily deduced from
the above formula by means of a homotopy.

7.Edge operators In this section we apply our abstract results to the case
of edge pseudodifferential operators arising in the study of ΨDO on singular
manifolds, see [3], [14-16], [19], [20], etc. Usually one introduces such operators
by some particular explicit representation. We depict a new version of calculus
of edge operators defining operator symbols not by explicit formulas but rather
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by their properties. The leading term in our calculus turns out to be the same
as in the standard one.

In the leading term, our edge operators will be glued together from usual
ΨDO in the Euclidean space, with symbols having discontinuities at a subspace
- see [9], [20]. Let a(x, ξ) = a(y, z, η, ζ) be a (matrix) function in Rn × Rn =
(Rm×Rk)×(Rm×Rk), zero order positively homogeneous in ξ = (η, ζ) variables.
Suppose that a has compact support in x and is smooth in all variables unless
ξ = 0 or z = 0. At the subspace z = 0 the function a has a discontinuity: it
has limits as z approaches 0, but these limits may depend on the direction of
approach:

Φ(y, ω, η, ζ) = lim
ρ→0

a(y, ρω, η, ζ). (24)

To the symbol a we associate, in the usual way, the pseudodifferential op-
erator in Rn acting as A = F−1

0 aF
0
, where F0 is the Fourier transform in Rn.

At the same time, one can represent A as a ΨDO with operator-valued symbol.
Denote by K0 the (weighted) space L2(Rk) and set a(y, η) = F−1a(y, z, η, ζ)F ,
where F is the Fourier transform in L2(Rk). This operator-valued symbol is
differentiable in y, η for η 6= 0 and ∂αy ∂

β
η a is a ΨDO of order −|β| in K0, there-

fore (6) holds. Homogeneity implies (5). The symbol a, however, does not
belong to our symbol class S0

q since these estimates hold only for η outside some
fixed neighbourhood of zero. At the point η = 0 the η-derivatives of a have
singularities and thus (5), (6) fail. Therefore, near η = 0 we introduce some
correction for the symbol by means of a certain delicate smoothening procedure,
after which the corrected symbol belongs to S0

q , while the operator itself gets a
trace class perturbation.

Operator symbols obtained by this construction possess, besides general
properties of the class S0

q , the following radial pseudo-locality property. If ψ(τ)
is a cut-off function on the semi-axis, ψ(τ) = 1 near zero, then

[Dβ
ηa, ψ(|z|)] ∈ S−|β|−1

q , q > k, (25)

for all |β| < N ′, where N ′ can be made arbitrarily large.
The mapping OS : a 7→ a ∈ L0

q is additive. It is, however, not multiplicative,
even if one neglects compact errors. We introduce here the class of operator
symbols arising as the multiplicative error.

Definition 7.1. Let K be the Hilbert space L2(K), where K is a cone with a com-
pact manifold as a base. We say that the operator symbol g(y, η) ∈ L0

q(R
m,K)

belongs to I0
q if for any cut-off function ψ, as above, for all |β| ≤ N ′,

(1− ψ(|z|))Dβ
ηg ∈ S−|β|−1

q . (26)

An example of operator symbol in I0
q , for K = R

k, is given by g(y, η) =
F−1

0 g(y, z, ξ)F0, with the function g(y, z, η, ζ) = |z|−µ((|ξ|2 + 1)−µ/2)), µ >
0. Symbols in this ideal present an abstract generalisation of singular Green
operators in the traditional construction of the edge calculus (see, e.g., [14]).

Proposition 7.2. Let a, b be discontinuous scalar symbols in Rm × Rk, where
R
k is considered as a cone with base Sk−1. Then OS(a)OS(b)− OS(ab) ∈ I0

q ,
OS(a∗)−OS(a)∗ ∈ I0

q .

IV–11



Definition 7.3. The class S0 = S0(Rm, L2(Rk)) consists of elements a ∈ L0
q

for which there exist a discontinuous scalar symbol a and a symbol c ∈ I0
q such

that
a = OS(a) + c. (27)

In the sequel, we will refer to OS(a) as the pseudodifferential part and c as
the Green part of the symbol a ∈ S0.

In order to handle cones with an arbitrary base, we introduce directional
localisation. Let κ, κ′ be smooth functions on the sphere Sk−1. For a discontin-
uous symbol a and corresponding operator symbol a, we introduce the localised
symbol aκκ′ = κ(ω)aκ′(ω), ω = z/|z|. Such operator symbol, obviously, belongs
to L0

q. Operators in our class possess the directional pseudo-locality property:
if supports of κ, κ′ are disjoint then aκκ′ ∈ I0

q . Calculations also show that
the class S0 is invariant under homogeneous changes of variables in Rk. More-
over, the pseudodifferential part of the symbol is transformed according to the
standard rule for transformation of the leading symbol under the change of
variables.

For a compact k − 1-dimensional manifold, M, let K be the cone over M
and K = L2(K). Take a covering of M by co-ordinate neighbourhoods Uj ,
but instead of usual co-ordinate mappings of Uj to domains in the Euclidean
space, we consider mappings κj : Uj → Ωj , where Ωj are domains on the unit
k − 1-dimensional sphere in Rk.

Definition 7.4. The operator-valued symbol a ∈ S0
q (Rm × Rm; K) with values

being operators in K, belongs to S0(Rm,K) if images of conic localisation of a
to all Uj under κj belong to S0(Rm,K0). The class S0(Rm,K) is well-defined,
i.e. its definition does not depend on the choices made in the construction. We
denote by S = S(Rm,K) the algebra obtained by attaching the unit to S0.
Thus S consists of operator symbols of the form 1 + b, b ∈ S0.

Let us compare the algebra S with the algebra of edge operator symbols
considered, e.g. in [7], [14]-[16]. This latter algebra is constructed in such way
that it is the smallest possible *- algebra containing Mellin symbols. Our algebra
S is constructed as the largest reasonable algebra containing Mellin symbols.
It, surely, contains Green operators since the latter belong to I0

q . Now we can
apply our index formulas to the operators with symbols in S, thus generalyzing
index theorems from [13] and [7].

Theorem 7.5. Let a be a symbol in S, elliptic in the sense of Sect. 3, i.e.
a(y, η) is invertible for |η| large enough and this inverse is uniformly bounded
for such η. Then the pseudodifferential operator A with symbol a is Fredholm
in L2(Rm; K) and

ind A = cm,lαm,l(a) = cm,lα
′
m,l(a), (28)

where αm,l(a), α′m,l(a) are given in (19),(20), and l is any integer such that
2m+2l−1 > k. Moreover, if r(y, η) is a regularizer for a such that ar−1, ra−1
belong to trace class and have a compact support in η, η then

ind A = ((2πi)mm!)−1

∫
Rm×Rm

ch(ind a), (29)

where ch(ind a) = tr ((drda + (rda)2)m).
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Proof The formula (28) is a particular case of Theorem 5.1; (29) is obtained
by a specially constructed homotopy which transforms a to another symbol, to
which the formula (28) with l = 0 can be applied. For the latter symbol, (28)
gives (29) by means of Stokes formula, say, like in [7] or [13].

In conclusion, we note that one can attach boundary and co-boundary op-
erators to the above symbols, thus coming to results for Boutet de Monvel-type
matrix symbol algebra.
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