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RIEMANNIAN MANIFOLDS WITH MAXIMAL
EIGENFUNCTION GROWTH

CHRISTOPHER D. SOGGE

1. Introduction.

The recent results in this talk are joint work with Steve Zelditch. The problem which
motivates our work is to characterize compact Riemannian manifolds (M, g) with maxi-
mal eigenfunction growth as measured by Lp(M) norms, especially sup-norms, L∞(M).
Before stating our results, let me go over some background material. I shall state some
earlier results and also explain the role that eigenfunction bounds play in certain problems
in harmonic analysis and partial differential equations.

Background: Lp norms of eigenfunctions

We first recall that the associated Laplace-Beltrami operator ∆ = ∆g, has eigenvalues
{−λ2

ν}, where 0 ≤ λ2
0 ≤ λ2

1 ≤ λ2
2 ≤ . . . are counted with multiplicity. Let {φν(x)} be an

associated orthonormal basis of L2-normalized eigenfunctions. If λ2 is in the spectrum
of −∆, let

Vλ = {φλ : ∆φλ = −λ2φλ}
denote the corresponding eigenspace. We then measure the eigenfunction growth rate in
terms of

(1.1) Lp(λ, g) = sup
||φλ||2=1

||φλ||Lp , 2 < p ≤ ∞.

In the 1980’s sharp estimates for this quantity were proved in [So1], [So2]. Specifically,
the following result was proved in [So2].

Theorem 1.1. Let (M, g) be a fixed Riemannian manifold of dimension n ≥ 2. Then
there is a constant C so that for p > 2

(1.2) sup
φ∈Vλ

‖φ‖Lp(M)

‖φ‖L2(M)
≤ C(1 + λ)δ(p),

where

(1.3) δ(p) =

{
n( 1

2 −
1
p )− 1

2 , 2(n+1)
n−1 ≤ p ≤ ∞

n−1
2 ( 1

2 −
1
p ), 2 ≤ p ≤ 2(n+1)

n−1 .

Earlier, in [So1] these bounds were obtained in the special case where M is the round
sphere Sn, and it was also shown that in this case they cannot be improved. Later, when
we formulate open problems we shall explain the role of the numerology of the two cases
p ≤ 2(n + 1)/(n− 1) and p > 2(n + 1)/(n− 1). Earlier work for spherical harmonics had
been done by Bonami and Clerc [BC].
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Let us sketch a proof of (1.2), which is somewhat different than the one in [So2],
which was based on the resolvent. The one we shall give here is more in line with recent
arguments in the subject.

Since the kernel of the operators that project onto Vλ cannot be explicitly computed
except in certain special cases, the main idea is to reduce matters to proving an equivalent
estimate involving an operator whose kernel can be computed. This step can be thought
of as an operator-valued version of the Tauberian arguments that occur in the proof of
the sharp Weyl theorem of Avacumovic [Av], Levitan [Le], and Hörmander [Ho 1].

To accomplish this, one fixes ρ ∈ C∞
0 satisfying ρ̂(0) = 1, and ρ(t) = 0 if |t| > RM/2,

where RM is the injectivity radius of M . If one then sets

(1.4) χ̃λf(x) =
1
2π

∫
ρ(t)eitλ−it

√
−∆f dt = ρ̂(λ−

√
−∆)f,

then of course
χ̃λf = f, f ∈ Vλ,

and hence (1.2) would follow from showing that

(1.5) ‖χ̃λf‖p ≤ C(1 + λ)δ(p)‖f‖2.

Thus, the χ̃λ can be thought of as approximate spectral projection operators. Since one
can compute the kernel of the half-wave operators

(1.6) U(t) = e−it
√
−∆

with great precision when |t| is smaller than RM/2 one can compute the kernel of χ̃λ

explicitly and find that it is a sum of two terms

(1.7) χ̃λ(x, y) = λ(n−1)/2a±λ (x, y)
e±iλdist(x,y)

(λ−1 + dist(x, y))(n−1)/2
+ O(λ−∞), λ > 1,

where the a±λ belong to a bounded subset of C∞ and dist(x, y) denotes the Riemannian
distance between points x, y ∈ M .

Clearly,

(
∫
|χ̃λ(x, y)|2dy)1/2 ≤ Cλ(n−1)/2, λ > 1,

and so (1.5) holds when p = ∞. It also holds, just by orthogonality when p = 2.
Therefore, by applying the M. Riesz interpolation theorem, everything else would follow
from establishing the estimate at the other endpoint, p = 2(n + 1)/(n− 1):

(1.8) ‖χ̃λf‖p ≤ C(1 + λ)1/p‖f‖2, p = 2(n + 1)/(n− 1).

One can prove this by appealing to oscillatory integral theorems of Carleson-Sjölin [CS],
Hörmander [Ho 2] and Stein [St]. The key fact is that if η(x, y) ∈ C∞(M ×M) then an
oscillatory integral operator like

Tλh(x) =
∫

M

eiλdist(x,y)η(x, y)h(y)dy,

enjoys the bounds

‖Tλh‖p ≤ C(1 + λ)−n/p‖h‖p, p = 2(n + 1)/(n− 1),
XXIV–2



which leads to (1.8) since

λ
n−1

2 λ−n n−1
2(n+1) = λ

n−1
2(n+1) .

Note also that if eλν
(f) denotes the projection of a function f onto the eigenspace

with eigenvalue λν , then this argument also leads to a stronger version of (1.2), namely,
if

(1.9) χλf =
∑

λν∈(λ−1,λ]

eλν
(f),

then

(1.10) ‖χλf‖p ≤ C(1 + λ)δ(p)‖f‖2, 2 ≤ p ≤ ∞.

This bound can be shown to be sharp in all cases (see [So4]) in the sense that if ‖χ‖2→p

denotes the L2 → Lp operator norm of χλ then

(1.11) lim sup
λ→+∞

(1 + λ)−δ(p)‖χλ‖p→2 > 0, ∀ 2 ≤ p ≤ ∞.

Applications

The main motivation for formulating and proving the above eigenfunction estimates
was to obtain sharp bounds for Riesz means of eigenfunction expansions. Non-optimal
bounds had been obtained by several authors, including Hörmander [Ho 1], who studied
the L∞ → L∞ mapping properties.

Recall that the Riesz means of index δ > 0 are given by

Sδ
λf(x) =

∑
λν≤λ

(1− λν/λ)δeλν
(f).

Note that S0
λ is the familiar partial summation operator

(1.12) Sλf =
∑

λν≤λ

eλν (f).

Note also that as δ > 0 the associated multipliers τ → (1 − τ/λ)δ
+ become increasingly

more regular. Hence, one sees that the Lp → Lp mapping properties get better with
increasing δ.

In Hörmander [Ho 1] it was shown that one has uniform bounds

‖Sδ
λf‖∞ ≤ C‖f‖∞, if δ > n/2.

On the other hand, in the Euclidean version it was known that δ = (n− 1)/2 should be
the critical index and not δ = n/2. More generally, for other exponents p > 2 one can
show that a uniform estimate of the form

(1.13) ‖Sλf‖p ≤ C‖f‖p, δ > max{n(1/2− 1/p)− 1/2, 0},

would be sharp. Note that max{n(1/2 − 1/p) − 1/2, 0} agrees with the power δ(p) in
(1.2), precisely when p ≥ 2(n + 1)/(n− 1).

Fortunately as was shown in [So3], one can prove this estimate for p ≥ 2(n+1)/(n−1)
using (1.10). Here too, the idea is to use what amount to operator-valued versions of the
Tauberian argument behind the proof of the sharp Weyl formula (see [Ho 1]).
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One firsts notices that Sδ
λ is given by the explicit formula

Sδ
λ = cδλ

−δ

∫
(t + i0)−1−δeitλ−it

√
−∆dt.

To employ the above ideas, let ρ ∈ C∞
0 be as in (1.4), and define approximate Riesz mean

operators

S̃δ
λ = cδλ

−δ

∫
ρ(t)(t + i0)−1−δeitλ−it

√
−∆dt.

Then just like in the case of χ̃λ, one can compute its kernel explicitly and see that it is
a sum of two terms of the form

S̃δ
λ(x, y) = λ

n−1
2 −δaδ,±

λ (x, y)
e±iλdist(x,y)

(λ−1 + dist(x, y))
n−1

2 +δ
+ O(λ−∞), λ > 1.

Based on this one immediately sees that the kernel is uniformly integrable in y when
δ > (n − 1)/2, which means that the analog of (1.13) must hold for p = ∞ when Sδ

λ is
replaced by S̃δ

λ. By using the same oscillatory integral operator bounds as before, one also
sees that this variant of (1.13) must also hold for p = 2(n+1)/(n− 1). By interpolation,
it also must be true for the range 2(n + 1)/(n − 1) ≤ p ≤ ∞. Based on this, one would
have (1.13) for this range of exponents if

‖Rδ
λf‖p ≤ C‖f‖p, δ ≥ max{n(1/2− 1/p)− 1/2, 0}, p ≥ 2(n + 1)/(n− 1),

if
Rδ

λ = Sδ
λ − S̃δ

λ.

This estimate is an easy consequence of (1.10). Morally,

(1.14) Rδ
λ ≈ λ−δχλ,

and hence
‖Rδ

λf‖p ≤ Cλ−δ+δ(p)‖f‖2,

which leads to the desired bounds for this remainder term if δ ≥ δ(p) = n(1/2−1/p)−1/2,
p ≥ 2(n + 1)/(n − 1), after applying Hölder’s inequality since M is compact. Equation
(1.14) is a slight oversimplification. What one really does is notice that

Rδ
λf = λ−δrδ(λ−

√
−∆)f,

where |rδ(τ)| ≤ CN (1 + |τ |)−N , for every N , and so by orthogonality and (1.10)

‖Rλf‖p ≤ C
∑

k

λ−δkδ(p)‖rδ
λ(λ−

√
−∆)χkf‖2

≤ C ′
N

∑
k

kδ(p)λ−δ(1 + |k − λ|)−N‖f‖2 ≤ C ′λδ(p)−δ‖f‖2,

assuming, as we may, that N is large.

It is not known if the estimates (1.13) hold for 2 < p < 2(n+1)/(n−1). Unfortunately,
simple operator-valued Tauberian arguments like the one given above break down for this
range of exponents, due to the fact that the L2 → Lp bounds for χλ are not favorable
for this range because δ(p) > max{n(1/2 − 1/p) − 1/2, 0} for 2 < p < 2(n + 1)/(n − 1).
In two-dimensions, the version of (1.13) for the Euclidean case, R2, were proved 1970s
by Carleson and Sjölin [CS]. It is frustrating that in the Riemannian case, one only
knows (1.13) for the full range of exponents in certain special cases, such as S2. On the
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other hand, following an earlier idea of Bourgain, Minicozzi and the author [MS] showed
that when n ≥ 3 there can be geometric obstacles which preclude (1.13) holding for all
2 < p < 2(n + 1)/(n − 1). Still it would be very interesting to come up with geometric
conditions that would allow improvements here over the p ≥ 2(n + 1)/(n− 1) bounds for
Riesz means.

Other applications were made in proving Carleman and unique continuation theorems.
See Jerison [J] and Jerison and Kenig [JK].

2. Main Problem: Characterize Maximal Eigenfunction Growth.

As we indicated before, Theorem 1.1 cannot be improved since the bounds (1.2) are
sharp for the standard sphere. Thus, Lp(λ, g) = Ω(λδ(p)) for (Sn, gcan), where Ω(λδ(p))
means O(λδ(p)) but not o(λδ(p)). On the other hand, much better bounds hold in certain
situations. For instance on the standard torus Rn/Zn one gets much better bounds
where the power δ(p) can, for instance, be replaced by a lower power. In particular,
Lp(λ, g) = o(λδ(p)) in this case. Based on this, we say that Sn, but not Rn/Zn, is a
Riemannian manifold with maximal eigenfunction growth as measured by the sup-norm.

With this in mind we pose:

• Problem: Determine the (M, g) for which L∞(λ, g) = Ω(λ
n−1

2 ).

Our main result, Theorem 2.1, implies a necessary condition on a compact Riemannian
manifolds (M, g) with maximal eigenfunction growth: there must exist a point x ∈ M
for which the set

(2.1) Lx = {ξ ∈ S∗xM : ∃T : expx Tξ = x}

of directions of geodesic loops at x has positive surface measure. Here, exp is the expo-
nential map (see below), and the measure |Ω| of a set Ω is the one induced by the metric
gx on T ∗x M . For instance, the poles xN , xS of a surface of revolution (S2, g) satisfy
|Lx| = 2π. Note also that the geodesic loops do not have to close smoothly.

Theorem 2.1. Suppose that |Lx| = 0. Then given ε > 0 there exists a neighborhood
N = N (ε) of x, and a positive number Λ = Λ(ε), so that

(2.2) sup
φ∈Vλ

‖φ‖L∞(N )

‖φ‖L2(M)
≤ ελ(n−1)/2, λ ∈ spec

√
−∆ ≥ Λ.

If one has |Lx| = 0 for every x ∈ M then

(2.3) sup
φ∈Vλ

‖φ‖Lp(M)

‖φ‖L2(M)
= o(λδ(p)), p > 2(n+1)

n−1

where δ(p) is given by (1.3).

Note that we are only able to obtain sufficient conditions for Lp(λ, g) = o(λδ(p)) when
p > 2(n + 1)/(n − 1). We shall discuss open problems concerning the very interesting
case where 2 < p < 2(n + 1)/(n− 1) at the end. We shall also give an example showing
that the condition that |Lx| = 0 for some x ∈ M is not a necessary condition for (2.2).
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We should also point out that the main part of Theorem 2.1 is the part corresponding
to p = ∞. The remaining estimates for 2(n + 1)/(n − 1) < p < ∞ just follow from
interpolating between (2.3) with p = ∞ and (1.2) with p = 2(n + 1)/(n− 1).

Before sketching the proof of Theorem 2.1, let us discuss its main hypothesis.

3. Geometry of Loops.

Let T ∗M denotes the cotangent bundle and S∗M denotes the unit sphere bundle with
respect to g of our compact Riemannian manifold (M, g). We denote by exp tHp the
geodesic flow of g, defined as the flow of the Hamiltonian vector field Hp of p(x, ξ) =√∑

gjk(x)ξjξk, the principal symbol for
√
−∆. By definition, exp tHp is homogeneous,

i.e. commutes with the natural R+-action, r× (x, ξ) = (x, rξ) on T ∗M\0. We also define
the exponential map at x by expx ξ = π ◦ exp tHp(x, ξ). These definitions are standard
in microlocal analysis but differ from the usual geometer’s definitions, which takes p2 =∑

i,j gij(x)ξiξj as the Hamiltonian generating the geodesic flow. The geometer’s geodesic
flow is not homogeneous.

Following [Ho IV], we begin by introducing the loop-length function on T ∗M\0 given
by

(3.1) L∗(x, ξ) = inf{t > 0 : expx tξ = x},
where L∗ is defined to be +∞ if no such t exists. It is homogeneous of degree zero, so it
is natural to consider the restriction of L∗ to S∗M = {(x, ξ) :

∑
gjk(x)ξjξk = 1}. A key

fact for us is that L∗ is a lower semicontinuous function, or equivalently that the function
1/L∗(x, ξ), which is defined to be zero when L∗(x, ξ) = +∞, is an upper semicontinuous
function on S∗M . For fixed x ∈ M we define the set of loop directions at x by:

(3.2) Lx = {ξ ∈ S∗xM : 1/L∗(x, ξ) 6= 0}.
The complimentary set

S∗xM\Lx = {ξ ∈ S∗xM : 1/L∗(x, ξ) = 0}
is the set of all unit vectors for which there is no geodesic loop with initial tangent vector
ξ.

The lower semicontinuity of L∗(x, ξ) plays a crucial role in everything. As a simple
example, let us see how it can be used to prove the following result.

Theorem 3.1. There exists a residual set R in the space G of C∞ metrics with the
Whitney C∞ topology such that |Lg

x| = 0 for every x ∈ M when g ∈ R.

Proof. Recall that |Lg
x| = 0 if and only if

∫
SxM

1/L∗g(x, ξ)dξ = 0, if L∗g(x, ξ) is the loop-
length function defined before.

To make use of this, choose a coordinate patch Ω ⊂ M with coordinates y = κ(x)
ranging over an open subset of Rn. We then fix K ⊂ κ(Ω) be compact and let

F (g) = sup
y∈K

∫
Sn−1

dσ

L∗g(y, ξ)
,

using the induced coordinates {y, ξ} for T ∗Ω ⊂ T ∗M . Here also, dσ is the standard
surface measure on Sn−1, and we are abusing notation a bit by letting L∗g(y, ξ) denote
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the pushforward of L∗g using κ. It then suffices to show that the set of metrics for which

GN = {g : F (g) < 1/N}
are open and dense.

Density just follows from the fact that F (g) = 0 for any non-Zoll real analytic metric.
Such metrics are dense in G.

The main step in proving that these sets are also open is to show that the function
f(g, y) =

∫
Sn−1 dσ/L∗g(y, ξ) is upper semicontinuous on G×K. This holds since 1/L∗g(y, ξ)

is a positive, (locally) bounded upper semicontinuous function on G × Ω × Sn−1, if we
equip G with the C3-topology. Therefore, if (gj , yj) → (g, y), yj ∈ K, we have

sup
j

∫
Sn−1

dσ

L∗gj
(yj , ξ)

≤
∫

Sn−1
sup

j

dσ

L∗gj
(yj , ξ)

=⇒ lim sup
j

∫
Sn−1

dσ

L∗gj
(yj , ξ)

≤
∫

Sn−1
lim sup

j

dσ

L∗gj
(yj , ξ)

≤
∫

Sn−1

dσ

L∗g(y, ξ)
,

using the dominated convergence theorem and upper semicontinuity.

Now let us prove that the sets GN are open. Let g ∈ GN . By definition of F , f(g, y) < 1
N

for each y ∈ K. Since f is upper-semicontinuous, the set {f < 1
N } is open, so there exist

δ(y) such that Bδ(y)(y)×Bδ(y)(g) ⊂ {f < 1
N }, if Bδ(y) and Bδ(g) denote the δ Euclidean

and C3 balls of y and g, respectively. Here, g is fixed so we do not indicate the dependence
of the δ’s on it. As y varies over K, the balls Bδ(y)(y) give an open cover of K, and by
compactness there exists a finite subcover {Bδ(yj)(yj), j = 1, . . . , N}. Let δ = minj δ(yj),
so that Bδ(yj)×Bδ(g) ⊂ {f < 1

N } for j = 1, . . . , N . If g′ ∈ Bδ(g), then f(y, g′) < 1
N for

all y ∈ K. Hence F (g′) < 1
N and so GN is open. �

The following appears to be a new geometric result:

Corollary 3.2. L∞(λ, g) = o(λ(n−1)/2) for a generic Riemannian metric on any mani-
fold.

One deduces this result simply by combining Theorem 2.1 and Theorem 3.1.

To further clarify the geometry of loops, we introduce the following notions:

Definition 3.3. We put:

• ΓT
x := exp THp T ∗x M ∩ T ∗x M.

• SΓT
x = ΓT

x ∩ S∗xM.
• Γx = exp−1

x (x) = {Tξ : ξ ∈ SΓT
x } ⊂ T ∗x M ;

• Lspx = {|T | : ΓT
x 6= ∅} ⊂ R+

• Lx := {ξ ∈ S∗xM : ∃t ∈ Lspx, expx tξ = x} ⊂ S∗xM

In this list, we have mixed together notions involving the geometer’s geodesic flow (the
Hamiltonian flow of p2) and the microlocal analyst’s geodesic flow (that of p). Thus, ΓT

x

is a homogeneous closed subset of T ∗x M (invariant under the R+-action), and SΓT
x is the

‘base’ of the cone. On the other hand, we define expx in the usual geometer’s, rather
than as πx ◦ exp tHp|T∗x M . For instance, we have: TSΓT

x = {Tξ : |ξ| = 1, expxTξ = x}.
XXIV–7



It is natural to say that Lspx is the ‘loop-length spectrum’ at the point x, i.e. the set of
lengths of geodesic loops. The set Lx, already introduced, is the set of loop directions at
x. The (non-homogeneous) set Γx is the set of loop (co)-vectors. In general, the sets Γt

x,
Γx need not be smooth manifolds. Later in this section, we shall consider restrictions on
(M, g) which imply smoothness properties of loopsets, and study a variety of examples.

Let us now present a few simple examples to illustrate the loopset notions.

3.1. Flat tori. Let Rn/Γ be a flat torus. A geodesic loop at x is a helix which returns to
x. Loops on flat tori are always closed geodesics and they correspond to lattice points in
Γ. Thus,

Γx = Γ, Lx = { γ

|γ|
: γ ∈ Γ}, Lspx = {|γ|, γ ∈ Γ}, }.

We observe that Γx is a countable discrete subset of T ∗x Rn/Γ, that Lx is a countable
dense subset of S∗xM , and that Γg is a countable set of embedded Lagrangean components
each diffeomorphic to Rn/Γ. Also, C∆ = ∪γ∈Γ{(|γ|, τ, x, 0) : x ∈ M}. This example is
non-generic because (among other things) every loop is a closed geodesic. Flat tori are
examples of metrics without conjugate points. We now generalize the discussion.

3.2. Manifolds without conjugate points. Let (M, g) denote a manifold without conjugate
points, i.e. a Riemannian manifold such that each exponential map expx is is a covering
map. Manifolds of non-positive curvature are examples, so this class of metrics is open on
any M (thought it may be empty for some M). By definition, there are no Jacobi fields
along any loop satisfying Y (0) = Y (1) = 0, so the Jacobi operator is non-degenerate.
Equivalently, each loop functional Lx is a Morse function on Ωx. Thus, for all x, Γx is a
countable discrete set of points, Lx is countable and ΓT

x is a finite set. Unlike the case of
flat tori, loops are not generally closed geodesics.

3.3. Surfaces of revolution. Surfaces of revolution provide a simple (but non-trivial) class
of examples for which the loopsets may be explictly determined. Topologically, the sur-
faces must be either spheres or tori. It would take us too far afield to discuss the geometry
of loops and eigenfunctions on general surfaces of revolution, so we only give a few indi-
cations of how to determine the loops explicitly and refer the reader to the articles [CV]
[KMS][TZ] [Z] for further background.

A 2-sphere of revolution is a Riemannian sphere (S2, g) with an action of S1 by isome-
tries. We may write g = dr2 + a(r)2dθ2 in geodesic polar coordinates at one of the poles
(fixed points) of the S1 action. The poles are always self-conjugate points, and are points
at which eigenfunctions attain the maximal bounds.

Tori of revolution generalize flat tori but non-flat cases must have conjugate points
(Hopf’s theorem). The metric on a torus of revolution may be written in standard angle
coordiantes as g = dx2 +a(x)2dθ2. Tori of revolution have no poles, and as we will see in
Theorem 5.1 eigenfunctions need not attain the maximal bounds. In fact, although we
do not prove it here, tori of revolution never have maximal eigenfunction growth.

3.4. Tri-axial ellipsoids. We recall that Ea1,a2,a3 = {(x1, x2, x3) ∈ R3 : x2
1

a2
1
+ x2

2
a2
2
+ x2

3
a2
3

= 1}
with 0 < a1 < a2 < a3. Jacobi proved that the geodesic flow of Ea1,a2,a3 (for any
(a1, a2, a3)) is completely integrable in 1838. The two integrals of the motion are the
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length H(x, ξ) = |ξ|x and the so-called Joachimsthal integral J . More recent discussions
of the geodesics of the ellipsoid can be found in [A], [K], and in [CVV] (§3).

There are four distinguished umbilic points ±P,±Q which occur on the middle closed
geodesic {x2 = 0}. All geodesics leaving P arrive at −P at the same time, then leave −P
and return to P at the same time (see [K], Theorem 3.5.16 or [A]). Thus, the tri-axial
ellipsoid is an example of a Y m

` -metric which is not a Zoll metric. At all other points
x ∈ Ea1,a2,a3 , the set of initial directions of geodesics which return to x is countable [K].

3.5. Zoll surfaces. Now let us consider the extreme case of Zoll metrics on S2, i.e metrics
all of whose geodesic are closed [Besse]. Among such metrics, there is an infinite dimen-
sional family of surfaces of revolution. There is an even larger class with no isometries.

We may suppose with no loss of generality that the least common period of the
geodesics equals 2π. Then Γ2π

x = S∗xS2 for every x, and Γx = ∪∞n=12πnS∗xS2. As x
varies we obviously get Γ = ∪∞n=12πnS∗S2.

As will be discussed in §7, although geodesics are recurrent at every x, we do not
expect eigenfunction blow-up to occur everywhere, or even anywhere in general.

4. Real Analytic Metrics.

Using Theorem 2.1 and a standard result from geometry we can characterize real
analytic manifolds with maximal eigenfunction growth.

Theorem 4.1. Suppose that (M, g) is real analytic and that L∞(λ, g) = Ω(λ(n−1)/2).
Then (M, g) is a Y m

` -manifold, i.e. a pointed Riemannian manifold (M,m, g) such that
all geodesics issuing from the point m return to m at time `. In particular, if dim M =
2, then M is topologically a 2-sphere S2.

For the definition and properties of Y m
` -manifolds, we refer to [Besse] (Chapter 7).

By a theorem due to Bérard-Bergery (see [BB, Besse], Theorem 7. 37), Y m
` manifolds

M satisfy π1(M) is finite and H∗(M, Q) is a truncated polynomial ring in one generator.
This of course implies M = S2 (topologically) when n = 2. We remark that the loops
are not assumed to close up smoothly. An interesting example to keep in mind here is
the tri-axial ellipsoid discussed before, Ea1,a2,a3 = {(x1, x2, x3) ∈ R2 : x2

1
a2
1

+ x2
1

a2
1

+ x2
1

a2
1

= 1},
with a1 < a2 < a3.

To prove Theorem 4.1, we require the following result whose proof we postpone for
the moment.

Lemma 4.2. L∗ is constant on smooth submanifolds of Γx.

Proof of Theorem 4.1: By assumption, there exists a constant C > 0 and a subse-

quence of L2-normalized eigenfunctions {φλj} such that ||φλj ||∞ ≥ Cλ
(n−1)

2
j . This contra-

dicts the last statement of Theorem 2.1, hence there exists a point m such that |Lm| > 0.

Since g is real analytic, exp : T ∗mM → M is a real analytic map, hence Γm is an analytic
set. In any local coordinate patch U ⊂ M containing m, Γm is the zero set of a pair
of real-valued real-analytic functions, i.e.has the form (f1(ξ), . . . , fn(ξ)) = (m1, . . . ,mn).
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The solutions are the same as for (f1(ξ)−m1)2 + · · ·+ (fn(ξ)−mn)2 = 0, so Γm is the
zero set of a real analytic function.

It is well-known (see [BM, H, L, S]) that the zero set of a real analytic function is locally
a finite union of embedded real analytic submanifolds Y ki

i of dimensions 1 ≤ ki ≤ n− 1.
Thus, for each ξ there exists a ball Bδ(ξ) such that

(4.1) Γm ∩Bδ(ξ) = ∪d
i=1Y

ki
i .

We claim that for some (ξ, δ) there exists a component Y n−1
i of dimension n− 1. If not,

Γm is of Haussdorf dimension ≤ n − 2. But then its radial projection ρ : Γm → S∗mM
would also have Haussdorf dimension ≤ n − 2. In fact, each ray through the origin in
T ∗mM intersects Γm in at most countably many points. So the radial projection preserves
the dimension. But this contradicts the fact that Λm = ρ(Γm) has positive measure.

Now let Ξ ⊂ Γm be an open embedded real analytic hypersurface of T ∗M. Consider
the rays {tξ : 0 ≤ t ≤ 1} ⊂ T ∗mM and the union

C = ∪ξ∈Ξ{tξ : 0 ≤ t ≤ 1}.

Thus, each ray in C exponentiates to a geodesic loop which returns at t = 1. By Lemma
4.2 the length |ξ| of each loop must be a constant independent of ξ ∈ Ξ.

We conclude that |ξ| = ` for some ` ∈ R+ and ξ ∈ Y . But this equation is real analytic,
hence must hold on all of Ξ; hence Ξ ⊂ `S∗mM. Again, by real analyticity, `S∗mM ⊂ Γm.
This is the same as saying that (M, g) is a Y m

` -manifold.

�

Proof of Lemma 4.2: It is sufficient to prove the result for smooth curves in Γx. This
can be seen by using either the first variation formula for the lengths of a one-parameter
family of geodesics, or by using a symplectic argument. For the sake of brevity, we shall
only present the former.

First Variation proof: Let α(s) denote a smooth curve in Γx, and let γs(t) =
expx tL∗(x, α(s)) α(s)

|α(s)| . By definition, γs(0) = x, γ(1) = x and L∗(x, α(s)) =
∫ 1

0
|γ′s(t)|dt.

Since γs is a geodesic for each s, we have

d
ds

∫ 1

0
|γ′s(t)|dt = 1

L∗(x,α(s))

∫ 1

0
〈D

dsγ′s(t), γ′s(t)〉dt

= 1
L∗(x,α(s))

∫ 1

0
〈D

dtYs(t), γ′s(t)〉dt

= − 1
L∗(x,α(s))

∫ 1

0
〈Ys(t), D

dtγ
′
s(t)〉dt = 0.

Here, Ys(t) = d
dsγs(t) is the Jacobi field associated to the variation, and D

Dt is covariant
differentiation along γs. In integrating D

dt by parts, the boundary terms vanished because
Ys(0) = Ys(1) = 0 as the endpoints of the variation were fixed. �

5. Converse Results.

Theorem 2.1 says that L∞(λ, g) = Ω(λ(n−1)/2), then there must be a point x ∈ M for
which |Lx| > 0. However, the naive converse to this sup-norm result is simply false.
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Theorem 5.1. There exists C∞ Riemannian tori of revolution (T 2, g) such that

∃x : |Lx| > 0, but
‖φλ‖∞
‖φλ‖2

= o(λ(n−1)/2).

The example involves M = S1 × S1 with certain metrics

ga = dx2 + (a(x))2dθ2,

where (x, θ), −1 ≤ x ≤ 1, −π ≤ θ ≤ π are the angle variables. We shall assume that
a(x) is an even positive function on [−1, 1]. Moreover, we shall assume that the metric
contains an “equatorial band”, by which we mean that there is an ε > 0 so that

a =
√

1− x2, x ∈ (−ε, ε).

We shall also assume that for 2ε < |x| ≤ 1, a(x) is constant. Using Sturm-Liouville anal-
ysis one see that one can construct such metrics with the property that every eigenspace,
Vλ, of

√
−∆ has consisting of L2-normalized eigenfunctions of the form

Φn,λ = einθφn,λ(x).

Based on this one can prove Theorem 5.1. One notices that clearly if (x, θ) is a point
in the equatorial band where |x| < ε, then |Lx,θ| > 0. On the other hand because of the
special form of the Φn,λ it is not hard to prove that

‖Φn,λ‖ ≤ Cλ1/2−σ,

for some σ > 0, which of course means that L∞(λ, g) = O(λ1/2−σ) and hence is o(λ1/2).

6. Sketch of proof of Theorem 2.1.

The proof of Theorem 1.1 is a much more refined version of the proof of Theorem 2.1.
We follow an idea of Ivrii [Iv1] to the extent possible. Our analysis is also related to that
of Duistermaat and Guillemin [DG].

Let us set things up. We first recall that all of the Lp bounds in Theorem 2.1 would
follow from showing that

|Lx| > 0, ∀x ∈ M =⇒ ‖φλ‖∞ = o(λ(n−1)/2), φλ ∈ Vλ.

By compactness, this in turn follows from showing that if we fix z ∈ M satisfying |Lz| = 0
then for every ε > 0 there is a neighborhood Nε(z) of z and a Λ(ε) such that

(6.1) sup
|eλ(f)(x)|
‖f‖2

= sup
‖f‖2=1

|eλ(f)(x)| ≤ ελ(n−1)/2, x ∈ Nε(z), λ ≥ Λ(ε).

On the other hand, by the converse to Schwarz’s inequality

sup
‖f‖2=1

|eλ(f)(x)| = sup
‖f‖2=1

∣∣∫
M

∑
λν=λ

φλν
(x)φλν

(y)f(y) dy
∣∣

=
(∫

M

∣∣ ∑
λν=λ

φλν
(x)φλν

(y)
∣∣2dy

)1/2

=
( ∑
λν=λ

|φλν (x)|2
)1/2

.
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Thus, we need ∑
λν=λ

|φλν (x)|2 ≤ ελ(n−1)/2, x ∈ Nε(z).

Note that ∑
λν=λ

|φλν
(x)|2 = N(λ;x)−N(λ− 0;x),

where
N(λ;x) =

∑
λν≤λ

|eλν
(x)|2,

is the local Weyl term, whose trace gives N(λ), the number of eigenvalues counted with
multiplicity that are ≤ λ. Thus, since pointwise eigenfunction estimates are measured by
the jumps of N(λ;x) we conclude that we would be done if we could show that

N(λ;x) = c(x)λn + R(λ;x),

where the local Weyl remainder satisfies

(6.2) |R(λ;x)| ≤ ελ(n−1)/2, x ∈ Nε(z), λ ≥ Λ(ε).

To continue, notice that N(λ;x) is the restriction to the diagonal of the kernel of
the partial summation operator Sλf =

∑
λν≤λ eλν (f) introduced in §1. Recalling the

formulas that related Sλ to the wave group shows that the Stieljies-derivative, dN(λ;x)
has U(t;x, x) as its Fourier transform, where U(t, x, y) denotes the kernel of e−it

√
−∆,

that is,
d̂N(t;x) = U(t;x, x).

Recall that for fixed t 6= 0, the function x → U(t;x, x) has as its wave front set

{(x, ξ) ∈ T ∗M\0, ∃ loop of length t through xwith initial tangent vector ξ}.

Model Case

To show how one can use this, let us first handle a model case of (6.2). Let us assume
that there are no loops of length ≤ L through points x ∈ Nε(z). It then follows that

t → U(t;x, x) = d̂N(t;x)

is smooth for 0 < |t| < L.

Because of this fact we can invoke a Tauberian lemma used by Ivrii [Iv1] which says
that if N(λ) is an increasing function and if g(λ) is a function satisfying |g′(λ)| ≤ Aλn−1

as well as ĝ(t) = N̂(t), |t| ≤ L, then |N(λ)− g(λ)| ≤ C(A)λn−1/L.

Since
N(λ;x) =

1
2π

∫
eitλU(t;x, x)(t + i0)−1dt,

we apply the lemma with

g(λ;x) =
1
2π

∫
eitλU(t;x, x)ρ(t/λ)(t + i0)−1dt,

where ρ(t) ∈ C∞
0 equals one for |t| < 1/2 but vanishes when |t| > 1. If L is large, the

Tauberian lemma leads to the favorable bounds

|N(λ;x)− g(λ;x)| ≤ C(A)λ(n−1)/2/L.
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One cannot compute g(λ;x), but can compute

h(λ;x) =
1
2π

∫
eitλU(t;x, x)ρ(t/δ)(t + i0)−1dt,

if δ is smaller than half the injectivity radius. On the other hand the hypotheses imply
that |g(λ;x) − h(λ;x)| = O(λ−∞). Finally, it is routine to use the calculations for h to
see that

h(λ;x) = c(x)λn + R̃(λ;x),

where
|R̃(λ;x)| ≤ Cλn−1/L,

which leads to (6.2) with ε ≈ 1/L in this model case where we have made the very
restrictive hypotheses that there are no closed loops of length < L.

Microlocal Variation: Proof of (6.2)

Recall that we wish if we assume that Lz has zero measure and if ε > 0 is small then
the jumps of N(x, λ) will be ≤ ελn−1 for all large λ and x in a neighborhood Nε(z) of z.
To do this we use the lower semicontinuity to see that we decompose

I = B(x,D) + b(x, D),

where B and b are zero-order pseudodifferential operators having the property that when
x ∈ Nε(z) and B(x, ξ) 6= 0 there are no closed loops of length ≤ ε−1 through x with initial
tangent vector ξ, while on the other hand

∫
|ξ|=1

|b(y, ξ)| dξ < ε.

Note then that

N(λ;x) =
∑

λν≤λ

|φλν
(x)|2 =

∑
λν≤λ

|Bφλν
(x)|2 +

∑
λν≤λ

|bφλν
(x)|2

+
∑

λν≤λ

Bφλν
(x)bφλν

(x) +
∑

λν≤λ

bφλν
(x)Bφλν

(x).

After using the same Tauberian lemma and making a tedious calculation, one sees that
the jumps of the first two terms are each O(ελ(n−1)/2). This argument cannot work for the
last two terms, though. However, since both involve b which satisfies

∫
|ξ|=1

|b(y, ξ)| dξ < ε,

one can use the Cauchy-Schwartz inequality along with the Tauberian arguments from
the older proof of the sharp Weyl formula of Hörmander [Ho 1] to see that the jumps of
the last two terms also must be O(ελ(n−1)/2), which finishes the proof. �

Remark. We should mention that Safarov [Saf] studied remainder estimates in the local
Weyl laws earlier. He also saw pointed out the role that the existence or non-existence
of a positive measure of loops plays in bounds like (6.1).

7. Further problems and conjectures.

Let us mention some related natural problems which remain open.

Problem 1: First, what is a sufficient condition for maximal eigenfunction growth at a
given point x or at some point of (M, g)?
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As mentioned above, |Lx| > 0 is not sufficient to imply the existence of a sequence
of eigenfunctions blowing up at x at the maximal rate. In fact, to our knowledge, the
only Riemannian manifolds known to exhibit maximal eigenfunction growth are surfaces
of revolution and compact rank one symmetric spaces. In the case of surfaces of revolu-
tion, invariant eigenfunctions must blow up at the poles because all other eigenfunctions
vanish. In the case of compact rank one symmetric spaces, the exceptionally high multi-
plicity of eigenspaces allows for the construction of eigenfunctions of maximal sup norm
growth. In each case, Lx has full measure, but the mechanisms producing maximal
eigenfunction growth involve something more. All of these examples are completely inte-
grable and eigenfunctions with maximal sup-norms may be explicitly constructed by the
WKB method. Let us describe the symplectic geometry, because it turns out that we are
tantalizingly close to proving it must occur in the real analytic case.

The eigenfunctions with maximal sup norms in these cases are actually oscillatory
integrals (quasimodes) associated to (geodesic flow)-invariant Lagrangean submanifolds
diffeomorphic to S∗xM × S1 ∼ Sn−1 × S1. They are the images of S1 × S∗mM under the
Lagrange immersion

ι : S1 × S∗mM → T ∗M\0, ι(t, x, ξ) = Gt(x, ξ),

where Gt : T ∗M\0 → T ∗M\0 is the geodesic flow. Under the natural projection π :
S∗M → M , π : ι(S1 × S∗mM) → M the sphere S∗xM is ‘blown down’ S∗M to m. As
discussed in [TZ] (and elsewhere), singularities of projections of Lagrangean submanifolds
correspond closely to sup norms of the associated quasimodes, and such blow-downs give
the maximal growth rate of the associated quasimodes. Existence of a quasimodes of
high order attached to an invariant Lagrangean S∗xM × S1 may therefore be the missing
condition.

In the real analytic case, we showed in Theorem 4.1 that all geodesics issuing from
some point m return to m at a fixed time `. If, as is widely conjectured, they are smoothly
closed curves at m, then these geodesics fill out a Lagrangean submanifold of the form
ι(S1 × S∗mM) above. To complete the conjectured picture, we would to show that there
exist eigenfunctions which are oscillatory integrals associated to this Lagrangean. It is
automatic that quasimodes (approximate eigenfunctions) can be constructed, but it is
not necessarily the case that they approximate actual eigenfunctions.

We do not expect such quasimodes always to approximate eigenfunctions, nor do we
expect maximal eigenfunction growth in all situations where Lx has full measure, even
at all points x. In other words, we do not expect maximal eigenfunction growth on all
Zoll manifolds (manifolds all of whose geodesics are closed). It is quite conceivable that
(non-rotational) Zoll spheres do not have maximal eigenfunction growth, even though the
converse estimate R(λ;x) = Ω(λ

n−1
2 ) holds. Indeed, it is known ([V]) that on the standard

S2, almost every orthonormal basis of eigenfunctions satisfies ||φλ|| = O(
√

log λ), even
though special eigenfunctions (zonal spherical harmonics) have maximal eigenfunction
growth. It is possible that eigenfunctions of typical Zoll surfaces resemble such typical
bases of spherical harmonics rather than the special ones with extremal eigenfunction
growth. In short, the converse direction appears to be a difficult open problem.
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In a future article with J. Toth, we plan to study Lp-norms of eigenfunctions and
quasimodes directly using oscillatory integral and WKB formulae. As a very special
case, we will improve the sup norm bound on eigenfunctions of tori of revolution to λ1/4.

At the opposite extreme is the problem of characterizing compact Riemannian man-
ifolds with minimal eigenfunction growth, such as occurs on a flat torus. In [TZ] it is
proved that in the integrable case, the only examples are flat tori and their quotients.

Problem 2: Characterize (M, g) with maximal Lp-norms of eigenfunctions.

We have left this problem open for p ≤ 2(n+1)
n−1 , and we expect the condition on (M, g)

to change at the the critical Lebesgue exponent p = 2(n+1)
n−1 . Indeed, as was shown in

[So2], the ‘geometry’ of extremal eigenfunctions changes at this exponent. Specifically
(cf. [So3], p. 142-144, [So1]), for p > 2(n+1)

n−1 eigenfunctions concentrated near a point

tend to have extreme Lp norms, while for 2 < p < 2(n+1)
n−1 ones concentrated along stable

closed geodesics tend to have this property; if p = 2(n+1)
n−1 , at least in the case of the round

sphere, both types give rise to Ω(λδ(p)) bounds.

Bourgain [B] has constructed a metric on a 2-torus of revolution for which the maximal
L6 bound is attained although |Lx| = 0 for all x. The eigenfunctions are similar to the
highest weight spherical harmonics on S2 which concentrate on the equator. Note that
this is the Lebesgue exponent where one expects the behavior of eigenfunctions which
maximize this quotient to change.

Thus, we do not expect ‘|Lx| > 0’ to be a relevant mechanism in producing large
Lp norms below the critical exponent. In some sense, existence of stable elliptic closed
geodesics is more likely to be involved. We plan to study the problem elsewhere.
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