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SCATTERING MATRIX IN CONFORMAL GEOMETRY

C. ROBIN GRAHAM AND MACIEJ ZWORSKI

1. STATEMENT OF THE RESULTS

This talk describes recent work [9] on the connection between scattering matrices
on conformally compact asymptotically Einstein manifolds and conformally invari-
ant objects on their boundaries at infinity. This connection is a manifestation of
the general principle that the far field phenomena on a conformally compact Ein-
stein manifold are related to conformal theories on its boundary at infinity. This
relationship was proposed in [4] as a means of studying conformal geometry, and
the principle forms the basis of the AdS/CFT correspondence in quantum gravity
— see [14],[23],[11],[8] and references given there.

We first define the basic objects discussed here. By a conformal structure on
a compact manifold M we mean an equivalence class [h] determined by a metric
representative h:

helh] < h=eh, TeC®M).
Let X be a compact n + 1-manifold with X = M.! Let z be a defining function
of 0X in X:
.’L“)o( >0, .’E|3X =0, d.Z"aX #0.

We say that g is a conformally compact metric on X with conformal infinity [A] if

g _
g:.’I?’ g|T3X€[h']7

where g is a smooth metric on X. Since we can choose different defining functions,
the metric g determines only the conformal class [h]. A conformally compact metric
is said to be asymptotically hyperbolic if its sectional curvatures approach —1 at
0X; this is equivalent to |dz|; = 1 on 0X. The basic example is hyperbolic space
H**!, with boundary given by R” in the half-space model and by S™ in the ball
model: the two being conformally equivalent.

One of the results of [4] is that given a conformal structure [h] on M, one can
construct a conformally compact metric g with conformal infinity [h] which satisfies

‘ [ O(x™) for n odd
(1.1) Ric(g) +ng = { O(z"2) for n even.

'In general such X might not exist, but we can always consider instead M x [0,1] with a
suitable boundary condition on the second boundary component — see §2.
XXIII-1
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When n is even, the condition (1.1) is augmented by a vanishing trace condition
to the next order. We call a metric g satisfying these conditions asymptotically
Einstein. When n is odd, the condition (1.1) together with an asymptotic evenness
condition uniquely determine g mod O(z*) up to diffeomorphism. We shall call a
metric g which is asymptotically Einstein and which, if n is odd, also satisfies the
asymptotic evenness condition, a Poincaré metric associated to [h].
Our first theorem relates the scattering matrix of a Poincaré metric g to the
“conformally invariant powers of the Laplacian” on (M, [h]). The scattering matrix
of (X, g) is a meromorphic family S(s) of pseudodlfferentlal operators on M defined
in terms of the behaviour at infinity of solutions of [A, — s(n — s)]u = 0, which we
discuss in §2. The conformally invariant powers of the Laplacian are a family P,
k € N and k£ < n/2 if n is even, of scalar differential operators on M constructed
in [6], which we discuss in §3. These operators are natural in the sense that they
can be written in terms of covariant derivatives and curvature of a representative
metric h, and they are invariant in the sense that if h = €T h, then

(1'2) ﬁk — 6(—n/2—k)TPk o(n/2—k)Y

The operator P, has the same principal part as A* (in our convention the Laplacian
is a positive operator) and equals A* if h is flat.

Theorem 1. Let (M™,[h]) be a compact manifold with a conformal structure, and
let (X, g) be a Poincaré metric associated to [h]. Suppose that k € N and k < n/2
if n is even, and that (n/2)? — k? is not an L*-eigenvalue of A,. If S(s) is the
scattering matriz of (X, g), and Py, the conformally invariant opemtor on M, then
S(s) has a simple pole at s =n/2 +k and

(1.3) &Py = —Res oo S(s), = (—1)*[2%k!I(k — 1)1,

where Res s—s, S(s) denotes the residue at sy of the meromorphic family of opera-
tors S(s).

We remark that the condition on the spectrum is automatically satisfied if k£ >
n/2 and in general can be guaranteed by perturbing the metric ¢ in the interior.
Since S(s) is self-adjoint for s € R, as an immediate consequence of Theorem 1
and of this remark we obtain

Corollary. The conformally invariant operators, P, are self-adjoint.

This was previously known only for small values of k for which the operators can
be explicitly calculated. The first two of the invariant operators are the conformal
Laplacian

n—2

P=A+-""% R
ST
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and the Paneitz operator
Py= A2+ 6Td+ (n— 4)(AJ + gﬂ —2[PP)/2.

Here R denotes the scalar curvature, J = R/(2(n — 1)), P; = —=5(Ri; — Jhyj)
where R;; is the Ricci curvature, T = (n — 2)Jh — 4P acting as an endomorphism
on 1-forms, |P|? = P;;P¥, and 4 is the adjoint of d (the divergence operator).
Another important notion of conformal geometry is Branson’s @)-curvature in
even dimensions. It is a scalar function on M constructed from the curvature
tensor and its covariant derivatives, with an invariance property generalizing that

of scalar curvature in dimension two: if once again h = €2Yh, then
(1.4) eYQ=Q+ P,Y.

There has been great progress recently in understanding the ()-curvature and its
geometric meaning in low dimensions and on conformally flat manifolds — see [3]
for an example of recent work. However, in general it remains a rather mysterious
quantity — its definition (given in [2] and reviewed in §3 below) in the general
case is via analytic continuation in the dimension. In dimension two it is given by
Q = R/2, and in dimension four by 6Q = AR + R? — 3|Ric|>.

If n is even, then the operator P,/; has no constant term, i.e. P,l = 0. Tt
therefore follows from Theorem 1 that S(s)1 extends holomorphically across s = n,
so S(n)l = lim,_,, S(s)1 is a well-defined function on M.

Theorem 2. With the notation of Theorem 1, for n even, we have

(1.5) Cnj2Q = S(n)1.

Theorem 2 can be used as an alternative definition of the @)-curvature. The
conformal transformation law (1.4) is an easy consequence of Theorems 1 and 2.
It follows from (1.4), the self-adjointness of P, ;, and the fact that B, /1 = 0, that
[3; @ is a conformal invariant. For (M, [h]) conformally flat, [,, @ is a multiple of
the Euler characteristic x(M).

A specific mathematical object which appeared in the study of the AdS/CFT
correspondence is the renormalized volume of an asymptotically hyperbolic man-
ifold (X, g) — see [5] for a discussion and references. It has also appeared in geo-
metric scattering theory — see §2. A metric A in the conformal class on M uniquely
determines a defining function = and a product identification near 0.X so that g
takes the form g = x7%(dz? + h,), where h, is a one-parameter family of metrics
on M with hy = h. The renormalized volume is defined as the finite part in the
expansion of vol,({z > €}) as ¢ — 0. For asymptotically Einstein metrics the
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expansions take a special form
voly({z > €}) = coe " + a6 "2+ -+ cpr€ !+ V 4 0(1)

for n odd,
(1.6)
vol,({z > €}) = cope ™ + coe "2+ -+ + ¢, 96 2+ Llog(1/e) + V + o(1)

for n even.

It turns out that for asymptotically Einstein metrics g, V is independent of the
conformal representative h on the boundary at infinity when n is odd, and L is
independent of the conformal representative when n is even. The dependence of
V on the choice of h for n even is the so-called holographic anomaly — see [11],[5].
Anderson [1] has recently identified V' when n = 3. In an appendix to [21], Epstein
shows that for conformally compact hyperbolic manifolds, the invariants L for n
even and V for n odd are each multiples of x(X).

Using the connection with the scattering matrix, we are able to identify L in
terms of the Q)-curvature:

Theorem 3. Let n be even and let L be defined by (1.6). Then

(17) L= 2cn/2/ Qu
M

where ¢y is defined in (1.3).

We should stress that despite the fact that the scattering matrix is a global
object, in some sense our results are all formal Taylor series statements at the
boundary of X. In fact, it is possible to give direct proofs of the self-adjointness of
the P’s and of Theorem 3 based on the same ideas but which avoid the analytic
continuation via the scattering matrix. It is nevertheless worthwhile to proceed
with the full scattering theory: as a byproduct, this allows us to clarify certain
confusing issues about the infinite rank poles of the scattering matrix at s =
n/2+k/2, k € N.

In the remaining two sections we will describe scattering theory on conformally
compact manifolds and the relevant aspects of conformal geometry.

2. SCATTERING THEORY

To introduce scattering theory in the context of our work, it is best to start with
the traditional presentation from any basic text in quantum mechanics. Thus we
will consider scattering on a half line, X = [0,00) with a compactly supported
real valued potential V' € L (X;R). The quantum Hamiltonian is given by

comp
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H = —02 4+ V(y) and we impose, say, the Dirichlet boundary condition at y = 0.
We are interested in the properties of generalized eigenfunctions at energies —s:

(H +s*)u(y) =0, u(0)=0,
which for large values of y satisfy
(2.1) u(y) = A(s)e®™ + B(s)e ™.

For s € iR, consideration of the Wronskian of u and @ shows that | A(s)|? = | B(s)|?.
Normalizing, we define the scattering matrix, S(s) (which in this case is a one-by-
one matrix!) by
B(s)
S(s) = :

(s) As)
This defines a meromorphic function of s € C. The definition shows that S(s) =
S(—s)~! and that for s € iR, S(s)* = S(s)~*. Hence for all s we have

(2.2) S(=5)"=8(s)"t, S(5)"=5(s),
so that, in particular, S(s) is self-adjoint for s real. When V' is compactly supported
then L2-eigenvalues of H, E < 0, correspond to the poles of S(s), £ = —s?,

Re s > 0. This follows easily from (2.1) and self-adjointness of H. The poles of S
for Re s < 0 correspond to resonances — see [24].

When V is not compactly supported, then under relatively mild assumptions
we still have the scattering matrix for s € 4R but its meromorphic continuation
becomes very sensitive to the behaviour of V' at infinity. The first physical case in
which these difficulties® occurred was that of Yukawa potential, V (y) = e7?.

We can study the Yukawa potential scattering using simple regular singular point
analysis, not unlike what one encounters in the study of the free hyperbolic space.
We start by making a change of variables:

r=e¢V, H+s=—(20,)"+z+s*, X=(0,1].
Note that the definition of the scattering matrix in the new variables is
23) (H+s*)u(z) =0, u(l)=0, sciR,
u(z) =2+ S(s)z°+ O(z), = —0.
We obtain u(z) from the two solutions of (H + s?)G = 0:

(2.4) Gyilz,s) = z** iji(s)xﬂ' , bE(s) =[jIT(E2s+ 5 +1)] .

2This is potentially rather confusing. The “false” poles of the scattering matrix discussed
below almost led Heisenberg to abandoning his S-matrix formalism, until a clear explanation
was provided by Jost — see [20].
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These are independent provided 2s ¢ N. The scattering matrix is obtained by
finding a combination matching the boundary conditions:

G (Lab(s)
) = G T oy (5)

For k € N, G, (z,k/2) = G_(z,k/2) and by (k/2) # 0, by (k/2) = 0. Hence S(s)
has a simple pole at s = k/2, k € N.
Another independent solution for s = k/2 is obtained by taking

0s(G_(x,8) — Gy (,5))|s=k/2

x_g (i 8sb;(k/2)ﬂ?j _ Qb;(k/2)xk logx + O(:ck)> )

and dividing by 0,b; (k/2) gives us a solution with the prescribed leading part, as
in (2.3):

(2.5) upjo(w) = 272 4o+ ppjoatlogx + O(24/?).
Comparison of the definition of the scattering matrix with the expansions gives
(2.6) Prj2 = 2Res ;2 S(s),

where py/; appears in (2.5).

Comparison of this elementary discussion with the way in which the invariant
operators Py are formulated in §3 provides motivation for Theorem 1. To make
this clear we now move to the geometric setting.

The class of asymptotically hyperbolic manifolds, (X, g), comes with a well devel-
oped scattering theory, which originated in the study of infinite volume hyperbolic
quotients T\H"*! by Patterson, Lax-Phillips, Agmon, Guillopé, Perry and others
— see [22], and references given there.

In the general setting the crucial result was obtained by Mazzeo-Melrose [17]:
the resolvent

Ry(s) = (Ag = s(n—s)) ",

continues meromorphically from Res > n to C, with only real poles in Res >
n/2,s # n/2, corresponding to eigenvalues s(n — s) of A,. This was done con-
structively so that the structure of R,(s) became well understood, as will be briefly
reviewed below. The work of Mazzeo [15], [16] provided a description of the map-
ping properties of R,, and of the asymptotic expansions of the solutions of the
eigen-equation. The characteristic exponents are s,n — s; one concludes that when
the difference 2s — n is not an integer, regular solutions of

(2.7) [Ay—s(n—s)lu=0
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have the form
(2.8) u=x"""A+z"A

with A, A" € C*°(X). As we shall see below, for such s satisfying also Res > n/2
and s(n — s) ¢ spec(4y), the scattering matrix S(s) is the operator which maps
Alox — A'ax.

Scattering theoretical consequences of the resolvent construction were sketched
in [18],[10], and carried out in [12] (both [10] and [12] had different specific goals).
The starting point here is the pairing formula on the unitarity axis, the analogue
in this setting of Green’s identity: let C>(X) denote functions vanishing to infinite
order at 0X, then for Res = n/2, if uy, us satisfy

(A, — s(n — 8))u; = 1; € C=(X),

u; = 2" *a; +2'af +O(@"*Y), af € C*(0X),
then

(2.9) / (u1Te — r11s) dvy = (25 — n)/ (ayay — afay) duy,
X ax

where, since we chose the defining function of 0X, z, we have a natural choice
in the conformal class, h. To have the coefficients a; invariantly defined we can
introduce density bundles of [19], |[N*0X |*, which keep track of changes of the
defining function, or equivalently of the choice of the metric in the conformal
class®: somewhat informally,

f€C®(0X,|N"OX|°) <= f=aldz|’, a € C®(0X).
Using the resolvent and its mapping properties we can construct a holomorphic
family of Poisson operators, for s with Res > n/2, s(n — s) ¢ spec(4,), having
the properties:
P(s) : C®(0X,|N*0X|"™*) — C™(X),
(Ag —s(n—s5))P(s)f =0, f=aldz["",
P(s)f =az"* 4+ 0(z"%), Res >n/2,
P(s)f = az"™* + d'z* + O(z"/**Y), o € C®(0X), Res =n/2.

The pairing formula (2.9) gives an expression for the kernel of P(s) in terms of
that of the resolvent, much in the same spirit as in the classical derivation of the
Poisson kernel from the Green function:

(2.11) P(s) = (2s = n)z" "Ry(8)|ax=0,

where 2’ denotes the defining function in the integration variables.

(2.10)

3These bundles are equivalent to the density bundles of conformal geometry — see §3.
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The scattering matrix, S(s), is defined as in the one dimensional case (2.3)
(corresponding to n = 0), as the map taking a to o’ in (2.10). It now turns out to
have a meromorphic extension to C as a family of pseudo-differential operators:

S(s) € UERes=(9X; [N*OX "%, [N*OX ),

relating the incoming and outgoing fields.

,8*0.7}/

B*0Y
FIGURE 1. The boundary faces of the blown-up space X xy X. The
variable Y stands for the defining function of the diagonal of in
0X x 0X,Y =y —1/, in local coordinates.

Following [10] we can give an elegant description of the structure of the scat-
tering matrix using the Mazzeo-Melrose construction. That implies the pseudo-
differential character of the scattering operator and describes the structure of the
non-spectral poles in Re s > n/2. To do this we recall the blow-down map of [17]:

B : XxgX — X xX,

where X Xy X is the blow-up of X x X along the boundary diagonal, illustrated
in Fig.1. The restriction to the boundary gives us a blow-up of the diagonal in
0X x 0X with the corresponding blow-down map:

By : TNB — 08X x 0X,

where T" and B are the top and bottom faces in the blow-up, as shown in Fig.1.
In these terms we obtain, for the kernels of the operators, essentially from (2.11),

(2.12) S(s) = (25 — n)(Bo). (ﬁ* (xfsx'—SRg(s)) |m) .

Roughly speaking, the results of [17] show that away from the lift of the diagonal
to X x¢ X, the lift of the kernel of the resolvent is a smooth function multiplied by
p*p'® where p, p' are the defining functions of the top and bottom faces respectively.
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This analysis gives a precise description of scattering matrices:
S(s) is meromorphic in C,
S(5)*=S5(s), S(s)S(n—s)=1d,
[(n/2 - s)
I(s—n/2)"

In addition to the spectral poles, S(s) has poles of infinite rank at s = n/2 + k,
and possibly at s = n/2+ k —1/2, k € N. These are the values of s for which
logarithmic terms may enter in (2.8). The poles at s =n/2+k —1/2 do not occur
for Poincaré metrics.

When n = 1, the renormalized volume V in (1.6) appears in the asymptotics
of the scattering phase, which is a natural object obtained from the scattering
matrix — see [10]. It is expected that analogous expansions should be valid in
higher dimensions. In that direction, Joshi and S4 Barreto [13] showed that the
coefficient of the leading singularity of the “O-trace” of the wave group on an
asymptotically hyperbolic manifold is essentially given by V.

We conclude with the comment that the scattering theory still goes through
if X has additional boundary components near which ¢ is smooth and on which
one imposes elliptic boundary conditions. Therefore, for any conformal manifold
(M, [h]), we can take X = M x [0,1], with a metric which is asymptotically
Einstein at x = 0 and smooth at © = 1. For Theorem 2 we choose the Neumann
boundary condition so that u = 1 is a solution for s = n. Alternately, we can take
g to be asymptotically Einstein with conformal infinity (M, [h]) at each boundary
component.

(As—n/Z).

o(S(s)) =2"7* h

3. CONFORMAL GEOMETRY

Branson’s ()-curvature is defined in terms of the invariant operators P, which
were constructed in [6] via the ambient metric of [4]. We begin by reviewing the
constructions of these objects, then discuss how the P, may be reformulated in
terms of Poincaré metrics, and conclude with a brief indication of the proofs of
Theorems 1, 2, and 3.

The metric bundle of (M,[h]) is the ray subbundle G C S*T*M of multiples
of the metric: if h is a representative metric, then the fiber of G over p € M is
{t?®h(p) : t > 0}. Denote by m : G — M the natural projection, and by hy the
tautological symmetric 2-tensor on G defined for (p,h) € G and X,Y € T, G
by ho(X,Y) = h(m.X,n.Y). There are dilations d; : G — G for s > 0 given by
ds(p, h) = (p, s*h), and we have 0:hg = s?hy. Denote by T the infinitesimal dilation
vector field T = %55|S:1. Define the ambient space G = G x (—1,1). Identify G

with its image under the inclusion ¢ : G — G given by (g) = (9,0) for g € G. The
dilations 05 and infinitesimal generator 7" extend naturally to G.
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The ambient metric g is a Lorentzian metric on G which satisfies the initial con-
dition ¢*§ = hyg, is homogeneous in the sense that 47§ = s%g, and is an asymptotic
solution of Ric(g) = 0 along G. For n odd, these conditions uniquely determine
a formal power series expansion for § up to diffeomorphism, but for n even and
n > 2, a formal power series solution exists in general only to order n/2.

The space of conformal densities of weight w € C is

£(w) = C*(M;G?),

where by abuse of notation we have denoted by G also the line bundle associated
to the ray bundle defined above. There is a canonical isomorphism

E(w) ~C®(M,|N*0X|™"),

in the notation of the previous section. The invariance property (1.2) can be
reformulated as the statement that P, is an invariantly defined operator

Py :E(—n/2+ k) = E(—n/2 — k).

An element of £(w) can be regarded as a homogeneous function of degree w on
G. One of the ways that Py is derived in [6] is as the obstruction to extending
f € E(-=n/2 + k) to a smooth function ' on G, such that F is homogeneous of
degree —n/2 + k and satisfies AF = 0, where A denotes the Laplacian in the
metric §. The Taylor expansion of F' is formally determined to order £ — 1, but
there is an obstruction at order k£ which defines the operator Pj. Equivalently, one
may include a logarithmic term at this order in the expansion for F', and Py f is a
multiple of the coefficient of this log term, normalized so that the principal part of
P, agrees with that of A*. Note that if n is even, then P, /2 18 invariantly defined
from £(0) to £(—n), that is, from C*(M) to the space of volume densities. Since
the constant function 1 € £(0) has a smooth homogeneous extension annihilated
by A, we have P21 =0.

We next define the Q-curvature as in [2]. For this discussion we will denote
by P, the operator P in dimension n. Fix £k € N. One consequence of the
construction above is that the operator P, is natural in the strong sense that
P, . f may be written as a linear combination of complete contractions of products
of covariant derivatives of the curvature tensor of a representative for the conformal
structure with covariant derivatives of f, with coefficients which are rational in the
dimension n. Also, the zeroth order term of P, ; may be written as (n/2 — k)Qyx
for a scalar Riemannian invariant @), with coefficients which are rational in n
and regular at n = 2k. (This is consistent with the fact mentioned above that
Py, 21 = 0.) The Q-curvature in even dimension n is then defined as Q = Qy /2.

Branson also derived the transformation law (1.4) by analytic continuation in
the dimension. Again fix k. Apply (1.2) to the function 1 to obtain

(1) (/2= BTG = (12— K)Qup + Ple™HT — 1),
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This relation holds for any metric in dimension n > 2k. Given a fixed metric h° in
dimension 2k, we apply (3.1), taking h = h® + hE, where h¥ denotes the Euclidean
metric in R"~2* and taking T to be independent of the additional R*~%* variables.
Since the curvature of h can be identified with that of h°, we deduce that (3.1)
holds for a fixed metric in dimension 2k, where now n € N, n > 2k is a formal
parameter. However, since the coefficients of @), x and P, are rational in n, we
may divide by n/2 — k and continue analytically to n = 2k to conclude that for n
even we have (1.4).

In order to make the connection with scattering theory, it is necessary to re-
formulate the operators Py in terms of Poincaré metrics. As described in [4], the
formal Poincaré metric associated to a conformal structure can be constructed from
the ambient metric and vice versa; the two constructions are equivalent. In the

ambient space G, the equation g(T,T) = —1 defines a hypersurface X which lies
on one side of G and which intersects exactly once each dilation orbit on this side

of G. The Poincaré metric g is the pullback to X of §. The equation Ric(g) = 0 is
equivalent to Ric(g) = —ng. To see this, one uses the fact from [4] that in suitable
coordinates on (G, the ambient metric takes the form

(3.2) g = 2tdtdp+ 2pdt* + 2 Y  hi;(y, p)dy‘dy’.
i,j=1

Here p is a defining function for G C G, t is homogeneous of degree 1 with respect
to the dilations on G, and the ¥’ arise from a coordinate system on M. In these

coordinates we have T = t0;, so X= {2pt> = —1}. Introduce a new variable
x = y/—2p and set s = xt so that X= {s = 1}. A straightforward calculation
shows that (3.2) becomes

(3.3) g =s’g—ds%

where

(3.4) g = 2[hij(y, 7)dy'dy’ + dz?

and hi;(y,z) = hi;j(y,p). The equivalence of Ric(§) = 0 and Ric(g) = —ng is
a straightforward calculation given the relationship (3.3) (see Proposition 5.1 of
[7]). Therefore, g is asymptotically Einstein and (3.4) shows that g is conformally
compact with conformal infinity (M, [h]). Note that h;;(y,z) is even in z; this
is the asymptotic evenness condition referred to in §1. If n is odd, the Taylor
expansion of h;;(y, z) is uniquely determined if we impose this evenness condition;
otherwise not.

Rewrite (3.3) as § = s?(g — ds?/s?) and transform under a conformal change to
obtain A = s72[A, + (s9,)% +nsd,]. If F is homogeneous of degree w, we therefore
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have
AF = s %A, + w(w +n)]F.

Let u=F |)o( We may regard u as a function homogeneous of degree 0 and write

F = s"u = t“z"u. As described above, the operator P, arises as the obstruction
to finding a smooth F solving AF = 0 and prescribed at p = 0. In order for F
to be smooth up to p = 0, we require therefore that z“u be smooth up to z = 0
(and be even in z). Taking w = —n/2 + k, we see that P, may be characterized
as the normalized obstruction operator for the problem of finding a function u

on X solving (A, — (n/2 — k)(n/2 + k))u = 0 with z7/2 ¥y smooth in X and
prescribed at x = 0. As above, this characterization may be reformulated in terms
the coefficient of the log term in a nonsmooth formal solution .

As described in §2, the scattering matrix S(s) is defined in terms of the behaviour
at {x = 0} of solutions of (2.7). Observe that if s = n/2 + k, this is precisely
the equation which arose above in the characterization of Py. If Res > n/2
and s ¢ n/2 + N, then given f = a|dz|"* € £(s — n) with a € C*(M), one
can construct a formal solution u to (2.7) with 2*~"« smooth and equal to a at
x = 0. The coefficients in the expansion of this solution are differential operators
on M applied to a, depending on s. Certain of these coefficients have poles for
s = n/2 + k corresponding to the fact that the formal solution breaks down for
such s. On the other hand, according to (2.10), u = P(s)f is a solution which
varies holomorphically in s right across s = n/2 + k. By comparing with (2.8),
one can derive that the poles in the scattering matrix must cancel the poles in the
formal solution, leading to Theorem 1. Theorem 2 is proved by a similar analysis
using the fact that P(n)l = 1.

Theorem 3 follows from a more complicated version of the boundary pairing
(2.9), on the real axis and involving taking finite parts. More precisely, we have

Proposition. Suppose s € R, s > n/2 and s ¢ {n/2+k : k € N}, s(n—s) ¢
spec(Ay). Let fi1, fo € E(s —n) be real-valued and set u; = P(s)f;, j =1,2. Then

(3.5) pf /> [({du, dus) — s(n — s)ugus]dv, = —n/M f15(8) faduy, .

Here, pf denotes the finite part of the divergent integral.

A special case of (3.5) was discussed by Witten [23] in a physical context, for
X = H**!, and using explicit formula for the Poisson operator and the scattering
matrix. Our project originated from an attempt to understand that discussion in
the general setting. Theorem 3 follows upon taking f; = fo = 1 - |dz|™* in (3.5)
and letting s — n. By Theorem 2, the right hand side converges to —nc,/2 [ Q.
A rather intricate analysis shows that the left hand side converges to —nL/2.
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