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1 Introduction

In 1956 Mark Kac [5] invented a microscopic, linear model, from which the nonlinear Boltz-
mann equation describing the evolution of the velocity distribution for a system of colliding
particles could be rigorously derived. Consider N particles in one dimension that interact
through random collisions. We consider the spatially homogeneous case only, i.e., the case
where the particles are uniformly distributed in configuration space, since our focus, as was
Kac’s, is on the collision mechanism.

The collisions in the model are binary. When the i-th and j-th particles collide, their
pre–collisional velocities vi and vj are transformed into the post collisional velocities

v∗i (θ) = cos(θ)vi + sin(θ)vj , v∗j (θ) = −sin(θ)vi + cos(θ)vj (1)

for some value of θ, the “scattering angle”. Clearly, the total kinetic energy of these N
particles, i.e.,

~v2 =
N∑

i=1

v2
i = E (2)

is conserved by these collisions. Denote the sphere defined by (2) by SN−1(
√

E). Notice
that the total momentum is not conserved. In one dimension, both momentum and energy
conservation would require that either the particles keep their momenta or exchange them,
a process that will certainly not be ergodic on SN−1(

√
E).

Kac’s model can now be described as follows. Let f be a function in L2(SN−1(
√

E)) and
define the operator

Qf(~v) =
1

2π

(
N
2

) ∑
i<j

∫ 2π

0

f(v1, · · · , v∗i (θ), · · · , v∗j (θ), · · · , vN)dθ . (3)
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It is easily checked that this operator is selfadjoint on L2(SN−1(
√

E)), i.e., (f, Qg) =
(Qf, g) where (·, ·) denotes the inner product in L2(SN−1(

√
E)).

The following expression describes the random collision of these particles as a time evo-
lution of the initial probability density f0 ∈ L2(SN−1(

√
E))

f(~v, t) =
[
e−Nt(I−Q)f0

]
(~v, t) . (4)

The assumptions underlying this model will be discussed in Section 2.
The connection beteen this N–particle model and kinetic theory; i.e., with the Boltzmann

equation, stems from what Kac called propagation of chaos: It is fairly obvious that if the
initial condition f0 in (4) is the product of its marginals, this property is not shared by
f(·, t). However, this is almost true in the limit of infinitely many particles. More precisely,
set E = NT and for any probability distribution f onSN−1(

√
E), define the single particle

marginal

fN
1 (v1) =

∫
v2
2+···+v2

N=NT−v2
1

f(~v)d(N−2)S (5)

and more generally, define the k-particle marginal

fN
1 (v1, · · · , vk) =

∫
v2

k+1+···+v2
N=NT−v2

1−···−v2
k

f(~v)d(N−2)S (6)

for all fixed finite k. The following definition is due to Kac. A sequence of probability
distributions gN(v1, · · · , vN) has the Boltzmann Property if

lim
N→∞

gN
k (v1, · · · , vk) = Πk

j=1 lim
N→∞

gN
1 (vj) . (7)

Actually, as Maxwell and Boltzmann pointed out, fN
1 (v1, t) (for many purposes) contains

all of the physically relevant information of f(~v, t), where f(~v, t) is given by (4). Now it
follows from (4) that

∂

∂t
fN

1 (v1, t) =
[
LfN

2

]
(v1, t) (8)

for some linear operator L. That is, one doesn’t have an autonomous evolution equation for
the marginal fN

1 (v1, t). But propagation of the Boltzmann property would imply that

fN
2 (v, w, t) = fN

1 (v, t)fN
1 (w, t) (9)

which does render the evolution equation for fN
1 (v1, t) autonomous, but non–linear.

The key fact, discovered by Kac is that the Boltzmann property is in fact preserved under
the timeevolution (4). Thus one has the theorem:

THEOREM 1.1 (Propagation of Chaos). Suppose a sequence of distributions
gN(v1 · · · , vN) has the Boltzmann Property, and consider, for some fixed t, its timeevolved
sequence gN(v1 · · · , vN , t). Then gN(v1 · · · , vN , t) has also the Boltzmann property and more-
over the limit of the singe particle marginal g∞1 (v1, t) satisfies the following caricature of the
Boltzmann equation

∂
∂t

f(v, t) =

1
π

∫∞
−∞ dw

∫ 2π

0
dθf(v cos θ + w sin θ, t)f(−v sin θ + w cos θ, t) (10)

−2f(v, t)
∫∞
−∞ dwf(w, t) .
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A very simple, but illuminating example is to consider the sequence of probability dis-
tributions cN consisting of the constant function. It has been known at least since Maxwell
that

lim
N→∞

cN(v1) =
1√
2πT

e−
v2
1

2T = M(v1) (11)

recalling that we set E = NT . Similarly

lim
N→∞

cN(v1, . . . , vk) =

(
1√
2πT

)k

e−
∑k

i=1 v2
i /(2T ) = Πk

i=1M(vi) (12)

Thus, the constant function is related to the Maxwell equilibrium distribution which is
clearly a solution of (10).

For a proof of Theorem 1 we refer the reader to [5] and also to [8] and [6]. From now on,
unless otherwise mentioned, we refer to equation (10) as the Boltzmann equation.

The advantages and disadvantages of the Boltzmann equation description and the N par-
ticle description are clear. In the latter case, one has to deal with a large number of particles
while the time evolution is linear. The Boltzmann equation evolves functions of a single
variable only, but with a complicated nonlinearity. While Kac’s model is not derived from
physical first principles, it is so far the simplest multiparticle dynamics rigorously connected
with the Boltzmann equation, and one can regard it, as did Kac, as more fundamental since
it describes the evolution of multiparticle correlations.

There have been a number of papers concerning the approach to equlibrium of solutions
of (10). After the work of McKean [8] and Gruenbaum [7], it was shown in [2] that for a
large class of initial conditions

‖f(·, t)−M(v1)‖L1 ≤ Cεe
−(1−ε)λ1t (13)

for any ε > 0. The constant λ1 = 1/2 is the gap of the linearized collision operator. This
operator is quite easily obtained by perturbing the solution of the Bolzmann equation about
the Maxwellian, i.e., set

f(v) = M(v)(1 + εh(v)) (14)

and expand.
It is reasonable to expect that the resulting linear operator should describe the solution

for the Boltzmann equation reasonably well for initial conditions that are sufficiently close to
the equilibrium. Thus the approach to equilibrium should be governed by the first nonzero
eigenvalue λ1 of this operator which is 1/2. Thus, the result of [2] is in some sense optimal.
Not only is the linearized Boltzmann equation a good approximation close to the equilibrium
but reasonable initial condition get driven close to the equilibrium with about the same rate.

It is therefore natural to investigate this question for the Kac model. In what sense
should we study the approach to equilibrium? From a functional analysis point of view it
is natural to consider the L2 norm. It is easy to see that the semigroup (4) is ergodic, i.e.,
the largest eigenvalue of Q is one, it is nondegenerate and its eigenfuntion is the constant
function. Thus, any initial condition will tend to this equilibrium state. Using the spectral
theorem the rate of this approach is given by

‖φ(t)− φ‖2 ≤ e−λ2t‖φ(0)− φ‖2 (15)
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where φ is the average of φ (which is independent of t) and λ2 is the smallest nonzero
eigenvalues of the operator N(I −Q), also called the gap of NQ.

The problem is now that the gap λ2 is a function of N . It was conjectured by Kac that
this function has a limit as N →∞ which is strictly positive. In section 3 we shall compute
this number explicitely and show that it coincides with λ1. Thus we have in the limit as
N →∞

THEOREM 1.2 (Approach to equilibrium). For any initial condition φ in
L2(SN−1(

√
E)) we have that

‖φ(t)− φ‖2 ≤ e−t/2‖φ(0)− φ‖2 . (16)

In particular the rate does not depend on the energy and the particle number.

There were a number of results in this direction. In particular, Elise Janvresse [4] was the
first to prove Kac’s conjecture. She did so using using H.T. Yau’s Martingale method. This
method involves an induction on N , as does ours, but the nature of the induction is rather
different and requires rather complicated estimates which preclude an quantitative estimate
on the gap. An earlier result is due to Diaconis and Saloff–Coste [3], who proved that the
second lowest eigenvalue of I − Q is bounded below by c/N3. In [3] it was also announced
that Maslin has computed the gap precisely (as we do) using representation theory.

In the next section we give a brief description of Kac’s model. In section 3 we give a short
proof of Theorem 2 and in section 4 we mention some further results that can be proved by
our methods such as random collision of Maxwellian molecules.

2 The Kac model

Kac’s model cannot be considered as a fundamental model in that it has not been de-
rived from first principles. It’s justification is a–posteriori through the connection with the
Boltzmann equation, as described in Theorem 1.1. However, it is enlightening to give an
explanation of some of the heuristics that motivate the introduction of this model.

We consider N particles moving in one dimension undergoing random collisions. Suppose
that at a given moment these particles have velocity ~v = (v1, · · · , vN). We pick any pair of
particles at random, say (i, j) with equal probability. Then their velocities after the collision
are given by (1) with equal probability for all angles θ. More formally, consider a test function
Ψ(~v) and its expectation value

E[Ψ](~v) =
1(
N
2

) ∑
i<j

1

2π

∫ 2π

0

Ψ(v1, · · · , v∗i (θ), · · · , v∗j (θ), · · · , vN)dθ = QΨ(~v) (17)

This is the expected value of Ψ after one collision, for given velocities ~v.
Note that three particle collisions are not considered in this model although their contri-

bution to equilibration may be significant in reality.
It is now fairly straightforward to calculate the probabilities for ~v(k), the velocities after

k collisions. Certainly

E[Ψ(~v(k))] = E [E{Ψ(~v)|~v(k − 1) = ~v}] = E [QΨ(~v(k − 1))] , (18)
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i.e., we take first the expection given that the random variable ~v(k − 1) = ~v and then the
expectation value with respect to ~v(k − 1). Thus

E[Ψ(~v(k))] = E
[
QkΨ(~v)

]
. (19)

If we denote the probability distribution of ~v(k) by fk(~v) we obtain that∫
S(N−1)

fk(~v)Ψ(~v)d(N−1)S =

∫
S(N−1)

f0(~v)QkΨ(~v)d(N−1)S , (20)

and hence, since Ψ is arbitrary,
fk(~v) = Qkf0(~v) . (21)

A further assumption involves the distribution of the collisions in time. We assume first
of all that each particle interacts with an environment that consists of other particles whose
motions are independent of the given particle. This is of course not the case, but does become
more and more reasonable as N increases.

Now assume that the collision times for a single particle interacting with its environment
are exponentially distributed, i.e., the waiting time Tk for the kth particle between any two
consecutive collisions is a random variable whose distribution is given by

P [Tk > t] = e−t/τ . (22)

The time τ is the first average collision time for a particle interacting with a random
environment. Under the assumptions made above, the Tk are independently and identically
distributed, and hence if T denotes the waiting time for any collision to occur,

P [T > t] = P [min{T1, . . . , TN} > t] = e−Nt/τ . (23)

That is, the rate at which collisions occur will be proportional to N .
Thus, the probability of having velocities ~v after exactly k collisions in the time interval

[0, t] is given by
e−kNt/τ tk

k!τ k
Qkf0(~v) , (24)

and finally the probability of having velocities ~v after any number of collisions is

∞∑
k=0

e−kNt/τ tk

k!τ k
Qkf0(~v) = e−Nt(I−Q)/τf0(~v) . (25)

From now on we set τ = 1.

3 Approach to equilibrium

In this section we sketch a proof of Theorem 2. In order to avoid technicalities, we restrict
ourselves to the physically interesting case where the probability distributions are symmetric
functions of the particle labels. For the general case we refer the reader to [1].
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THEOREM 3.1 (The gap for Q). The gap ∆N of Q is given by

∆N =
N + 2

2N(N − 1)
, (26)

and the corresponding eigenfunction, which is unique up to a constant multiple, is given by

u(~v) =
N∑

j=1

|vj|4 −
3

N(N + 2)
. (27)

Certainly, this result gives as N →∞ the second eigenvalue for the linearized Boltzmann
equation. Moreover, if one sets E = NT as before and if one normalizes u, its marginal
tends to the corresponding eigenfunction, i.e., the fourth order Hermite polynomial times a
Gaussian as N →∞.

It is easy to see that the spectrum of Q is independent of E and hence we choose E = 1.
It is a fairly simple calculation to verfy that the function u is indeed an eigenfunction of
Q with the eigenvalue 1 −∆N . This eigenfuction is special in the sense that it is a sum of
functions of a single variable. Most of the other eigenfunctions are not of this type.

Consider the operator
P1 : L2(SN−1) → L2(SN−1) (28)

given by

P1f(~v) =
1

|SN−2(
√

1− v2
1)|1/2

∫
v2
2+···+v2

N=1−v2
1

f(~v)d(N−2)S (29)

and in a similar fashion we define Pk. Clearly P 2
k = Pk and P ∗

k = Pk.

LEMMA 3.2. Denote the gap of the operator

P =
1

N

N∑
j=1

Pj (30)

by ΛN . Then
∆N ≥ ∆N−1ΛN (31)

Proof. Define the operators

Pi,jf(~v) =
1

2π

∫ 2π

0

f(v1, · · · , v∗i (θ), · · · , v∗j (θ), · · · , vN)dθ (32)

and note that

Q =
1(
N
2

) ∑
i<j

Pi,j . (33)

Further, consider

Qk =
1(

N − 1
2

) ∑
i<j,i,j 6=k

Pi,j (34)

and note that

Q =
1

N
Qk . (35)
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For any function f ∈ L2(SN−1), orthogonal to the constant function we compute

(f, Qf) =
1

N

N∑
j=1

(f − Pkf, Qk(f − Pkf)) + (f, Pf) . (36)

We have used the fact that PkQk = Pk. The function f − Pkf ∈ L2(SN−2(
√

1− v2
k)) is

orthogonal to the constant function for every value of vk. Since the spectrum of Qk does not
depend on the radius of the sphere SN−2(

√
1− v2

k) it follows from (36) that

1

N

N∑
j=1

(f − Pkf, Qk(f − Pkf)) ≤ (1−∆N−1)
1

N

N∑
j=1

‖f − Pkf‖2 , (37)

and hence
(f, Qf) ≤ (1−∆N−1)‖f‖2 + ∆N−1 (f, Pf) (38)

from which the lemma follows.

Lemma 3.2 reduces the problem to the computation of the gap of the operator P , and this
problem can be reduced to a one dimensional one as lemma 3.4 shows. This one dimensional,
purely geometric problem can be described as follows. Denote by πk the projection πk(~v) =
vk. We consider the Hilbert space H of functions defined on the interval [−1, 1] given by the
inner product

< f, g >= (f ◦ π1, g ◦ π1) , (39)

and the operator K defined by the bilinear form

< f, Kg >= (f ◦ π1, g ◦ π2) . (40)

Clearly, the largest eigenvalue of K is one. It is again easy to see that the eigenvalues of K
do not depend on the radius of the sphere, in particular we can choose it to be NT and let
N →∞. In this limit, the expression (40) tends to the product of the expectation values of
the functions g and f on the real line with respect to the Gaussian function (11). In other
words, the correlation between the random variables π1 and π2 disappears as N →∞. The
second eigenvalue of K the measures how fast this correlation tends to zero as N → ∞. It
is this number that ensures that the gap of Q does not decay faster than 1/N .

There are various ways to analyze the operator K, but the following expression is most
convenient

Kg(v) =
|SN−3|
|SN−2|

∫ π

0

g
(√

1− v2 cos θ
)

sinN−3 θdθ . (41)

The lemma below describes all the eigenvalues.

LEMMA 3.3. The operator K maps polynomials of degree n to polynomials of degree not
larger than n and hence the eigenfunctions are polynomials of degree n with corresponding
eigenvalues αn. For n odd, αn = 0, and for n = 2k the eigenvalues are given by the formula

α2k = (−1)k |SN−3|
|SN−2|

∫ π

0

(1− sin2 θ)k sinN−3 θdθ . (42)

In particular |α2(k+1)| < |α2k| and

α2 = − 1

N − 1
and α4 =

3

N2 − 1
. (43)
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Proof. We only sketch the proof of this easy lemma. The first two assertions are obvious.
Moreover the operator K maps even onto even functions and odd functions to zero.

Let g2k be an even eigenfunction. Then, after suitable normalization, we can write this
polynomial as g2k = v2k + h(v) where h(v) is an even polynomial of degree at most 2(k− 1).
Next, α2k(v

2k+h(v)) = Kg2k = Kv2k+Kh(v), where Kh(v) has order not more than 2(k−1).
The formula for the nonzero eigenvalues follows, immediately from the formula of K since
Kv2k = α2kv

2k+ lower order where α2k is given by the formula (43) . The monotonicity
follows immediately from (42).

The next lemma computes the eigenvalues of P in terms of the eigenvalues of K.

LEMMA 3.4. If λ is an eigenvalue of P then

1− λ =
N − 1

N
(1− µ) , (44)

where µ is an eigenvalue of K. In particular the gap of P equals the gap of K multiplied by
(N − 1)/N .

Proof. Let f be an eigenfunction of P with eigenvalue λ. Then

1

N

N∑
j=1

Pjf = λf (45)

and hence f is of the form

f(~v) =
N∑

j=1

g(vj) . (46)

Note that it is here that we assume that f is symmetric in the particle labels. Applying the
operator P to both sides of (45) and rearranging terms we obtain using (46) that

N∑
j=1

[
N − 1

N
(Kg)(vj) + (

1

N
− λ)g(vj)

]
= 0 . (47)

One is tempted to deduce (44) from (47) directly. However this is not valid, since single
variable functions are not independent on the sphere.

Applying the operator P1 once more to both sides of (47) leeds to[
K +

N

N − 1

(
1

N
− λ

)] [
K +

1

N − 1

]
g(v1) = 0 (48)

It follows from the Lemma 3.3 that the only solution of the equation[
K +

1

N − 1

]
g = 0

is given by the function g(v) = v2 − const. with the constant such that the function g is
orthogonal to the constant function in H. This implies that f(~v) =

∑N
j=1(v

2
j − const.) ≡ 0.

Thus, we can invert K + 1
N−1

and obtain for g the equation[
K +

N

N − 1

(
1

N
− λ

)]
g = 0 (49)

A simple calculation confirms the lemma.
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Proof of Theorem 3.1. Combining Lemma 3.2, Lemma 3.3 and Lemma 3.4 we learn that

∆N ≥ N − 1

N
∆N−1(1− α4) . (50)

Each of the operators Pi,j is a projection and hence ∆2 = 1. This together with (50)
yields a simple recursion relation that can easily be solved to yield (26) . To see that the
eigenfunction is unique in the class of functions that are symmetric in the particle labels
one notes that any eigenfunction for the second largest eigenvalue of Q must also be an
eigenfunction for the second largest eigenvalue of P . But those are precisely determined by
α4 and the corresponding eigenfunction

v4 − 3

N2(N + 2)
,

which yields the theorem.

4 Extension to Maxwellian molecules

A closer scrutiny of the above proof shows that it is flexible enough to cover more intricate,
models.

Consider again the Kac model, but this time assume that the distribution of the scattering
angle is not uniform but given by the probability measure ρ(θ). Thus the operator in (3) is
replaced by

Qf(~v) =
1(
N
2

) ∑
i<j

∫ 2π

0

ρ(θ)f(v1, · · · , v∗i (θ), · · · , v∗j (θ), · · · , vN)dθ . (51)

In order that this operator be selfadjoint we require that ρ(θ) = ρ(−θ).
The interesting fact is that equation (50) still holds, as can easily be seen. Thus, after

solving the recursion, we obtaing immediately that

N∆N ≥ N + 2

4(N − 1)
2∆2 . (52)

The only place where any detail about the collisions enters is in the computation of ∆2 which
is given by the second largest Fourier coefficient of ρ. Thus, Kac’s conjecture also holds in
this case.

Another, more interesting model is the following three dimensional one which is fairly
close to a realistic model known as Maxwellian molecules. Consider again randomly colliding
particles in three dimensions. The scattering map is now given by

v∗i (ω) = vi − ω · (vi − vj)ω v∗j (ω) = vj + ω · (vi − vj)ω , (53)

for ω ∈ S2. Clearly, the total energy and the total momentum are conserved and we set the
total energy equals to E and the total momentum equals to 0. Denote by P the set of all
velocities satisfying the momentum condition. If we set

M3N−4 = S3N−1 ∩ P (54)
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then we can define the Hilbert space L2(M3N−4; d3N−4S) where the measure d3N−4S is the
measure induced from the Lebesgue measure on R3N .

In the same fashion as before we define

Pi,jf(~v) =
1

4π

∫
S2

f(v1, . . . , v
∗
i (ω), . . . , v∗j (ω), . . . , vN)dω , (55)

and

Q =
1(
N
2

) ∑
i<j

Pi,j . (56)

Again this operator has 1 as its largest eigenvalue. Its unique eigenfunction is the constant
function. We can prove [1]

THEOREM 4.1. The gap ∆N of Q satisfies the estimate

∆N ≥ c

N
(57)

for some universal constant c.

The proof of this theorem follows along the same lines as the one for the Kac model, i.e.,
the problem is split into a purely geometric part and a purely dynamic part. The estimates,
however, are more complicated.
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