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On the blow up phenomenon for the critical

nonlinear Schrodinger equation in 1D

Galina Perelman
Centre de Mathématiques
Ecole Polytechnique
F-91128 Palaiseau Cedex

0. INTRODUCTION

Consider the nonlinear Schrodinger equation

(1) “/)t = _1/)3155 - ‘1/)|2p1/)a z €eR

with initial data
Y)4=0 = Yo € H'.

It is well known that for p > 2 the problem has solutions that blow up in finite
time. The case p = 2 marks the transition between the global existence and the
blow up phenomenon. In this paper we study the participation of nonlinear bound
states in singularity formation in the critical case p = 2.

The NLS (1) has an important solution of special form- soliton: e**q(x), where
@o is the “ground state solitary wave”. We consider the Cauchy problem for (1)
with initial data close to a soliton:

Ylt=0 = Yo + Xo,
where x( is small in suitable sense. We show that for a certain class of initial

perturbations the solution ¢ blows up in finite time 7™, admitting the following
asymptotic representation

(2) D(t,z) ~ O () po(A(t)z), ¢ — T,

A(t) ~ (T* =)~ V2 (In | In(T* = )2, p(t) ~ In(T* — &) In |In(T* — ¢)|.

Thus, up to a phase factor the formation of the singularity is self-similar
with a profile given by the ground state. The behavior (2) was predicted in
[FS,KSZ,LPSS1,LPSS2,Ma,SS].

1. PRELIMINARY FACTS AND FORMULATION OF THE RESULT

1.1. The nonlinear equation.
We formulate here the necessary facts about Cauchy problem for the equation

(1.1) ihy = —tae — [Y[*

with initial data in H!.
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Proposition 1.1. The Cauchy problem for equation (1.1) with initial data
¥(0,z) = o(x), o € H' has a unique solution 1 in the space C([0,T*) — H?)

with some T* > 0 and
(i) ¥ satisfies the conservation laws

1
[ et = const, 1) = [ el ~ 5l0l%) = const
(i) if T* < 0o, then ||¢z]|l2 = 00 ast — T* and
[ellz > e(T* — )72
(iii) if H(¢o) < 0 then T* < 0.

Suppose in addition that z1pg € La. Then xy € C([0,T*) — L2) and ¢ satisfies
the pseudo-conformal conservation law

4
/da:\(m + 24t0,)|* — §t2/dx|¢|6 = const.

Equation (1.1) is invariant with respect to transformations:

g bz +dt
1.2 t bt) 12t g (—— ©
(1.2 Y(a,t) = (a+ bt) e )
a b
where w € R, (c d) € SL(2,R).

1.2. Exact blow up solutions. The equation (1.1) has a family of soliton solu-

tions

a2

e Tlpo(z, ), a>0,
where ¢ is a positive even smooth decreasing function satisfying the equation
o2

—Pozz + Z‘pﬂ - QOS = 0.

As |z| — o0, @ ~ goooe_%m.
One has a relation

po(z, ) = (a)1/2 @0(%96),

where po(z) stands for ¢g(x,2). .
Applying transformations (1.2) to the soliton solution e'*¢q(z) one gets a 3-
parameter family of solutions

Do |

(1.3) et =iBW" /4712 (10 (2), 2 = A(t)z,

where u, 8, A are given by

M) = (a+b0)"L, B(t) = —b(a+bt), u(t) = Zicg



Remark that A(t), 5(t), p(t) satisfy the system
AN =8, A8+ B2 =0, A u =1

If b # 0 solution (1.3) blows up in finite time. It is known that equation (1.1)
has no blow-up solutions in the class

{¢ € H'(R), 9|2 < llpoll2},

solutions (1.3) being the only blow-up solutions (up to Galilei invariance) with
minimal mass, see [W1,Me].

1.3. Extended manifold of blow-up solutions. 3-parameter family (1.3)
can be considered as the boundary a = 0 of the 4-parameter family of formal
solutions w(z, o (t)),

w(z,0) = ei“_iﬂz2/4)\1/2g0(z, a), z =Mz,

o= (5X\p0a), AeRy, B, u, a € R Here

(1.4) v(z,a) = Z ak oy, (2)
k=0

is a formal solution of the equation

G,Z2

_(pzz+90_7§0_(ﬁ5:0v

all ¢, being even smooth exponentially decreasing (as |z| — o0o) functions.
w(z,o(t)) is a formal solution of (1.1) if o(¢) satisfies the system

(1.5) AN =6, A28+ 8% =a, A 2u =1, a; =0,

which gives, in particular, A = (d2t? + dit + do) ~Y/2, a = d?/4 — dady. Here d; are
constant.

N
We shall use the notation ¢ (z,a) = 3 aFpr(2),
k=0
N _ g”zwg 16a
P (Zaava)_(2 ¥ (2$, 044).

1.3. Linearization of (1.1) on a soliton. Consider the linearization of (1.1) on
the soliton e g (z):

24t

iXt = —Xaz — PoX — 205(x + €2 %).

Introduce function f: x = e f. Then f satisfies the equation

Zt HOfa f’:<§>7

= (=02 +1)os+ V(po), V(§) =33~ 2it0,,



09, 03 being the standard Pauli matrices.

Hy is considered as a linear operator in Ly(R — C?) defined on the natural
domain. Here and later L, stands for the subspace of the standard L, consisting
of even functions. The operator H, satisfies the relations

(16) 0'3H00'3 = Hg, O'1H00'1 = —H().

The continuous spectrum of Hy consists of two semi-axes (—oo, —1], [1,00) and is
simple.

The point £ = 0 is an eigenvalue of the multiplicity 4. By differentiating the
solution w with respect to the parameters it is easy to distinguish an eigenfunction
€o

— . 1 —
So=1po| ;) Ho&o=0,

and three associated functions fj, 71=1,2,3,
- 1 1 - 1 1
§1= 1(14‘237395)900 <1) ; §2=—Z§$2S00 (_1> ;

— ]_ ]_ nd nd
§3 = 31 <1> ,  Ho&j =161,

1 being the second coefficient in the expansion (1.4). 1 can be characterized by

the equation
2

x
Ligr = "0, Dy = =05+ 1= 54y,

the operator L, is invertible being restricted on the subspace of even function .

One can show that £ = 0 is the only eigenvalue of H, (see [W2, G, P], for
example).

1.4. Main theorem.
Consider the Cauchy problem for equation (1.1) with initial data

(1.7) Ylimo = Yo, Po(x) = e~ /(N (2, 2) + fo(z)), Bo > O,

where fo(z) = fo(—x) and fy satisfies the estimate

(1.8) I follx < 82N,

Here || fl[x = [|fllz2 + [[=f] .-
Assume that
(i) B is sufficiently small;
(ii) N is sufficiently large.
These conditions give, in particular,

2
H(" (68) + fo) =~ e+ 0() <0, = [ dus’p}
which together with conformal invariance implies that the solution ¥ of Cauchy
problem (1.1,1.7) blows up in finite time 7™ < oo.

Our main result is the following.



Theorem 1.1.
The solution v of the Cauchy problem (1.1,7) blows up in finite time T* =
ﬁ(l +0(1)), as Bo — 0, and there exist \(t), u(t) € C*([0,T™)),

(1.9) A(t) = const(T* —t)~Y2(In | In(T* — t))2(1 + o(1)),
p(t) = constIn(T* —t)In|In(T* — t)|(1 + 0o(1)), t— T,
such that 1 admits the representation
Y(z,t) = ePON2() (po(2) + f(2,1), 2= A(t)e,

where f is small in Ly N Lo uniformly with respect to t € [0,T*). Moreover,
| flloc = 0(1), as t — T*. The constants in (1.9) are independent of initial data.

It is worth mentioning that due to the conformal invariance the same result
remains valid for initial data of the form

Po(e) = =N 2 (2), 2 = Aa,

where w e R, A € R, b>—Tl*.

2. SOME WORDS ABOUT THE PROOF
This section contains the outline of the proof. The details can be found in [P].

2.1. Splitting of motions.

The main idea repeats the main idea of the works [SW1,2], [BP] where the
asymptotic stability of solitary waves were considered. We start by introducing
some new coordinates for the description of the solution with initial data (1.7).
The new coordinates posses an important property: they allow us to split the
motion into two parts, the first part being a finite- dimensional dynamics on the
manifold of formal solutions {w(-,0)} and the second part remains small in some
sense for all ¢ € [0,T%).

To describe these coordinates we need to introduce a modified ground state
(2, a, a) which is characterized by the equation

O£2 a22

(21) _(;522 + ZQZ — TQ(hZ)Qa — (‘55 = 0, h = 1/ |a\ > 0,

a, a € R Here 0 € C§°(R), 60(¢) = 6(-¢),
0, [£]>2—-4/2
0 being a sufficiently small fixed number. One has the following proposition.

Proposition 2.1. For a in some finite vicinity of 2 and for a sufficiently small,
equation (2.1) has a unique positive even smooth decreasing solution ¢(z,a,a)
which is close to po(z, ). Moreover,

(i) as a — 0, ¢(z, 0, a) admits the asymptotic expansion (1.4) in the sense

13— V| < cla|N T < g >30HD) o~ #5a.a(hlel)
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Here So.4(€) = %fog dsy/a? — (a) +520(s);
(ii) [l S D5 (a, @)oo < e,
where Sg.q(8) = %fog ds+/a? — sgnas?0(s);
The similar formulas are valid for the derivatives of ¢ with respect to z, a, a.

Introduce a linearized operator H (a) associated to the modified ground state
5(2,0) (as before, B(2,a) = 3(2,2,a))

H(a)=(—02+1— %9)03 +V(@(a)).

The continuous spectrum of H (a) is the same as in the case of the operator Hj.
The point £ = 0 is an eigenvalue of H(a) of the multiplicity 2. There are an
eigenfunction (y(a)

Gl =iv(@ (L)), fG=o,

and an associated function (;(a)

51((1) = aa(ﬁ(a’a)|a:2 (1) ’ ﬁgl = &)

A more detailed description of the discrete spectrum can be obtained by means of
the standard perturbation methods. In particular, the following proposition can be
proved.

Proposition 2.2. For a sufficiently small, the discrete spectrum of the operator
ﬁ(a) in some finite vicinity of the point E = 0 consists of 0 and two simple eigen-
values +X(a), A(a) = iy/aX (a), where X' is a smooth real function of a. Asa — 0,
N(a) = 2+ O(a). Let C3(a) be an eigenfunction corresponding to A(a) normalized
by the condition

(Col@), o) = =i (Gola), &) +iX*(a) (2,0 -

1/2

Then 52(01) is a smooth function of a*/* admitting the following asymptotic expan-

ston as a — 0

S TN - 1 1

o = —iCo — AC1 + iA%E2 + X3¢ + )’ (_1 > (ho + O(a)) 4 aX® (1> (h1 + O(a)),
where h;, 1 = 1,2 are some real even smooth exponentially decreasing functions.

O(a) corresponds to the Ly, -norm with the weight el_;lgava(hm'), v = O(h).

In the subspace generated by grj(a), 7=0,...3, é, = —0152 being an eigenfunc-
tion corresponding to the eigenvalue —\, we introduce a new basis {€;(a)}7_:

6_’2=—$ (52+53+2z‘50), €3=—(52—53+2,\51),
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€y = e ( 1 ) , €3 = e3 (1> , € = (—1)7'e;. It follows from proposition 2.2 that
0

— = . 1 2

e2=C8 —tago| |+ O(a%),

5 o 1
€3 =&3+ag <1> + 0(a?).

Return to the Cauchy problem (1.1,7). Using the profile ¢ one can rewrite the

. 502
initial data 1o in the form: 1o = e_ZﬁOT(QB(ﬂg) + £0), 1 f5llx = O(BEN). Below we
shall omit “/ “ in the notation of fJ. Write the solution 1 as the sum

(22)  W(z,t) = N2() (B(2,a(1) + f(2,1), @ =plt) - gzzv z= A1)z,

where o(t) = (@,/\(t),ﬁ(t),a(t)) is an arbitrary curve in Ry x R3) it is not a

solution of (1.5) in general.
The decomposition can be fixed by the orthogonality conditions

(2.3) <f(t),03€j(a(t))> =0, j=0,...,3.
This means that ¢ has to satisfy the system

(2.4) Fi(,0) =0, j=0,...3,

F(4,0) = A1/ <J 361728, (X, a)> — (e(a),&(a)) =0, ¥= (ﬁ) .

The solvability of (2.4) for 7 in some small Ly— vicinity of ¢( is guaranteed by
the smoothness of the basis €j(a), j = 0,...,3 and the non-degeneration of the
corresponding Jacobi matrix

It is not difficult to check that
. R . o (4 .
Bo=—2{(&,0s&)} . detBy=[2(&,058)| =€ #0.
k,7=0

So, one can assume that the initial decomposition (1.7) obeys conditions (2.3).
To prove the existence of a trajectory o(t) we need the following orbital stability
result:

Proposition 2.3. For any € > 0 there exist 6 > 0 such that for any g, ||vo —
wollmr < 6, E(ipo) < 0, there exists u(t) € C([0,T*)) such that the solution 1
corresponding to the initial data vy satisfies the inequality

[ (t) = X2 @) Do (A(t)-)ll2 <6, 0 <t < T,
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where \(t) is given by

||(p0a:||2

See [W2,V\[3,L?SK] for the proof.

By (1.8), %o, %o = ¢(83) + fo satisfies the conditions of the above proposition.

Thus, the corresponding solution (¢) admits the representation

Bw0) = B0 (3a0) + f0), @ =i - 522 2 =30,
where G(t) = (”(t A(t), B, alt )), 5(0) = (0,1,0,82) is a continuous trajectory sat-
isfying (2.3), || fll2, A ”L'p‘ioéy'i , B, @ being small uniformly with respect to ¢.

By conformal invariance we can write now the solution 1 (t) of the Cauchy prob-
lem (1.1,7) in the form (2.2) where

B(t) = Aot — oA+ Ble). alt) = (o), p= =5

f(z,t) = f(z, p) satisfying the orthogonality conditions (2.3).
By (i) of proposition 1.1, A admits the estimate

(2.5) At) > e(T* —t)~1/2.
Remark that since 1 (t) € C1([0,T*) — H~1!) the trajectory o(t) belongs in fact,
to CL.

2.3. Differential equations. We write a system of equations for ¢ and f in
explicit form. Introduce a new time variable 7:

¢
= /ds/\2(s).
0
By (2.5), 7 > o0 as t — T*.
In terms of f (1.1) takes the form

(2.6) ify = H(a)f+ N,

where

(2.7 Nofa, £) = - 0(hz) - Do ( 1 ) + )
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“ﬂ=0M—U@+Mﬂ—%xwf59+m—@+ﬁﬁﬂﬂ%kfw

Substitute the expression for fT from (2.6,7) into the derivative of the orthogonal
conditions. The result can be written down as follows:

(2.8) (Ao(a) + Ax(a, £))7 = §(a, f)
Here L \
ﬁ:(uT; aTT_ﬂaﬁT_/Bz-i_ZBTT_aaaT)a
0 0 , 0 _(Qaaa(ﬁ)
0 0 —i((20, + 1)p, e2) 20 —i(Pa,e2) |’
25,e5) 0 ~Ege) 0

(A17); = <l(0)f, 035j> +ia, <J?, 035ja> ,
gj(aa f) = - <N0 + N1,03€j> .
By propositions 2.1,2, as a — 0,

In principle the system (2.8) can be solved with respect to the derivatives n and
together with equation (2.6) constitutes a complete system for o, f:

(2.10) ife = H(a)f + N'(a, f),

(2.11) 7=G(a, f),

f‘tZO = f()a a‘t:O = (Oa 1)/807183)'
Here H(a) = (—0% + 1 — %)o5 + V($3(a)), N' = N — a0 — 1)osf

2.4. Effective equations.

In order to derive a system of effective equations consider the main nonlinear
terms of (2.10), (2.11). Below it will become clear that the function a depends
slowly on 7 . More precisely,

(2.12) a~In"?(147%),

28
with some 7% = O(eﬁ_o0 33). We shall also see that the contribution f of the continu-
25
ous spectrum asymptotically is of the order I'!/2 (in the uniform norm), I' = e~ e

2
h = \/a, So = [dsy/1 —s?/4, and of the order I' for z not too large. In its turn
0

the vector n also has order I'. We shall use these facts while deriving the equations.
At this stage we are not worrying about formal justification.
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The main terms of N are generated by the expression

z2

(2.13) N ~ Fy(a) (_11> , Fofa) = aZ-(0 - 1),

Thus, it is clear that in the region |z| > const h~! the main order term of f is given
by the expression

(2.14) f ~ —(L(a) —i0)"* Fy(a),

where L(a) = —02 + 1 — a%-. The sign “” (in —i0) is essential: it means that
e‘ih%(L(a) —10)"1Fy(a) has finite energy.
For the following it is convenient to write f = f+f1, f0 = —(L(a)—10)"'Fy(a).
It will become clear later that in the region |z| > const h=1 fO and f! are of the
order I''/2 and I respectively while for |z| ~ 1 both f° and f* have order I.
Consider (2.11). The main term of G is given by the expression

G ~ Ay (a)g°(a),

where g7 = — (No(a, fo), 03€;) . So we rewrite (2.11) in the form
(2.15) 7= Go(a) + Gr(a, f).
Here Go(a) = A;'(a)g(a), G being the remainder.

The behav1or of f%a), Go(a) in the limit a — 0 is described by the following
proposition.

Proposition 2.4. For a > 0 sufficiently small, f%(a), Go(a) satisfy the estimates
1£2(a)|loo < TY27¢, ||Go(a)]| < ',

Moreover, G admits the following representation

3 1/2 &Pio
Gola) = =2’ (1+ O(a’*)), vy = o
This asymptotic estimate can be differentiated any number of times with respect to
a.

Here and in what follows the letter € is used as a general notation for small
positive constants that depends on the choice of the cut off function 6 and tend to
zero as 6 — 0.

In order to estimate qualitatively the behavior of a, consider the last equation
of (2.15) neglecting the remainder Gg:

a; = G(a).

We denote by ag(7) solution of this equation with initial data ag(0) = 33. It is easy
to check that hg = /a¢ admits the representation

(2.16) hal(q-) (Invq (74 7° )+31n1nu1(7+7*))+0(%),

250

as T+ 7" = 400, 1] = 452,7' —2% eﬂoo( 1+ 0(6o))-
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2.5. Estimates of soliton parameters.

Following [BP] we consider system (2.10,11) on some finite interval [0, ;] and
later investigate the limit 7 — oo.

On the interval [0,%1], t; = t(71) we approximate the trajectory o(t) by o1 ()
where o1 (t) = (@, A1(t), B1(t), a1(t)) is the solution of the following Cauchy prob-
lem

/\1_3)‘,1 = ﬁ17 )‘1_2/81 + ﬁ% = as, all = 07

)\1(t1) = )\(tl), ,81(151) = a1/2(t1), al(tl) = a(tl).

Introduce a natural system of norms for the components of the solution ¥ on
the interval [0, 7]:
so() = sup [A(s) — ho(s)|hg * (),
s<T

s1(7) = sup |6(s) - h(s)hg*(s)p™" (55 51,71,

2

sa(r) = sup |B(s) = Bu(s) LS

T7<s<T1 )\2(8

>
N—r

ho ()P~ (55 K2, m2),

~—

Mo(r) = sup 1 ()llocp™ (53 K0, 70),
s<T
M (1) = sup 1L+ |2[) 7 f1($)llocp™ (53 K3, 73), ¥ > 2,

My(7) = sup o (s)ll2p™ " (55 K4, 74),
where

_p_S0_ (1=61) rholzl _ 52
p(T; K, 7“) — e F Jg dsho(s) +e rhO(T)’ p=e ho Jo ds\/1—2-6(s)

I

d _ 7 _ 3 _ 5 _ 3 _ 15 _ 7
Ka = 7, Ko = K3 = gKa, K1 = 5K4, Ko = JK4, T0 = 5, T1 = 3, T2 = 4, T3
ry = %, 01 > 0 is supposed to be a sufficiently small fixed number.

At last, set

Wl

I

§] = Sj(T1)3 .7 = Oa 11 §2 - '32(0)’ MJ = MJ(Tl)

Consider equation (2.11). It follows immediately from (2.7,8,9) and from propo-
sition 2.4 that

- S

(2.17) In| < W(M,s) [\I!O(M)e—Zns Jg dsho(s) 4 e—(z—e)—hog)} ’
K T _3rq _S

(2.18) (Gr| < W (M, 5)¥y (M) [em 5 dshol) 4 = 5wty |

Uo(M) = MaMy + B3M7 + M3,
Uy (M) =e P+ MyM§ + M3,

with some v > 0.
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We use W (M, s) as a general notation for functions of Mj, j = 0,1,2, si, k =
0,1,2, defined on R®, which are bounded in some finite neighbourhood of 0 and
may acquire the infinite value 400 outside some larger neighborhood. It will be
assumed that W does not depend on 3y. In all the formulas where W appear it
would be possible to replace them by some explicit expressions but such expressions
are useless for our aims.

Using (2.17,18) and proposition 2.4 it is not difficult to prove the following in-
equalities

so < W (M, s)3; W1 (M),

(2.19) s1 < W(M,s) (6_% + /5’0_3‘1’0(M)> ;

~ _ _3 ~
s3 <W (ML, 5) (77 + 5% (1)), 7> 0.
2.6. Estimates of f. For f one can get the following set of estimates

(2.20) Mo, My < W (85" M,s) (B3N + 85 ' Mo + By (M + (Mo + My)?)]

(2.21) My < W (M, 3)By %0 (82N + (Mo + My + Ms)?)],

with some Ky > 0.

By the way of explanation we remark that the deriving of these inequalities is
based on the fact that H depends slowly on 7 and on some suitable estimates of
the group e *"H(®) g being fixed.

2.7. Estimates of majorants. Consider the system of inequalities (2.19,20,21).
Introduce new scales:

Mj :/BOij .7 :O,l, M2 :/8(§CO+2M2-

Remark that one can choose the function W to be spherically symmetric and mono-
tone. Then in terms of M; the inequalities (2.19-21) can be written in the form

A A A >, A _l 9 9 9
Boso, 51, §2 < W(M, 3) [e Po + Bo(Mo + My )? +5§K0+1M§)] ’
M, < W (M, 3) [ ZN=2Ko=2 | g2N2 4 g5 2o (M + M1)2] :
Mo + My < W (M, 3) [B2V + B (¥ + V) + 650N, |

Fix the ball |[M]||2 + ||3]|> < R where W (M, 3) is a bounded by a constant. Then
the above inequalities can be simplified

A A A AN—1 2Ko+17n2 |
Bodo, 51, 82§W1[ 0 + 8,70 My |,

(2.22) M, < W, [ AN-2Ko=2 | N2,

M, + M, SWs[ SN‘1+B§°M2 )
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where W;, j = 1,2, 3, some constants that do not depend on 3y provided N > 1,
Bp is sufficiently small.

Choosing N > 1+ K one gets that for 3y sufficiently small the solution of (2.22)
can belong either to a small neighborhood of 0 or to some domain whose distance
from 0 is bounded uniformly with respect to [y. Since all Mj, s; are continuous
functions of 7 and for 7 = 0 are small only the first possibility can be realized.

As a consequence, one finally obtains

Moy, M; < cﬁSN‘Kf"l My < CﬁgN_KO,

Y

4N —-2Kg—3
Boso, s1 < cf o 1<y

The constant ¢ here does not depend either on 3y or on 7y. Since 77 is arbitrary
these estimates are valid, in fact, for 7 € R.

The statement of the theorem 1.1 is a simple consequence of the above inequal-
ities and (2.17).
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