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THE WAVE GROUP AND RADIATION FIELDS ON ASYMPTOTICALLY
HYPERBOLIC MANIFOLDS

ANTONIO SA BARRETO

1. INTRODUCTION

Asymptotically hyperbolic manifolds is an important class of manifolds for which microlocal analysis
techniques have been successfully applied to study spectral and scattering theory, see for example [12,
13, 18, 23, 24, 28] and references cited there. They have also received considerable attention due to their
connection with mathematical physics, see [2, 9, 31] and references cited there.

First we will discuss joint work with Mark Joshi [19] on the construction of the wave group on asymptot-
ically hyperbolic manifolds. We show that it belongs to an appropriate class of Fourier integral operators
and, as an application, we analyze the singularities of its (regularized) trace.

Secondly, following the work of F.G. Friedlander for asymptotically Euclidean manifolds [10, 11], we
introduce the notion of radiation fields for asymptotically hyperbolic manifolds and use them to construct
a translation representation of the wave group.

Let X be a smooth compact manifold with boundary ,0X. Let g be a Riemannian metric such that,
for z is a defining function of X, 22g extends to a smooth and non-degenerate metric up to X. In other
words, we consider g of the form
H
z2’
where z € C®(X), z71(0) = 8X, and dr # 0 at X, and H is a smooth Riemannian metric on X,
non-degenerate up to 0X. Moreover we assume that |dz|g =1 at 0X.

It is easy to see, by taking = a(y)2’, with a > 0, and y € 90X, that g only determines H|sx up to a
multiple. So g does not determine a metric on X, but only a conformal structure.

The pair (X, g) is called an asymptotically hyperbolic manifold because along a smooth curve in X \0X,
approaching a point at X, all sectional curvatures of g approach —1, see [24]. The simplest examples of
such manifolds are the hyperbolic space, B"*!, and its quotients by certain group actions, see for example
section 8 of [24].

Tt is proved in Proposition 2.1 of [18], see also [9], that fixed a choice of H|sx, there exists a unique
product decomposition X ~ 9X x [0,¢), for € small enough, such that

dz® + h(z,y,d
(1.1) g= &t h@y dy)

22

It was proved in [18] that the scattering matrix determines the Taylor series of h(z,y, dy) at x = 0, and
in particular h(0,y, dy). Apparently one important question in mathematical physics is which invariants
are independent of the choice of H|sx, see [9].

Let A denote the (positive, self-adjoint) Laplacian corresponding to the asymptotically hyperbolic
metric g, acting on half-densities. The metric g induces a canonical trivialization of the 1-density bun-
dle given by 8 = /vol(g)|dzdy|, the Riemannian density. The square root of this is then a natural
trivialization of the half-density bundle. The Laplacian is defined by

A(for) = ane?,
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where the Laplacian on the right hand side is the usual one acting on functions. It is well known, see for
example [22, 24], that the continuous spectrum of A is [72_2’ 00).

The sections of the density bundle °Q(X) are defined to be smooth multiples of the Riemannian
half-density. In local coordinates where (1.1) holds it is given by

dz d
0= flo.y) =2 feCH(X), f#0.
T x

The bundle °Q2 (X) is the half-density bundle obtained from °€(X). Similarly we define the bundle
003 (X x X).

The group cos (t\/ A— "Tz) is defined to be the operator whose kernel U (¢, w,w') satisfies

2 2
<8 + Ay — n_) U(t,w,w') =0,

U0, w,w') =§(w,w"), %U(O,w,w') =0.

Here 0(w,w') acts on half densities f6’ 3 according to

fpt = [ 8w, w)(w)e
In the interior of R x X x X, U(t,w,w’) is well known as a Fourier integral operator [4, 7, 15, 16]. The

difficulty here is to understand its behavior up to Rx 89X x 0X. It is proved in [19] that cos (t\ /A — "TZ

belongs to a class of Fourier integral operators and as an application of this it is proved that it has a
regularized trace, i.e that there exist constants C;, j = 1,...,n — 1, such that the limit

N

@)0"? ()

n—1
0—tr (U(t)) = lgr}) /DGU(t,w,w) - ;Cjeﬁ + Cologe| ,

exists. This is called the zero-trace of U(¢), in analogy with the b-integral of [29], see also the notion of
b-trace of [5]. It is a Hadamard regularization and it obviously depends on the choice of the boundary
defining function, z, but it gives a natural regularization of the trace of U(¢). In the case of Riemann
surfaces, the notion of zero-trace was introduced and studied in depth by Guillopé and Zworski [12, 13].

Again using the characterization of U (¢, w, w') as a zero F.I1.O, the arguments of [4, 7, 15, 16] can then
be used to analyze the singularities of 0—tr (U(¢)) trace. The following are proved in [19]

Theorem 1.1. The singular support of 0—tr (U(¢)) is contained in the set of periods of closed geodesics
of (X, 9)-

The justification for this result is that there exists € > 0 such that no closed geodesics intersect {z < €},
so the result in the interior [4, 7] extends to 0—tr (U(¢)) .

Another application of this characterization and [4, 7] is the asymptotic formula for 0—tr (U(t)) as
t — 0. Suppose that the set of periods of closed geodesics is contained in (¢g, 00). Let p € C§°(R) be such
that p(t) = 1 for [t| < & and p(t) = 0 for |t| > 2o,

Since the arguments in [16], see also the proof of Proposition 2.1 of [7], are entirely local, we can apply
them directly to prove

Proposition 1.1. Let
T = U(t,w,w).

xr>e€
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There exist wy € R, k=0,1, ..., with we = vol(X¢), such that

1 oo
1. tu T ~ n—2k—1
(13) [T 0t ~ e S

for p — oo and is rapidly decreasing if p — —oo.
The analogous result for 0—tr (U(t)) follows directly from its definition and (1.3). We obtain
Theorem 1.2. There exist 0 € R, k =0,1, ..., such that

1 oo
1.4 tu — o~ - n—2k—1
(1.4) [ e pt0-t @) dt ~ S
for u — oo and is rapidly decreasing if p — —oo.
Observe that,

n—1
6o = lim / dvoly — Y " dje™I — dylog e
e—0 z>e€ =

where d;, j = 0,1,2,...,n — 1 are the unique real numbers such that the limit exists. This is called the
zero-volume of X and is denoted 0—vol(X).

The behavior of 0—tr (U(t)) as t — 0 is related to the behaviour of the scattering phase at high energies,
and the possible existence of a Poisson type formula relating the wave group and the resonances in this
setting. See for example [12, 13] for the case of Riemann surfaces. The wave group for hyperbolic space
has been studied in [21, 14, 20].

The construction of 0-Fourier integral operators is based on that of bFourier integral operators intro-
duced by Melrose’s in the b—category [25], though he does not examine the specific problem of constructing
wave groups there. The construction of the parametrix for U (¢, w,w’) is also largely based on his work
with Mazzeo [24] on the construction of the resolvent for this class of manifolds.

Finally, as an application of [24], we show the existence of radiation fields for these manifolds and
use them to obtain a translation representation of the wave group. The details of the construction will
appear in [32].

I would like to thank the Department of Mathematics of the Université de Paris XIII for the hospitality
and finantial support during my one month visit in May of 2000; especially J-M. Delort and A. Grigis for
making my stay there so pleasant. I would also like to thank G. Lebeau for inviting me to give this talk
at the Ecole Polytechnique. The support of NSF under grant DMS-9970229 is gratefully acknowledged.

2. THE CONSTRUCTION OF THE RESOLVENT

The spectral theorem gives that resolvent R(\) is well defined for SA << 0 by
2 —1
R(A):(A—%_v> :

To follow the notation of [24] we let { = 4+, so — 2—2 — A% = ((¢—n). Mazzeo and Melrose show in [24]
that R({) has a meromorphic continuation to the complex plane and we briefly recall their construction.

Locally, in the interior of X x X, and for ¢ >> 0, the work of Seeley [33] gives that R(() is
pseudodifferential operator, so its kernel is singular at the diagonal

D={(zy,2,¢y) e X x X5z =a',y=y'}
The problem is to understand the behavior of the kernel of R(() up to
Dyx =Dn (aX X OX)
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and for other values of (.

For that Mazzeo and Melrose blow-up the intersection Dyx. This can be done in an invariant way,
but in local coordinates this can be easily seen as introduction of polar coordinates around Djyyx. Tak-
ing coordinates (x,y) and (z',y') in a product decomposition of each copy of X near 90X, the “polar
coordinates” are then given by

2 2,1 x y—y
R=["+2" +ly-y'|]2, p=5, p=7% w=

iBI

R R R

A function is smooth in the space X xo X if it is smooth in “polar coordinates” (R, p, p’,y,w) about
Dyx. As aset, X x¢g X is X x X with Dyx replaced by the interior pointing portion of its normal bundle.
Let

B: X xgX —XxX

denote the blow-down map.

The function R is a defining function for a new face, which we call the front face, F. This is the lift of
Dyx = DN (0X x 0X). The functions p and p' are then defining functions for the other two boundary
faces which we call the top face 7, and bottom face B, respectively, i.e.

F={R=0}, B={p =0}, T={p=0}

See Figure 1, which is taken from section 3 of [24]. In X X¢ X the lift of the diagonal of X x X only
meets the boundary F and is disjoint from the other two boundary faces.

FIiGURE 1. X xo X

It is proved in [24] that the lift of the kernel of the resolvent satsifies
BoR(C) = R1(C) + R2(C)

where R; is conormal of order —2 to the lifted diagonal, Dy, and smooth up to the front face, and vanishes
to infinite order at the top and bottom faces. The second part, R,, is of the form Ry = pSp’ CF(C ,®),

F((,e) € C™ (X X0 X,%02 (X x, X)) and depends meromorphically on ¢. The bundle Q2 (X xo X) is

defined to be the lift of °Q2 (X x X) under the blow-down map 8.

Based on this construction, it is natural to look for the wave group to have a Schwartz kernel which is
nice on the space R x (X xg X). In the interior it is a Lagrangian distribution associated with the flow
of the diagonal by the Hamilton vector field of p = 0>(A). The question is whether it is possible to carry
on this construction uniformly up to F in X xo X.

As in [24], the normal operator will play a major role in the construction of the parametrix of the
wave group and we recall its definition. Let p € X and let T,(X)* be the inward pointing vectors in the
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tangent space to X at p, T,(X). This is a half space and its boundary is T,,(9X). Using local coordinates
in which (1.1) holds, if p = (0, ye) we can see that T,(X)* has a metric

(2.1) 9p = () 21(0, 0, dy),
making it isometric to the hyperbolic upper half-space.
A differential operator P in X is a zero-differential operator of order m, and we denote P € Diffy™ (X)
if it is of the form
P(z,y,D) = Z aj.0(z,y)(@D;) (xD,)%, ajq(z,y) € C°(X).
Jtlal<m
It is shown in [24] that the operator obtained by freezing the coefficients of P at a boundary point is

a well defined operator in T),(X)¥, i.e. is independent of the choice of the coordinates (z,y) and it is
defined to be the normal operator of P. If p = (0,y0) € 8X, then

Np(P)= Y aja(0,90)(D;) (€Dy)*.

jtlal<m
In coordinates (1.1) the Laplacian is given by
A = (2D,)? + inzD, + (zD, log \/E).CIJDZ + 22A,,
S0
Np(A) = (zD;)? + inaDy + +h(0,yo)xz Dy, 2Dy, ,

which is the Laplacian on Tp(X )" with respect to the metric (2.1).

One of the key observations in Mazzeo and Melrose is that there is a natural group action on the leaf
of the front face above a point p which makes it naturally isomorphic to X,,. This group action is obtained
by lifting the action of the subgroup of the general linear group of the boundary of X, to the normal
bundle of X, as a leaf of the front face is just a quarter of the normal bundle over p. This allows the
definition of normal operator to more general operators.

We say that B € ¥5»*"(X), if the lift of its kernel under 3 can be written as K (B) = K (B); + K(B)a,
with K (B); conormal of order m to Dg, smooth up to F, and vanishing to infinite order at 7 and B,
and K(B), = p?p'"F, F € C®(X xo X). Let F, be the fibre of the front face lying over the point
(p,p) € DN (X x 8X). Since the kernel, k(B), of an element B € ¥j"**(X), is conormal to the lift of
the diagonal Dy, it can be restricted to F, and the kernel of the normal operator, N,(B), is defined by

(2.2) k(Np(B)) = k(B)|F,-

Let (z,y) be local coordinates near p € 90X, with 2 a boundary defining function and also denote the
natural corresponding linear coordinates on X, by (z,y). Let (2',y’) be the same coordinates on the right
factor in X x X and let s = 2/z',z = (y —y') /2. Then if the Schwartz kernel of a map B is k(z',y’, s, 2)y

1
with v = %‘ * . the normal operator is given at p = (0,9) by
i x x \ ds
(23) NB)(] = [ K0.3.5.2)5 (2w - 22) Do
s s/ s
1/2
where p = dfg—g

As observed in [24], each fiber F}, of the front face F has a natural origin 0,, which in coordinates s, z
is given by 0, = {s =1, 2 = 0}. For example, we find that the kernel of the identity is

K(d) =46(s —1)d(2)7,
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and its normal operator is

ds dedy 7
s r x"

ds zdxdy 3
S xr xm

(2.4) N,(Id) = 8(s — 1)5(2) =5(0,)

3. 0-FOURIER INTEGRAL OPERATORS

To construct the wave group we introduce the class of 0-Fourier integral operators. As in [19] we will
only consider those operators whose kernels, when lifted to X Xo X, have support away from the top
and bottom faces. The fact that makes this construction simple is the finite speed of propagation of
information which guarantess that there the support of the lift of U(t,w,w’) will not intersect the top
and bottom faces for finite time ¢. So, we are able to ignore the corners formed by the intersections of
the front face with the top and bottom faces. The operators considered here are closely related to the
b-Fourier integral operators introduced in [25].

As observed above, the Laplacian on an asymptotically hyperbolic manifold is a second order operator
which locally is the product of vector fields that vanish at 9X. On a C°° manifold with boundary X
the space Vo(X) of smooth vector fields that vanish on the boundary is a Lie algebra. If we take local
coordinates (z,y1, ..., Yn), in which z is a defining function of X, Vo(X) it has the local basis :c%, :caiyj,
1 < j < n,near 0X, and so it is the space of all ('™ sections of a vector bundle over X:

Vo(X) = C™ (X,°TX).
Restriction to the interior extends to define a smooth bundle map

1 TX — TX,

which is an isomorphism in the interior and vanishes over 8X. Let °T*X be the dual bundle to °TX.
The map ¢ then induces a map ¢*, which in dual coordinates (z,&,y,n) is given by

T — 0T X
(@,&y,m) — (,28,y,2n) = (2, Ay, ).
The canonical 1-form in T*X,
a=E&z+n-dy
is pulled back to
(3.1) % = %d:c + % -dy € C* (°T*X;°T* (°T*X)) .

For the canonical 1-form %a, let °%w = d°a be the canonical 2-form. Let p be the Hamiltonian induced
by the metric g. In coordinates in which (1.1) holds

p =N +h(y, 1) + h(z,y, p),
For any p € C* (°T*X) the 0-Hamiltonian vector field of p, °Hp, is defined by
(3.2) % (e,°H,) = dp.

In local coordinates where %« is given by (3.1), UH, is given by
8p 0 " 8p 0 " dp Op 0
3.3 'H, = 2p r_ ) 2
(3.3) P=Toxor T Zauj ay; ( oz TP) ax ;1 Yoy, ~ oA ) B
We consider the bundle T*R x °T*X x °T* X with the one canonical 1-form

A M \ o
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Following [7] and [8], let C C T*R x 9T*X x %T* X, with the form (3.4), be defined as

(3.5) C={t7zy\upa'y N ) 7+ Vp(@,y,\ p) =05 (2", y", N 1) = xe(, 9, A, 1)}
where x; = exp (tOHp) with p considered as a function on the first copy of X.
The key result in [19] is
Proposition 3.1. The relation C lifts under the blow-down map B to a Lagrangian submanifold Ac of
T*R x T* (X xo X) given by

where p denotes the lift of p defined in the first copy of °T*X and A; is the lift of the graph of x:.
Moreover, A¢ intersects the boundary only over F and

(3.7) AL = Ac N (T*R x TE (X % X))
is a Lagrangian submanifold of T*R x T*F given by
(38) AO = {(t777 }/vaO) T+ pO(Yb7H0) = 07 (}/vaO) S A.’F,t}v

where po is the restriction of p to F and Ar ¢ = exp (tHp,) (N*O)) .

From (3.7), the Lagrangian A¢ can clearly be extended across the front face F and we define the
corresponding Lagrangian distributions as the restriction to X xo X of a distribution which is Lagrangian
with respect to an extension A, of A¢ across F.

Our class of distributions now has a pair of natural symbols. The first is the ordinary symbol of a
Lagrangian distribution in the interior, which will be a smooth section of the Maslov bundle tensored
with the half-density bundle over A, which is smooth up to the boundary of A¢. It follows from (3.7)
that the restriction of a Lagrangian distribution to the front face is in fact Lagrangian with respect to A2,.
The symbol of this restriction will give the second natural symbol. Finally, we want to define a filtration
which corresponds to the order of vanishing at the front face. Let R be a boundary defining function for
the front face in X xo X. We define I"™*(A¢) to be equal to R°I™(A¢). The symbol at the front face,
of(u), then defined to be the restriction of R~%u to the front face. This is of course dependent on the
choice of R but is invariant as a section of the normal bundle raised to the power s. In what follows we
will fix a product decomposition in which (1.1) holds. This will give a defining function R of the front
face, so we will ignore this coordinate dependence. The class of ordinary Lagrangian symbols will just be
a pair of elements o, 5(u) = (R*0m(u),0f (u)) of the usual symbol class with the restriction that o, (u)
restricted to the front face equals o7 (u).

It is not difficult to see the independence of the class from the choice of extension of Ag.

Definition 3.1. If C is given by (3.5) and A is the Lagrangian defined in Proposition 3.1, then we
define
I (R x X, X;C,00%) = {K € [™* (R X X %o X, AC,UQ%) . K vanishes
in a neighbourhood of 0 (R x X xo9 X)\ R x F}.

Since A¢ intersect the corresponding fibers over the front face transversally, we can define the normal
operators of elements F € IJ"*(Rx X, X, C,°Q%) asin (2.2). Moreover we find that N, (F) is a Lagrangian
distribution with respect to AL, = Ac NT*R x T5 (X x0 X).

We want to understand the mapping properties of these operators under the action of zero differential

operators - particularly the Laplacian and the wave operator. A line by line inspection of the proof of
Proposition 5.19 of [24] gives its analogue for 0-Fourier integral operators. We have

Proposition 3.2. The normal operator (2.2) defines an exact sequence
(3.9) 0— I™(R x X, X;C,°02) — IR x X, X;C,°03) — I™ (]-', A%,Q%)

XXIII-7



FIGURE 2. The support of the wave kernel at time t.

such that for any differential operator P € Diff§*(X) and any F € I(’)“’O(R x X, X; C,OQ%)
(3.10) N, (D} = P).F) = (Di = Ny(P)) - Np(F).

We can now prove
Theorem 3.1. Fort € R, let C be the relation defined by (3.5). The wave group U(t) satisfies

2
(3.11) U(t) = cos <t\/A—%) EIO—%O (RXX,X;C,OQ%).

Proof. This is very similar in nature to the construction in section 7 of [24]. The first step is to use the
normal operator to remove the Taylor series of the lift of U(t) at F. Using Proposition 3.2 and equation
(2.4) we find that the normal operator Up(p,t) = N,(U(t)) satisfies

n2
(Dt2 - AO - Z) U()(p,t) = 0,
UO(p7 0) = 6(011)7 DtUO(p7 O) =0

(3.12)

where 0y, is the center of F}, and Ag is the normal operator of A. Since 0, is away from the boundaries
of F and A?, does not intersect the boundaries for finite ¢, it follows from the usual theory of Fourier

integral operators that Uy(t) € I~ (R x F, A2, Q%) , see for example [7].
Since the map (3.9) is surjective, we can choose an element, ug, of I0_1/4’0(R X X,X;C,OQ%), with
N, (uo) = Up(t), so that
vo = U(t) —uo € I Y* (R x X, X;C,°0%).

Intead of dividing by R, we divide by 2’ be, which is a defining function of the second copy of X.
The advantage is that this commutes with the wave operator. Now (z')"'vy € I~'/%40 and, as vy is
supported away from the bottom face, no difficulties are introduced. We now solve on the front face to

get wy € 161/4’0 satisfying

<Dt2 — Ao — %2) Np(w1) = Np ((z')vo) ,

Np(w1)(0) = N ((2') v0)) » DelNp(w1)(0) = Dy (Np((2") " v0)) (0).
XXIII-8
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We let uy = 2'wy. We then have, by the uniqueness of the solution to (3.13) that
U(t) —uo —uy € I;V*2(R x X, X;C,°03)

We can now iterate at each level by considering (z')~* times the error achieved. Since u; is supported

away from the top and bottom faces, i; = %uj is a Fourier integral operator in the same class. Thus we
have found

k
(3.14) Ut) - ada; e I (R x X, X;0,°08).
=0
Asymptotically summing, we achieve an error in I Y 4’°°(R x X, X;C, OQ%) and an error in the Cauchy
data which vanishes to infinite order at the front face, and which is pseudo-differential operator of order
Z€ero.

We can now extend this error term to be identically zero across the front face and remove it in the
usual way using Hormander’s Lagrangian calculus. See for example Theorem 1.1 of [7]. O

4. RADIATION FIELDS

The Lorentzian metric corresponding to the wave operator in (X, g), in coordinates (1.1) is given by

dz?> h d h d
dt2 _ % _ (x,y2, y) — dt2 _ (dlog:c)2 _ (x7y27 y)

x x x
So the surfaces ¢t + logz = s are characteristic with respect to the wave operator. Following [10, 11], we
are interested in understanding the limits of solutions to the Cauchy problem

0? n?
(ﬁ + Aw — Z) U(t,’LU) = 0,

w(O,w) = filw), Su(0,0) = fo(w),

along rays determined by these surfaces. Let H(¢) denote the Heaviside function, and let v(t,w) =
H(t)u(t, w), then

(4.1)

or? 4
v =20, for t <O0.

(4.2) ( J +A- n_) v(t,w) = f26,(0) — f10;(0),

Let us denote S(X) as the space of smooth functions in X which vanish to infinite order at 0X.
Proposition 4.1. Let v be a solution to (4.2) with f; € S(X). Let f = (f1, f2) and let w = (z,y),
y € 0X. Then the limit

lim v(s —logz, 2,y) = R (f)(s,y)
z—0
gives a map
RT:S(X) x S(X) — C®(0X x R)

The proof of this is based on the Mazzeo-Melrose characterization of the lift of the kernel of the
resolvent by the blow-down map 3 described in Section 2. We outline the main idea here.
For simplicity consider the case where f; = 0 and we observe that the kernel of the map R is given
by
lim W (s —logz,z,y,w') = R (s,y,w")
z—0

XXIII-9



where W is the forward fundamental solution of the wave operator, i.e
02 n? , ,
Z 4T A- =
(5742 - %) Wit ) = S(aw)5(0),
W =0, for t < 0.

We know that the resolvent R(3 + iA) can be expressed in terms of W (t), for IA << 0 by taking the
Fourier transform of W in the ¢ variable. We obtain the resolvent, i.e.

(4.3)

o~

W\ w,w') = R(g M) (w,w'), for SA << 0

Let W(s,x,y,w') =W(s—logz,z,y,w') and take t = s — logx. Then

W\ w,w') = x_i}‘R(g +iA) (w, w').

Now observe that —iA = % — ¢ and recall that the lift of the resolvent by 3 is, modulo terms that vanish

to infinite order on the top and bottom faces, given by p¢p’ CF((, o), with F((,e) a smooth half-density.
Recalling that = Rp, we see that the factors p¢ in 8* (z27SR(()) cancel out and it can be restricted
to {p = 0}. The factor in 2> is used to cancel out the negative power in the half-density factor. One
can use the push-forward theorems proved in section 4 of [19] to prove that this is in fact the kernel of a
Pseudo-differential operator. This shows that if F' is the Fourier transform, then F o R is well defined.
One can then show that in fact the map R™* is well defined as well.

One can use the methods of [10, 11] to prove that it can be extended to a map on the space defined
with the energy norm and that it gives a translation representation of the wave group in a subspace of

{u € L*(R x 0X) : Osu € L*(R x 8X)}.
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