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RESONANCE EXPANSIONS IN WAVE PROPAGATION

MACIEJ ZWORSKI

1. INTRODUCTION

The purpose of this lecture is to survey some very recent results obtained by Burq, Chris-
tiansen, Tang, and the author [2],[3],[29] and by Stefanov [24], on expanding propagators in
terms of resonances. The results are technically quite simple, at least by the standards of the
subject, and the appeal of this study lies in its connection with applied problems.

Resonances constitute a mathematical model of meta-stable states: a resonance is a complex
number whose real part is the rest energy or the rate of oscillation of the state, and its imaginary
part, the rate of decay of the state. They appear in many branches of mathematics, physics and
chemistry, from particle physics to the theory of automorphic forms — see [32] for a general in-
troduction. Qur motivation comes mostly from molecular dynamics (semi-classical expansions),
acoustic or electromagnetic scattering (wave expansions), and from hyperbolic scattering (expan-
sions for the modular surface).

The intuition above is in its very nature dynamical. At the same time the clearest math-
ematical definitions of resonances are stationary: if the system is decribed by a Hamiltonian
P, with propagation given by either the wave equation, sinty/P/v/P, or by the Schrodinger
equation exp(itP/h), the resonances are defined as the poles of the meromorphic continuation
of (P — X2)71 and of (P — 2)7!, respectively. A pure state, corresponding to a resonance,
should behave as exp(itA) and exp(—itz/h), as t — oo, with the convention that Im A > 0 and
Im z < 0. Of course, the two meromorphic continuations are clearly equivalent, and the different
conventions come from the traditions of wave and Schrédinger equations.

The dynamical nature of resonances was emphasized early by Lax and Phillips [7] and their
celebrated semi-group still provides the most elegant connection between the stationary and
dynamical definitions. They showed, that for obstacle problems in odd dimensions, the restriction
of the wave group U(t) to a naturally defined interaction space (roughly speaking, obtained by
taking the orthocomplement of the spaces of incoming and outgoing initial data), gives a semi-
group, Z(t), and

Z(t) — eitB’

with the spectrum of the non-self-adjoint operator B given by the poles of the meromorphic
continuation of (P — A?)7! from ImA < 0 to C — see [22] for a careful analysis in greater
generality.

One of the main applications of this point of view was the trace formula for resonances in odd
dimension proved by Bardos-Guillot-Ralston [1] (for [¢| > R) and Melrose [11] (for [¢| > 0),

(L.1) w(UE) -Uo) = Y N, teR\{0},

where Uy(t) is the free wave group.
XXTI-1
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As far as expanding U(t) in terms of resonances,

(1.2) U(t) ~ Z eMwy @ wy, wy aresonant state, t— oo,

resonances

the semi-group method provides expansions in non-trapping situations only — see Theorem 3.1
for the precise statement and Sect.3 of [29] for a review of Vainberg’s direct proof [27] .

The recent advances in the understanding of the trace formula (1.1) in all dimensions and in
more general settings, by Guillopé and the author [6], Sjostrand [19],[20], and the author [30],[31],
permit now some extensions of (1.2) to more general situations. This development owes a lot
of the work of Sjostrand [19], Stefanov and Vodev [26], and to some previous work of Tang and
the author (see [28] and references given there). In works surveyed here, [2],[3],[24],[29],[27], the
contour in the spectral decomposition of the propagator is deformed. The resonance expansion
comes from a residue calculation, and the main issue is estimating the resolvent in the non-
physical half-plane (that is, the half-plane where the poles are).

We remark that the time dependent theory of resonances has also been investigated recently
in [12] and [23]. The study there is motivated by the Fermi Golden Rule and is concerned with
the time behaviour of a single state obtained by perturbing a bound state embedded in the
continuous spectrum. That method is also applied to non-linear problems and that constitutes
an exciting new development.

We are concerned with situations which are classically trapping and where, at high energies,
we expect a lot of resonances near the real axis. Eventually, it is the influence of large clouds of
resonances on propagation that should of interest. At the energies at which molecular reactions
take place there are normally many resonant states and it is their contributions to the propagation
of a state that seems to be of interest —see [15] and references given there. The general expansions
in Sect.3 and 4 are all in the “non-overlapping régime”:

T)

— K1
AE<< )

where (T") is the average decay rate and AF is the average energy level spacing: in semi-classical
Theorem 4.1, T < hM and we expect AE ~ h™.

On the other hand the expansions in Theorem 6.2 are concerned with resonances in the
“overlapping régime”: when we rescale to the semi-classical situation (h ~ |[A|7!) then

()

AENI’ I'~h, AE~h.

In Theorem 6.1, we still expect I' ~ h, but AE ~ h(log(1/h))~t. We remark that the random
matrix methods used to study such phenomena in transition state theory [15] remain inaccessible
in rigorous work on quantum mechanics.

A better understanding of resonance expansions should lead to new ways of computing reso-
nances or to inverse results. The classical method of Prony [18] has been used in non-trapping
situations [8] to compute resonances, and it is frequently used in applied work — see for instance
[9] and references given there. Roughly speaking, by measuring a signal at different times, the
complex frequencies in the expansion of the wave can be detected.

In connection with computing and detecting resonances we make the final comment of this
introduction. The standard way of seeing resonances in experiments is through the Breit- Wigner
approximation: a resonance at Ey — il'g, will show up at real energies E through terms

Ty
(E — Eo)* + 1T
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appearing in measured quantities (see [13, (2.13)] for an example in the context of modern chem-
istry), such as the derivative of the scattering phase, or more realistically (from the experimental
point of view), the scattering cross-section. Both have been rigorously studied in the case of
a single semi-classical resonance by Gérard-Martinez-Robert [5], and the former, for many res-
onances at high energies by Petkov and the author [16],[17]. The methods used to prove the
expansions presented here, should be also useful in extending the results on the scattering phase
to scattering amplitudes and cross-sections. Roughly speaking, the relation of the Breit-Wigner
formula of [16] to the Breit-Wigner formulz for scattering matrices, should be the same as the
relation of the trace formula for resonances (1.1) to the resonance expansions (1.2).

2. ASSUMPTIONS ON THE OPERATOR

To make the statements precise we recall here very general assumptions on the operators we
consider. They are made in order to avoid the analysis of specific aspects of obstacle, potential, or
metric scattering. Thus we follow the “black box” formalism introduced in [21] and generalized
further in [19]. The two most interesting and easy to state cases are

P=—-A on R"\O with the Dirichlet or Neumann boundary condition,
in the case of wave expansions and
P=—-h’A+V(z), |V(z)|<C(x)™¢, V analytic in a conic neighbourhood of infinity ,

in the case of semi-classical expansions.
Our general operator, P, H, a complex Hilbert space with an orthogonal decomposition

H =Hg, & L*(R" \ B(0, Ro)),

where Ry > 0 is fixed and B(z,R) = {y € R" : |z — y| < R}.

The corresponding orthogonal projections are denoted by u|p(o,r,) and u|r»\B(0,r,) OF by
1g(0,re)u and lgny p(o,ry)u respectively, where u € H.

We work in the semi-classical setting and for each h € (0, hg], we have

Ph)y:H—H
with the domain D, independent of h, and satisfying
Ipn\B(0,Re)D = H>(R™ \ B(0, Ry))

uniformly with respect to h (see [19] or [28] for a precise meaning of this statement).
We also assume that

(2.1) IB(0,ro) (P(h) + i)™":H — Hp, is compact,

(2.2) g\ B(0,Re) P(R)u = Q(h)(ulrm\B(0,R,)), foru €D,
where Q(h) is a formally self-adjoint operator on L?(R™) given by
Q(hyv = Y aa(w;h)(hDy)*v for v € CF°(R™)
la|<2

such that aq(z;h) = aq(x) is independent of h for |a| = 2, aq(z;h) € C°(R™) are uniformly
bounded with respect to h, here C;°(R™) denotes the space of C*° functions on R" with bounded
derivatives of all orders,

> aal;R)E* > (1/0)lEf°, VEER,

|a|=2

for some constant ¢ > 0, 3°,, <5 aa(2; h)§* — £? uniformly with respect to h as |z| — oo.
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The meromorphic continuation is guaranteed by the following analyticity assumption: there
exist 0 € [0,7), € > 0 and R > Ry such that the coefficients a,(x; h) of Q(h) extend holomorphi-
cally in z to

{rw:w e C", dist(w,S") < e,r € C,|r| > R,argr € [—€,00 +¢€)}

with 3° 4 <2 Ga(@; R)EY — £ uniformly with respect to h as |r| — oo remains valid in this
larger set of 2’s.
We use P(h) to construct a self-adjoint operator P*(h) on

H* = Hg, ® L*(M \ B(0, Ry))

as in [21] where M = (R/RZ)" for some R > Ry. Let N(P!(h),I) denote the number of
eigenvalues of P¥(h) in the interval I, we assume

g\nf/2
(2.3) N(PHh), [=A, M) = O((A/1?)
for some number nf > n.

Under the above assumptions on P(h), the resonances close to the real axis can be defined
by the method of complex scaling (see [19] and references given there). They coincide with the
poles of the meromorphic continuation of the resolvent (P(h) — 2)~! from Imz > 0 to a conic
neighbourhood of the positive half axis in the lower half plane. The set of resonances of P(h)
will be denoted by ResP(h) and we include them with their multiplicity.

Suppose that the operator P satisfies our assumptions with A~ = 1. The wave group of P can
be defined abstractly by

0 I DU@®) U(t . ([ sinty/P
(2.4) L{(t):exp(P 0)=<D§Ugt)) th(f()t)) with U(t):z( = )

), for A\>1,

As usual we define the iterated domain by
(2.5) DF = (P +4) 7 H.

3. EXPANSIONS OF SCATTERED WAVES

We first recall the result on expansions of scattered waves in odd dimensions. It is due to
Lax-Phillips [7] who proved it using their semi-group, and Vainberg [27] who provided a direct
argument. In the obstacle case, the hard problem of showing that the classical non-trapping
implies the “quantum” non-trapping (3.1) was resolved by Andersson, Melrose, Morawetz, Ral-
ston, Sjostrand, Strauss and Taylor — see [10], [7, Appendix to 2nd Edition], and references given
there.

In the context of black-box scattering we consider the following “quantum” non-trapping
condition: Let x € C§°(R™) be identically one near B(0, Ry).

Ya>Ry, ly<a 3C, >0
(3.1) Ut,z,y) € C™if |z| <t —Cy,ly| > Ro
xU(t)x : H = D>
Theorem 3.1. (Lax-Phillips [7], Vainberg [27]) Assume the nontrapping condition (3.1) and let

x € C(R™) be identically 1 in a neighbourhood of B(0,Ry). Then, for any A > 0 and small
€ > 0, we have for t > 0 sufficiently large, and g € H

M;
XUxg= Y. > e€it™xw;m+ Ea(t)g

2j ERes(P) m=0
ImA<A
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where wj ., € D™ are the resonant states corresponding to \j, and Ex(t)g is the error term
satisfying the following estimate

NEA®) |3z < Cle)e A=

By resonant states we mean the elements of the range of the residue of the continuation of
(P —=2*)~1 at A;. In particular,

(P =)™ wjm = 0.
To formulate the result in trapping situations let us first give a “quantum” trapping condition:
(3.2) 3 €Res(P) Im); = O(|]\;|™N) for any N > 0.

This assumption is made in order to make the expansion non-trivial. In a great variety of
classically trapping situations (roughly speaking, whenever an elliptic closed orbit is present)
(3.2) holds, as was shown in successive generality and detail by Stefanov-Vodev [26], Tang and
the author [28], and Stefanov [25].

We also need to assume that

(33) 31 ApeRes(P)N{C : InC < ()5}, A#p, = |A—pu| > Clmax{|A] jul}) ™"
and, in the same region,
(3.4) Ja algebraic multiplicity of A < « for all A € Res(P).

Weaker assumptions are also possible but none can be verified — all that is needed is a verification
of the same assumption for the eigenvalues of the reference operator P¥, and that is believed to
be true generically. See also [29, Sect.5] for an application of the method in for spherically
symmetric metric perturbations.

Theorem 3.2. (Tang-Zworski,[29]) Assume that P satisfies the trapping condition (3.2), the
separation condition (3.3), and the condition on the uniform bound on the multiplicity of reso-
nances (3.4). Let x € C§°(R™) be identically equal to 1 near the ball B(0,Ry). Then, for any
sufficiently large M, we have

m;
(3.5) xU(t)xg = Z Z e tmw; ., + E(t)g, geDM,
m=1

)‘j EResP
Imx; <A~ K
for some K depending on k, o and nt. As in the nontrapping case, Wjm s are the cut-off reso-
nance states associated with the resonance \; and E(t) is the error term satisfying the following
estimate
Cnt™™  when n is odd
(36) L = e

for any large constant N depending on M, a, | and nt.

The double sum in (3.5) should be understood as follows: the convergence of the outer sum is
absolute in £(DM,H). However we cannot control the absolute convergence of the double sums.
In principle, there could be cancellations in the inner sum.

By giving up convergence and considering instead sums of finitely many terms, with number
of terms depending on time an unconditional result can be obtained. It is slightly different
depending on finer assumptions on P which we state as three cases:

Casel | P R”\B(0,Rq) = -A R7\ B(0,Ryp) n odd
Case 2 | Plp=\B(0,Ro) = —A|r"\B(0,Ry) | M €ven
Case 3 | Plr=\B(0,R)) = Qlr~\B(0,r,) | any n
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where @ is an elliptic operator close to the Laplacian at infinity — see (2.2) with h = 1.

Theorem 3.3. (Burg-Zworski, [2]) Let P be an operator satisfying the assumptions of Sect.2
with h = 1. Let x € C3°(R™) be equal to one on a neighbourhood of B(0, Ry) and ¥ € C™ (R) be
an even function such that

(3.7 U(z)=1 {

For every M > My, there exist e = (M) > 0, a function c(t) satisfying |c(t) — t¢| < C, and
XUBEWP)x = > xRes(e " R(e), \j)x + E(t) + W(t)

Im A >—(;)
1<|Rexj|<e(®)

(3.8) XS €Res(P), Im); <0,

ER i 1 and 2
Jor @ m cases & an , U(z) =0 near0 in case 3
for x > 1 in case 3

Cptfo—€L 4 cases 1 and 3
Ct=" in case 2,

IE®#)|lpr 3 < {

where Ko is o fized constant and L is large enough in case 2, and W(t) corresponds to the
contribution from the pure point spectrum of P.

We note that when the algebraic multiplicity is equal to the geometric multiplicity we have
Res(e " R(e), \;) = e" " Res(R(s), \;),

while in general, powers of ¢ will appear in the expansion.
The term W (t) has the usual expression:

| sin(t/7,)
W(t) =i VI g 0, X,
(t) . GUZPP(P) X N (Vi) X

where II, is the orthogonal projection on the eigenspace of u.

4. SEMI-CLASSICAL EXPANSIONS

In semi-classical situations, we would like to obtain results for the Schrédinger equation, and
with errors which are small as h — 00, rather than only as t — oo. Unlike in the wave-equation
case, that is probably the best one can hope for. Since inverse of the distance to the real axis
gives the life-span of a resonance, the times at which the expansions are valid have to be large
enough to eliminate the contribution of other resonances (see the remark at the end of Sect.3).
Our method also gives an expansion of scattered classical waves in terms of scattering poles close
to the real axis. This expansion is weaker than the expansion presented in [29] but the advantage
is that it does not depend on any hard to verify conditions (which was the case in [29]).

Theorem 4.1. (Burg-Zworski, [2]) Let P(h) be an operator satisfying the assumptions of Sect.2
and let x € C°(R™) be equal to one on a neighbourhood of B(0, Ry). Let ¢ € C°((0,00)) and let
chsupp ¢ = [a,b]. We put u(z) = z or /z, with the convention that \/z > 0 for z > 0. There
exists 0 < § < c(h) < 20 such that for every M > My there exists L = L(M), and we have

xe PPy = > xRes(e ")/ R(e, h), z)x3h(P)
z€Q(h)NRes(P)
+ O'H—>7{(hoo) ) fOT' t> h’iL )
Q(h) = (a — c(h),b+ c(h)) — i[0, kM),

and where Res(f(e), z) denotes the residue of a meromorphic family of operators, f, at z.

(4.1)
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The function ¢(h) depends on the distribution of resonances: roughly speaking we cannot
“cut” through a dense cloud of resonances. Even in the very well understood case of the modular
surface (Theorem 6.1 below) there is, currently at least, the need for some non-explicit grouping
of terms. This is eliminated by the separation condition (3.3) which however is hard to verify.

5. EXPANSIONS OF ELASTICITY WAVES

By an ingenious exploitation of a pole free region, Stefanov recently obtained another uncon-
ditional result, with stronger convergence properties than in Theorem 3.3:

Theorem 5.1. (Stefanov, [24]) Suppose that for K,p, K > p, sufficiently large there are no
resonances in the region

AN)E<ImA < (n) K7,
Let x € C§°(R™) be identically equal to 1 near the ball B(0, Ry). Then,

(5.1) Y=Y 3 XRes(e " R(e),\)x + (1),

=0 Xj€EResP ,Re)jE
ImA;<(A;)—K

where I; are any sequence of intervals, I = [a;, b], a; < by < aj41, satisfying
b1 —a >a; ", k>n', Re(Res(P)N{ImA < (N }c | L.
1=0

The error term satisfies the following estimate

[ Cnt™™  when n is odd
(5.2) IE@)|lpm 3 = { Ct™™*1  when n is even ,

where M is sufficiently large and N can be made arbitrarily large by increasing M.

The existence of the intervals I; is guaranteed by the upper bound C’)(r"ﬂ) for the number of
resonances in a disc of radius r. The convergence of the outer sum in (5.1) is absolute but the
absolute convergence of the total sum is not known.

A very natural and physical example to which this theorem can be applied comes from the
work of Stefanov and Vodev [26]:

Theorem 5.2. (Stefanov, [24]) Let O C R"™ have a smooth and strictly convez boundary. Suppose
that U(t) is the wave group associated with the Neumann problem in linear elasticity. Then, in
the notation of Theorem 5.1, xU(t)x, has an expansion (5.1) in terms of resonances.

6. EXPANSIONS IN HYPERBOLIC SCATTERING

Hyperbolic scattering provides some interesting examples in which we can study resonance
expansions. It would be very interesting to find out to what extend such expansions are valid for
general Riemann surfaces.

Let Xo = H? /PSL(2;Z) be the quotient of the hyperbolic upper half plane by PSL(2;Z), and
let A be the Laplacian on Xy. To have an operator with the continuous spectrum starting at 0
we put

1

P=—A+1.

This is a natural choice for any Riemann surface and we define the wave group for P as at the
end of Sect.2.
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The scattering matrix for P is well know to be given by

(6.1) S(s) = \/7—1_11(]‘;(;)5) C(Z'(z;)l)

where T is the Euler I'-function and ( is the Riemann {-function. One consequence of this is that
the poles of the scattering matrix other than s = 1 correspond to the non-trivial zeros of {(2s).

Theorem 6.1. (Christiansen-Zworski, [3]) Let f,x € C(Xo). Then there exist v, € C°(Xo)
such that as t — oo,

) N vy sy
XU(t)f = Z AJEUZP(A) < \/m ) X(Z)QbJ(Z)(f, ¢J)

+ Z e(Sj—1/2)t(sgn(1/2—ResJ-)) Z 'U]'ktk + O(e—Nt)

s; poles of S(s) k<m(s;)—1

for any N. Here ¢; are the eigenfuctions of —A on Xj.

The second example we consider is the hyperbolic half-cylinder Y, ~ (R} ), x (R/IZ), with
metric dr? + cosh? rdf?. The analysis is equally applicable to the case of the full cylinder ¥} ~
(R), x (R/IZ)g with the same metric. In both cases the trapped set consists of one closed
hyperbolic orbit which is well known to generate resonances on a lattice (see [6] and references
given there).

In order to be consistent with our first example, we shall use as the variable s = 1/2 —ik. The
scattering matrix Sg;(s) for the hyperbolic half-cylinder with Dirichlet boundary conditions is

(6.2) Soi(s) = € sim(s)
meZ
with
63) sim(5) = 225-110(1/2 = s)T((1 + s — i2em /1) /2)T((1 + s + i27m /1) /2)
" T(s—1/2)I((2 — s —i2am /1) /2)T((2 — s + i2wm /1) /2)
and the resonances of the Dirichlet Laplacian associated to s;,(s) are £i2rm/l—n, n € 2N —1.

Theorem 6.2. (Christiansen-Zworski, [3]) Let f € C2(Y,?) and let x € C°(Y%). Then there
ezist Vp,n, Wy € C(Y,°) such that as t — oo,

U@ f = Z e(i2m7r/l—n—1/2)tvm,n_|_ Z =Pty 1 1 O (e(-A-1/2)t)
0<n<p 0<n<g
mMmEZ, n€2N—1 nE2N—1

if B ¢ 2N—1. The same conclusion holds for f € C(Y}) and A; with the resonance set replaced
by the resonance set of the full hyperbolic cylinder £2wim/l—n, m € Ny, n € Ny.
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