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On the L2-instability of fluid flows

A. Shnirelman

Tel-Aviv University

1. Introduction

1. Consider the flow of an ideal incompressible fluid in a bounded domain
M ⊂ R2 with a smooth boundary Γ. It is described by the Euler equations

∂u

∂t
+ (u,∇)u+∇p = 0; (1)

∇ · u = 0. (2)

Here u = u(x, t) is the velocity field, p = p(x, t) is the pressure, x ∈M, t ∈ R.
The boundary condition:

(u, n)
∣∣∣
Γ

= 0, (3)

i.e. the fluid slips along the boundary. The initial condition:

u(x, t)
∣∣∣
t=t0

= u0(x). (4)

This system of equations, though looking innocent, is extremely hard to
analyse. It is well known that the solution of the problem (1)-(4) exists for
all t ∈ R, is unique and regular, provided the initial velocity field u0(x) is
sufficiently regular (say, C1+ε; recall that the space dimension is 2; see [MP]).
The next problem is, how does solution behave on long time intervals, or what
is its asymptotic behavior as t→∞. This is a question of indefinite difficulty.
Its particular case is the stability problem.

Suppose u0(x) is a steady solution of the problem (1)-(4), i.e.

(u0,∇)u0 +∇p = 0; (5)

suppose v0(x) is a velocity field, satisfying (2) and (3) and close in some
sense to u0(x). Let v(x, t) be a solution of (1). (2) with the initial condition
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v(x, 0) = v0(x). The question is, whether the flow v(x, t) remains close to
u0(x) for all t ∈ R? For which flows u0 this is true?

To be more accurate, we have to define in what sense we understand the
closedness of velocity fields. Let X be a Banach space, whose elements are
incompressible vector fields u(x) in M , tangent to the boundary. We call the
steady flow u0(x) stable in the space X, or simply X-stable, if for every ε > 0
there exists δ > 0, such that if v0(x) ∈ X is a regular vector field, such that
||v0 − u0||X < δ, then ||v(t)− u0||X < ε for all t ∈ R, where v(t) = v(x, t) is
the solution of (1), (2) with the initial condition v(x, 0) = v0(x). (Note that
we do not require that the Euler equations (1), (2) are uniquelly solvable for
all v0 ∈ X.)

The linearized problem is already very nontrivial. The spectrum of the
linearized system is symmetric w.r.t. the real and the imaginary axes (the last
is due to the Hamiltonian nature of the fluid equations; see [A1]). Thus, it is
impossible to establish the true stability in any space by the linear methods;
at best we can prove the absence of a ”fast” exponential instability.

The first positive result about the true nonlinear instability was obtained
by V. Arnold [A2] and concerns the H1-instability. Suppose that X is the
space of incompressible vector fields u(x) in M , tangent to the boundary,
with the finite norm ||u||2X = ||u||2L2 + ||∇ × u||2L2 ; this norm is equivalent
to the H1-norm, due to the conditions (2), (3). (Note that X is not the
correctness class for the Euler equations.) Let us call two fields u, v ∈ X
equivortical, if there exists a volume preserving diffeomorphism ξ : M →M ,
such that ∇× u(x) = (∇× v)(ξ(x)). Note that for every solution u(x, t) of
the Euler equations, u(x, t1) is equivortical to u(x, t2) for every t1, t2, due to
the Kelvin-Helmholtz vorticity theorem. Arnold proved that if V ⊂ X is a
”leaf” of equivortical fields in X, i.e. an orbit of the action of the group D of
volume preserving diffeomorphisma, and E(u) = 1

2
||u||2L2 is the functional of

the kinetic energy, then critical points of E on V correspond to steady flows;
if a critical point u is a point of a strict local maximum or minimum of E on
V , then the flow u is stable in X. Correspondingly, we have three sorts of
stable flows: points of local maximum of E on V , points of local minimum,
and one single flow (up to proportionality) with constant vorticity (in this
case the orbit V reduces to a single point).

Thus, there are steady flows which are stable w.r.t. perturbations with
small (in L2) vorticity. But there is not less natural class of perturbations,
namely the ones with small energy (i.e. perturbations small in L2). Such
perturbations may be created, for example, by small obstacles incerted in

XIII–2



the flow, or by small, but concentrated forces. Thus, we have arrived at the
problem of stability in L2. The methods used by Arnold in the proof of his
results do not work here, and there appears no reason for stability of any
nontrivial (i.e.different from zero) flow at all. And indeed, we prove that any
flow of some restricted class is unstable in L2. Suppose that the flow domain
is the strip |x2| < 1 in the (x1, x2)-plane, and we consider the flows and their
perturbations having the same period L in the x1-direction. Consider a basic
steady flow having the form u0(x) = (U(x2), 0), i.e. a parallel flow having
velocity profile U(x2). Note that among such flows there are representatives
of all three classes of the Arnold stable in H1 flows.

But situation with their stability in L2 is different. Our main result is
the following
Theorem 1. For every smooth profile U(x2) 6= const, the flow u0(x) is
unstable in L2. This means that there exists C > 0, s.t. for every ε > 0
there exist T > 0 and a smooth solution v(x, t) of the Euler equations, such
that ||v(x, 0)− u0(x)||L2 < ε, but ||v(x, T )− u0(x)||L2 > C.

Note that if X is the space of vector fields of class Hs, s > 1, then all
nontrivial flows are unstable in X as well,as it was established by H. Koch.
Thus, we see a curious, nonmonotonous change of situation with increasing
of regularity, the case s = 1 being exceptional.

2. We may define a weaker notion of instability, namely instability w.r.t.
the external forces. Consider the nonhomogeneous Euler equations

∂u

∂t
+ (u,∇)u+∇p = f, (6)

∇ · u = 0. (7)

Here f = f(x, t) is the external force.
Let X be a Banach space of vector fields, as above. We say that the

steady solution u0(x) is unstable w.r.t. external forces, if there exists C > 0,
such that for every ε > 0 there exist T > 0, and a smooth force f(x, t),
defined for 0 ≤ t ≤ T , such that

∫ T

0
||f(·, t)||Xdt < ε, (8)

and if u(x, t) is a solution of (6), (7), satisfying u(x, 0) = u0(x), then ||u(x, T )−
u0(x)||X > C.
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Our next result is the following
Theorem 2.Every nontrivial parallel flow with profile U(x2) 6= const is L2-
unstable w.r.t. external forces. Moreover, suppose that u0(x), v0(x) are two
parallel flows, whose velocity profiles U(x2), V (x2) satisfy

∫ 1

−1
U(x2)dx2 =

∫ 1

−1
V (x2)dx2, (9)∫ 1

−1

1

2
U2(x2)dx2 =

∫ 1

−1

1

2
V 2(x2)dx2, (10)

i.e. these flows have equal energies and momenta. Then for every ε > 0
there exist T > 0 and a smooth force f(x, t), defined for 0 ≤ t ≤ T , such
that if u(x, t) is the solution of (6), (7), satisfying u(x, 0) = u0(x), then
u(x, T ) = v0(x), and ∫ T

0
||f(·, t)||L2dt < ε. (11)

Thus, not only are parallel flows unstable in L2, they are perfectly con-
trollable by arbitrarily small in L2 forces. Note that this is not the case
in H1; every Arnold stable flow is stable in H1 w.r.t. external forces (this
statement is proven in the same way as the Arnold stability).

2. Constructions

1. We prove theorem 1 by constructing a flow v(x, t), which is initially
close in L2 to u0, and after some (may be long) time T deviates considerably
from it. This is done by the variational method.

Let D be the group of volume preserving diffeomorphisms of the flow
domain M . This is an infinite-dimensional manifold, and its tangent vec-
tors may be identified with vector fields in M , which are incompressible and
tangent to the boundary. The manifold D may be endowed with a Rieman-
nian L2-metric: for every tangent vector V , i.e. vector field v(x), we define
|V | = ||v||L2 . The fluid flow is a curve ξt ∈ D, 0 ≤ t ≤ T . For every flow
ξt, 0 ≤ t ≤ T ,let

J{ξt} =
∫ T

0

1

2
||ξ̇2

t ||2L2dt (12)
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denote the action. The fluid motion in the absence of external forces is
defined by the Hamiltonian principle: δJ{ξt} = 0, provided δξ0 = 0, δξT = 0.
In other words, ξt is a geodesic trajectory (see [A2, AK]).

The simplest way to construct a geodesic on a Riemannian manifold is
the following: we fix two points on the manifold, and look for a curve of min-
imal length connecting them (then after appropriate parametrization this
trajectory delivers minimum to the action). This approach meets consider-
able difficulties in 3 dimensions (see [S], [AK], [B]); so, it should be applied
with care.

The L2-metric on the group D is right-invariant; therefore, we can always
assume that the initial position of fluid ξ0 is the identity diffeomorphism Id.
However, for our present purpose it is better to consider ξ0, ξT of different
form. Let us look for the fluid map ξt : M →M in the form

ξ(x1, x2, t) = (x1 +N · s(x1, x2, t), h(x1, x2, t)), (13)

where N is a constant assumed to be big enough, and s(x1, x2, t), h(x1, x2, t)
are smooth functions, periodic in x1 with period L. The incompressibility
condition, together with the boundary conditions h(x1,−1, t) = −1, h(x1, 1, t) =
1, expressing the fact that ξt is a diffeomorphism, is enough to define h(x, t),
provided s(x, t) is given. So, we can express h(x, t) as

h = F{s}, (14)

where F is some nonlinear integro-differential operator.
Thus, we have a variational problem for one scalar function s(x, t):

I{s} =
∫ T

0

∫
M

1

2
[|ṡ|2 + | ˙F{s}|2]dxdt→ min. (15)

Suppose s(x, 0), s(x, T ) are given, and T is of order N (say, T = Nt0,
where t0 is chosen later). Let τ = t/Nt0, σ(x, τ) = s(x,Nt0τ). Then we
obtain for the function σ(x, τ) the following variational problem:

K{σ} =
∫ 1

0

∫
M

1

2

(
| ∂
∂τ
σ|2 + ν2| ∂

∂τ
Φ{σ}|2

)
dxdτ → min, ν =

1

Nt0
,(16)
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where Φ is a properly renormalized operator F . Boundary conditions: σ(x, 0) =
σ0(x), σ(x, 1) = σ1(x), where σ0, σ1 are given smooth functions.

For ν = 0 we have a simple problem with solution σ0(x, t) linear in t. For
ν small enough, we may apply simple considerations of convexity to proof
that the local minimum is achieved at some close σ.

Now we can describe our construction. Suppose the flow u0(x) has a
smooth velocity profile U(x2) 6= const, and U ′(x2) < −c < 0 for a ≤ x2 ≤ b
(the case U ′ > c > 0 is considered similarly). We are going to define the func-
tions σ0(x1, x2), σ1(x1, x2) so that the flow, corresponding to the minimum
action, is close at t = 0 to u0(x), but for t = T deviates considerably from
it. First of all, fix a (big) number A; it is fixed, while N is growing. Let us
choose an integer n, and sufficiently small positive constants δ1 << n−1, δ2.

Now let us define σ0(x), σ1(x) as follows

σ0(x1, x2) =



Ax2,
if − 1 ≤ x2 ≤ a;

Aa+ x2−a
n
,

if a+ δ2 < x2 < b− δ2,
and 0 < x1 <

L
n
− δ1;

Aa+ b−a
n

+ x2−a
n
,

if a+ δ2 < x2 < b− δ2,
and L

n
< x1 <

2L
n
− δ1;

. . . . . . . . . . . . . . . . . . .

Aa+ (b− a)n−1
n

+ x2−a
n
,

if a+ δ2 < x2 < b− δ2,

and L(n−1)
n

< x1 < L− δ2;

Aa+ (b− a) + A(x2 − b),
if b < x2 < 1.

(17)

For other x we continue σ smoothly, so that ∂σ
∂x2

> 0, and |∇σ| < C(δ−1
1 +

δ−1
2 ).

The function σ1(x1, x2) is defined as follows:
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σ1(x1, x2) =



Ax2 + U(x2),
if − 1 ≤ x2 ≤ a;

Aa+ x2−a
n

+ U(a+ b−a
2n

),
if a+ δ2 < x2 < b− δ2,

and 0 < x1 <
L
n
− δ1;

Aa+ b−a
n

+ x2−a
n

+ U(a+ 3(b−a)
2n

),
if a+ δ2 < x2 < b− δ2,
and L

n
< x1 <

2L
n
− δ1;

. . . . . . . . . . . . . . . . . . .

Aa+ (b− a)n−1
n

+ x2−a
n

+ U(b− b−a
2n

),
if a+ δ2 < x2 < b− δ2,

and L(n−1)
n

< x1 < L− δ2;

Aa+ (b− a) + A(x2 − b) + U(x2),
if b < x2 < 1.

(18)

These boundary conditions have the following meaning. The flow domain
M may be regarded as a cylinder [−1, 1]× (R/LZ). Let us draw on M the
line Γ0 having equation

x1 =



NAx2 (mod L),
if − 1 ≤ x2 ≤ a;

NAa+N(x2 − a) (mod L),
if a+ δ2 < x2 < b− δ2;

NAa+N(b− a) +NA(x2 − b) (mod L),
if b ≤ x2 ≤ 1.

(19)

In the intervals a < x2 < a + δ2 and b − δ2 < x2 < b this function is
continued smoothly. If we cut M along this line, we obtain a strip Σ0, doing
NA(2 − b + a) + N(b − a) revolutions. The width of Σ) is equal to 1

NA
for
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x2 ≤ a and x2 ≥ b, and it is equal to 1
N

for a + δ2 ≤ x2 ≤ b + δ2. This
strip is, in its turn, cut into n substrips Σ0

1, · · · ,Σ0
n. In the domains x2 < a

and x2 > b all these substrips have the same width, and their boundaries
are parallel to the line Γ0. But in the domain a + δ2 < x2 < a + b−a

n
− δ2

the substrip Σ0
1 occupies almost all the width of Σ0, while other substrips

Σ0
i have the width of order δ2

nN
. For a + b−a

n
+ δ2 < x2 < a + 2 b−a

n
− δ2 the

substrip Σ0
2 occupies almost all the width of Σ0, etc.

The line Γ0 is the image of the line x1 = 0 under the mapping (x1, x2) 7→
(Nσ0(x1, x2), h0(x1, x1)), while every subtrip Σ0

i is the image of the domain
L(i−1)
n

< x1 <
Li
n

(here h0(x) is the second component of the mapping ξ0,
defined uniquelly from the incompressibility and boundary conditions).

Now let us denote by Σ1
i the image of the same domain L(i−1)

n
< x1 <

Li
n

under the mapping (x1, x2) 7→ (Nσ1(x1, x2), h1(x1, x1)). This is also a strip
of variable width (having order of 1/N). This width, which we denote by
ω1
i (x1), is obtained from ω0

i (x1), the width of Σ0
i , by the shift in the x1-

direction through the distance TUi = Nt0Ui, where Ui = U(a+ 2i−1
2n

(b− a)).
The variational problem (16) has, for big N , solution which is close to

linear in τ . Let Σt
i be the image of the domain L(i−1)

n
< x1 < Li

n
at the

moment t. Then the width ωi(x1, t) of Σt
i is asymptotically (N → ∞) close

to ω0
i (x1 − Uit), and the velocity in Σt

i is all the time close to Ui. (Here we
describe the flow as if it were discontinuous. In fact, between the strips Σt

i

there are intermediate layers of thicknes of order δ1/N , where the velocity
changes smoothly.)

Now comes the main point of our construction. We have supposed that
U ′(x2) < −c < 0 on the interval a < x2 < b. This means that U1 > U2 >
· · · > Un, and Ui − Ui−1 > c(b− a)/n. We started from the system of strips
Σ0
i ; each of them has its ”thick” part, where the main part of their mass is

concentrated, in the domain a+ (i−1)(b−a)/n < x2 < a+ i(b−a)/n. If the
time T = 2N/c, then by this time the ”thick” part of every strip Σt

i will be
ahead of the ”thick” part of the next strip Σt

i+1. Using the incompressibility
condition, we find that actually the thick part of Σt

i is above the thick part
of Σt

i+1. The velocity in Σt
i is all the time close to Ui. Thus, at t = 0 the

velocity v(x, 0) is close in L2 to u0(x), while at t = T it is L2-close to the
parallel flow w(x) = (W (x2), 0), where the new profile W (x2) is obtained
from the initial profile U(x2) by the inversion on the interval (a, b):
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W (x2) =


U(x2), if − 1 < x < a;

U(a+ b− x2), if a < x < b;
U(x2), if b < x < 1.

(20)

Thus, the initial flow u0(x) is unstable in L2.
It should be noted that the perturbation just constructed is very unstable

itself. It would be desirable to find more realistic examples.
2. Theorem 2 is proven by an explicit construction of the flow.
We say that the force f(x, t) transfers steady flow u0(x) into another

steady flow v0(x) during the time T , if the solution u(x, t) of equations (6),
(7), satisfying initial condition u(x, 0) = u0(x), satisfies also u(x, T ) = v0(x).

Note first, that if U1, U2, · · · , UN are velocity profiles, and Theorem 2 is
true for every pair (Ui, Ui+1) of velocity profiles, then we can pass from U1 to
UN , simply concatenating the flows connecting Ui and Ui+1; thus Theorem 2
is true for the pair (U1, UN). Therefore it is enough to construct the sequence
of steady flows with profiles U1, · · · , UN , and the intermediate nonsteady flows
connecting every two successive steady ones.

Note also, that it is enough to construct a sequence of piecewise-smooth
flows, for it is not difficult to smoothen them, so that the necessary force will
have arbitrarily small norm in L1(0, T ;L2(M)).

As a first step, we change the flow with the profile U = U1 by a piecewise-
constant profile U2 with sufficiently small steps; this may be done by a force
with arbitrarily small norm.

Thus, U2(x2) is a step function, U2(x2) = U
(k)
2 for x

(k−1)
2 < x2 < x

(k)
2 , k =

1, · · · , K. Every next profile Ui is also a step-wise function. We are free to
subdivide the steps and change a little the values of velocity, if these changes
are small enough.

Every flow uk is obtained from the previous one uk−1 by one of two oper-
ations, described in the following theorems.

Theorem 3. Let U(x2) be a step function, U(x2) = U (k) for x
(k−1)
2 <

x2 < x
(k)
2 ; let V (x2) be another step function, obtained by transposition of

two adjacent segments [x
(k−1)
2 , x

(k)
2 ] and [x

(k)
2 , x

(k+1)
2 ]. Let u(x1, x2), v(x1, x2)

be parallel flows with velocity profile U(x2), V (x2). Then for every ε > 0 there
exist T > 0 and a piecewise-smooth force f(x, t), such that

∫ T
0 ‖ f(·, t) ‖L2<

ε, and the force f transfers the flow u into the flow v during the time interval
[0, T ].
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To formulate the next theorem, remind the law of an elastic collision of
two bodies. Suppose that two point masses m1 and m2, having velocities
u1 and u2, collide elastically. Then their velocities after collision will be
v1 = 2u0 − u1, v2 = 2u0 − u2, where u0 = (m1u1 + m2u2)/(m1 + m2) is the
velocity of the center of masses. The transformation (u1, u2) → (v1, v2) is
called a transformation of elastic collision.

Theorem 4. Suppose that the profile U(x2) is like in Theorem 3, and

the profile V (x2) is equal to U(x2) outside the segment x
(k−1)
2 < x2 < x

(k+1)
2 ;

on the last segment, V (x2) = v(k), if x
(k−1)
2 < x2 < x

(k)
2 , and V (x2) = v(k+1),

if x
(k
2 ) < x2 < x

(k+1)
2 , where (v(k), v(k+1)) is obtained from (u(k), u(k+1)) by

the transformation of elastic collision, the lengths x
(k)
2 − x

(k−1)
2 , x

(k+1)
2 − x(k)

2

playing the role of masses m1,m1. Let u(x1, x2), v(x1, x2) be parallel flows
with profiles U(x2), V (x2). Then for every ε > 0 there exist T > 0 and a
force f(x, t), such that

∫ T
0 ‖ f(·, t) ‖L2< ε, and the force f transfers the flow

u into flow v.

Suppose now, that U(x2) and V (x2) are two velocity profiles, having
equal momenta and energies. Then it is not difficult to construct a sequence
of step functions U2(x2), U3(x2), · · · , UN(x2), so that U2 is L2-close to U1 = U ,
UN is L2-close to V , and every profile Uk is obtained from Uk−1 by one of
two operations, described in Theorems 3 and 4. Using these theorems and
the notes above, we construct a piecewise-smooth force f(x, t), such that∫ T

0 ‖ f(·, t) ‖L2 dt < ε, and f transfers U into V during the time interval
[0, T ].
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