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1 Introduction

The Strichartz estimates for the wave equation are L? estimates which contain information
related to the dispersion phenomena. In the constant coefficient case such estimates are
global and scale invariant. For operators with variable coefficients, however, similar esti-
mates are only known to hold only locally. Nevertheless, it seems reasonable that the global
Strichartz estimates should also hold provided that the coefficients are asymptotically flat
at infinity and that some nontrapping condition holds. The aim of these notes is to describe
some recent results in this direction. Our assumptions on the coefficients, as well as our
results, are scale invariant. These results are likely not optimal, but we hope they are a good
starting point for further investigations.

Denote by (t,z) = (t,x1,- - - x,) the coordinates in R x R". The Strichartz estimates for

solutions to the homogeneous wave equation in R x R"
Ou=0 w(0) =ug  u(0) = ug
have the form

IIDF~Pullzoze) < Vuollz2 + [Juallz2 (1.1)
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Such an estimate holds for all pairs (p, p, ¢) satisfying the relations 2 < p < 00, 2 < ¢ < 00

and

1 n n 2 n-—1 n—1
T R (12
P q 2 P q 2

with the exception of the forbidden endpoint (1,2,00) in dimension n = 3. All (p,p,q)
satisfying these relations are called in the sequel Strichartz pairs. If the equality holds in the
second part of (1.2) then the corresponding pair is called a sharp Strichartz pair.

A straightforward consequence of (1.1) is an estimate for solutions to the inhomogeneous

problem
Ou = f u(0) =0 u(0)=0
namely

|||D\1”’u||Lp(Lq) < | fllzrz2y (1.3)
The simplest case of (1.3) is the well-known energy estimate

|Vl Looz2y < || fllzrz2) (1.4)

However, there is a larger family of estimates for solutions to the inhomogeneous wave

equation where we also vary the norms in the right hand side,

DI ulleo,rizey < IIIDI £ (1.5)

LPA (L)

This holds for all Strichartz pairs (p, p, q), (p1,P1,q1)-

Estimates of the above type were first proved in the constant coefficient case in [1], [8].
Further references can be found in a more recent expository article [3]. The endpoint estimate
(p,q) = (2, 2(:__31)) was only recently obtained in [4] (n > 4).

In this article we are interested in the variable coefficient case of these estimates, where

we replace O by a second order operator of the form

which is strongly hyperbolic with respect to time. Then we consider functions u which solve
Ogu = f u(0) =0 u(0) =0

and we ask whether the estimates (1.1), (1.5) hold.
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If the coefficients g/ are smooth then the estimates hold locally, see [5] (except for the
endpoint). For C? coefficients, in dimension n = 2, 3, the estimates are proved in [6]. On the
other hand in [7] they are shown to fail for C* coefficients, s < 2. In [10] we show that the
full estimates hold locally in all dimensions for operators with C? coefficients. This result is
improved in [9], where the assumption on ¢ is relaxed to V2g¥ € L'(L*).

In what follows we assume that the matrices (¢¥ (¢, z)), (9% (¢, x)) ™" are uniformly bounded
and of signature (1,n). Furthermore, we also assume that the surfaces zy = const are space-
like uniformly in z, i.e. that ¢°° > ¢ > 0. This assumptions are scale invariant. The
assumption that Vg is in C° or in L!'(L*), however, is not, and is clearly insufficient to
guarantee global Strichartz estimates. What we need to add to this is some decay at infinity
for the derivatives of the coeflicients.

If we are interested in coefficients whose derivatives decay in time then a scale invariant

condition is:
t20%g(t,x)| < C

Such a condition is, however, insufficient to guarantee that the energy stays bounded. Instead

we shall use the slightly stronger condition

1
sup  [t](10%g(t,x)[2 + |0g(t, 7)]) < e (1.6)
ez P <t<2it

Then our first result is
Theorem 1. Assume that (1.6) is satisfied. Then the full Strichartz estimates hold.

A second interesting case is that of spatially decaying coefficients. This includes operators

with time independent coefficients. Then a simple scale invariant condition is
|2 [*10%g(t, z)| < C

This is again not sufficient even if the coefficients are time independent, since it does not
prevent the existence of trapped rays, or equivalently, of approximate null eigenvalues for

the corresponding elliptic operator. A slightly stronger assumption is

ZSUP [2](10%g(t, )| +[0g(t,)|) < € (1.7)

jez 7

where A; is the dyadic cylinder
Ay ={? <[z <271}
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If € is small enough then this precludes the existence of trapped rays, while for arbitrary e it
restricts the trapped rays to finitely many dyadic regions. If the coefficients are allowed to
depend on time then even prohibiting trapped rays is not sufficient for they might still stay

around for an arbitrarily long time. Thus a reasonable assumption is

There exists M > 0 such that for each null bicharacteristic ray v and

each r > 0 we have [y N {r < |z| < 2r} < Mr. (18)
Then one would hope that the following result holds, perhaps after some mild modifica-

tions:

Conjecture 2. Assume that (1.7), (1.8) are satisfied. Then the full Strichartz estimates
hold.

Observe that under the assumptions (1.7), (1.8) not even the energy estimates are
straightforward. The difficulty is that the energy can increase by (almost) a fixed factor
in an arbitrarily small time so one needs to verify that there is enough scattering so that
such energy increases cannot accumulate. The scattering information can be taken into ac-
count using L? norms in dyadic regions with respect to the spatial distance to the origin.
Consequently we introduce an L? estimate encapsulating the scattering information, as an
intermediate link in the process of obtaining Strichartz estimates.

Our motivation is as follows. Assume for a moment that we can get classical energy

estimates for our problem,
IVullpeoz2) S [1Bgullrze) + [|[Vu(0)| 22

If (1.7) holds then one can prove the Strichartz estimates uniformly in cylinders of the form
r,+ Dr]x{r<|z|<2r}, j€Z

by rescaling to r = 1 and then by applying the local estimates. The next step would be
to consider the summation over j. This can be taken care of if the energy of u over such
cylinders is square summability with respect to 7. In the constant coefficient case and odd
dimension this is a consequence of Huygens principle; the argument can also be adapted to
even dimension. Thus it is not unreasonable to hope that a similar phenomena happens
in the variable coefficient case under suitable assumptions on the coefficients. Note that a
similar argument cannot be made for the summation with respect to dyadic values of 7.
Based on the above discussion we introduce the space X with norm

_1
lul|x = sup r 2||u||L2(R><{r§|cc|§2r})
r dyadic



The dual space X' has norm

1 fllx = Z 72 || fll L2 @x fr< 2 <2r))

r dyadic

Then we introduce the following energy estimates:
n=2_n+1 _3
[Vullzeo@onx +llr = 7 ulle + |lr200ullz: S |Pullprwyx +[Vu(0)2 - (1.9)

where p =2 forn >4, p=2+4+¢cforn =3 and p =4 for n = 2. In a way these are the
hyperbolic counterparts of the local smoothing estimates for the Schroedinger equation.

Then we can prove that

Theorem 3. Assume that (1.7) holds and that (1.9) is satisfied whenever the right hand
side is finite. Then the full Strichartz estimates hold for O,.

This result allows us to reduce the Strichartz estimates to the energy estimates in (1.9).
What would be left is to show that (1.7) together with the nontrapping condition (1.8)
imply the energy estimates (1.9). Unfortunately for now we have to contend ourselves with

a weaker result, namely

Theorem 4. Let n > 4. Assume that (1.7) holds with an € which is sufficiently small. Then
the energy estimates (1.9) are satisfied.

The proof uses only the bounds on the first derivatives of ¢ in (1.7). Obtaining the
analogue result in dimensions n = 2,3 remains an open problem for now.

In the rest of the paper we sketch the proofs of the above results. Complete proofs, and,
hopefully, more complete results will be published elsewhere. Our plan is as follows. First
we explain the energy estimates, which play an essential role in our arguments. Next we
reduce the estimates to their dyadic counterparts, in which the coefficients are truncated
in frequency in a way which is related to the paradifferential calculus. Then we show how
one should adapt the argument in [10], based on the FBI transform, in order to prove
Theorem 1. Finally, we indicate how one can use the energy estimates in (1.9) combined
with the local Strichartz estimates to reduce the proof of Theorem 3 to the study of high
frequency solutions which are microlocalized near outgoing bicharacteristics which are close
to the radial direction. Modulo this reduction the proof of Theorem 3 is quite similar to the

proof of Theorem 1.



2 Global energy estimates

In this section we prove the global energy estimates which correspond to (1.6), respectively

(1.7). We start with the easier case, namely

Lemma 1. Assume that (1.6) holds. Then

IVulloe(zzy S VU022 + [[Bgull ) (2.10)

Proof. We define the positive definite energy functional

1 L
Ey(u(t)) = 3 /goo\atu|2 - Z 9" ud;udz

4,j=1
Then a simple computation yields

d
B w®) 5 [ 1Vgl|Vuf? + ol 5, ulds 211

After using Cauchy-Schwartz and then Gronwall’s inequality for E(u(t))? this gives
Bo(u(t)* < e(Bo(u(0))? + [[Oulzxosza)elo Voot

By (1.6) this implies (2.10). O
We continue with the proof of Theorem 4. First we do a change of coordinates which
simplifies somewhat the analysis. More precisely, we want to replace the condition (1.7) with

the stronger condition

ZSEP [[(16°g(x) | + 19g]) + |9 — I| < € (2.12)

jez
This is achieved in the following

Lemma 2. Let g satisfy (1.7) for a sufficiently small €. Then there exists a change of
coordinates x satisfying the following conditions:

(i) x({z = 0}) = {z = 0}.

(11) |2|*10° x| <€ fira > 1.

(#ii) The function x*g satisfies (2.12).



The desired energy estimate (1.9) follows if we prove that
IVa(T)llz2 + | Vulxom + llz] 2 9pull 2 S [Pullxio + | Vu(0)]z2 (2-13)

holds uniformly with respect to 7" > 0. This is a consequence of the next lemma.

Lemma 3. Assume that (1.7) holds with € sufficiently small. Fiz C' > 0 sufficiently large.

Then for each nonnegative sequence {a;};cz satisfying

Zaj§1

there exists a time dependent energy functional E so that
C7H[Vu(t)|7: < E(u(t)) < C|[Vu(®)]|z:

and

GE@®) < [ 1@1Vaide 07 a0 + Yo [ el Vutt)ldo
a (2.14)

Indeed, if (2.14) holds then integrating it from 0 to 7" we obtain
3 1
IVa(T) |y + N2 00u(8) | Fao ey + D aslllz] 2 Va(®)Pderaqorixa,) <
jez

CH VO ey + [ [ 10 1Vult)idoit)

Replace a; by %(aj +b;) and use Cauchy-Schwartz to get

_3 1 1
IVu(T) |72y + || 239U(t)||%2([o,T]an)+§Zaj||\w\ 2Vu(t)|*dzaorixa,) <
JET.
1 _ 1
CZ(HVU(O)“%?(W) + 2 ij 1|Hx‘Zf(t)||%2([0,T]><Aj))
JEZ

If we maximize the left hand side with respect to {a;} and minimize the right hand side with
respect to {b;} then we obtain exactly (2.13).



Proof of Lemma 3. Observe first that without any restriction in generality we can assume
that

sup |z||Vg| + |g — I,,| < 2ea; (2.15)
A

In addition we also make the simplifying assumption

=1 g¢¥=0, j=1In

Our argument can be modified to obtain the general case.

We seek an energy functional E of the form
E = Ey+ pky
where p is a small parameter, Ej is defined as above and

1
Ju - Qyudx

n —
Eiu(t) = [ 0@+
Here the function b is nonnegative, increasing, so that

<bry<1, 0<H(r)< (2.16)

N | =
S|

and
V(r) > crtaj, V'(r) <0 in [27,271] (2.17)

To construct a function b with these properties, start with

1-(1-7%) r<1

bo(r):{1 r>1

Then the function
_ 1.1 —j-2
b(’l")—i"‘ﬁ;a‘?bo(? 7")

has the desired properties.
Lemma 4. Assume that € is sufficiently small. Let b satisfy (2.16), (2.17). Then
IZIgM >3 n>4 (2.18)
r

juliy bl



Proof. We can replace O, by O at the expense of an error controlled by e times the right
hand side in (2.18). But

- 0 wyh -k

and (2.18) follows.
Next we verify that E is positive definite. Since p is small, we only need to show that

I~ ull L2y S 110wl 2y
But this reduces to the one dimensional estimate
1™ w2y S ™ Opull oy
which in turn follows from the straightforward identity
n—3 n—1 n—3
—2<r 7 ur? 0u>=(n-=2)|r? ulmw

Now compute the time derivative of the energy. For Fy we combine (2.11) with (2.15) to get

d

EEO( u(t)) < ‘f||Vu\dx+6Jz€;aj/ 2|t Vul2dz) (2.19)

On the other hand,

-1
iEl( (t) = / b(r)(0,0pu - Oyu + Opu - OFu + n—(\&:u|2 +u - 02u)) dx
dt R7 2r
iy —1 .
= / b(r)(0,0¢u - Opu + Oru - 0,97 0ju + %(@UF + u - 0;g"0ju))
R‘I’L
+ b(r) (9 “u)f do
b n— 1 9 g g
= 5((9? + " )(|0wu|” — g% 0ju - Oju) — [0, b0, Ju - g7 0ju
Rn
— g —1
— @ 2T1)b)u 9905+ b(r) (Oru + ) f da
b'(r)

y b ) .
(|0sul® — g Osu - Oju) — Q(@Zu - g7 0ju — Opu - x?gmaju)

_ /Rn_

oy i g — (o, 1By o (n—1)b
b'(r)0yu 9 dju — (O, . Ju® +b(r)(0yu + o u)f dz




Then, using (2.15), (2.16), (2.17) and (2.18) we get

d

-1 2 -3 2 —1 2
GE(0) < —c([ Jol Iau +[o] fu 3 J, tet v

+ C \f\(\VuH—M) dz
Rn T

for n > 4. OJ

3 Localization in frequency

In this section we describe how to do a Paley Littlewood decomposition of the solution and
reduce the problem to appropriate dyadic estimates. Consider first the case when (1.6) is
satisfied. Start with a smooth function ¢ in Rt which is supported in [0, 2] and equals 1 in
[0,1]. Then define the symbols

© =) ~a(Sh, a@) =a®)

supported in {|£| € [\, 4A]} respectively {|€| < 2)A}.

Starting with the coefficients ¢ we want to define regularized coefficients gf\j which are
1

essentially truncated in frequency at the scale max{\, (| tl) ’ }. This can be done as follows.

First for d > 0 we define the coefficients gd which are regularized at time scales below d by

g7 (t,@) = (1= 4a(t))g”(t, ) + aa(t) 9" (d, )

Then we set
gg\] = @)1 (t)Q)\g;]_l + Z Szk)rlQT%)\g;]k)\q
k>0

To avoid further difficulties at t = 0 we work with the even extension of ¢¥. It is easy to see

that the regularized coefficients satisfy

d>x—1
sup |g¥ — ¢"| + Z A sup |g¥ — g7 <e (3.20)
[t/<A—t d dyadic [t|€[d,2d]
d>x—1 -
A7t sup [9gY| + Z d sup |0g7| Se (3.21)
[t<A—t d dyadic  1tI€[d:2d]
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and

d>x—1
.. ol ..
sup [0%¢Y|+ E (Ad) = sup 07| S e, ol >2 (3.22)
[t<A—t d dyadic [t|€[d,2d]

To state the estimates we want to prove introduce the space X with norm

_1
|lullx = sup d 2||u||L2({d§t§2d})
d dyadic

and the dual space X’ with norm

1
ullx = Z d7||ullz2({a<t<2ay)
d dyadic

Consider the following form of the Strichartz estimates:
DI ullzozey S 1IVullx + [[Tgullx (3.23)
We would like to reduce this to its dyadic counterparts,

NN Shullzozey S AllSxull + [[Ogy Saul| (3.24)

_1 1
X+A"2L2 X'NA2 L2

The spaces are modified in the time scale {|t| < A™'} because the regularized coefficients gy
have uniform regularity on that scale. What we need is to obtain square summability with
respect to dyadic values of A\. The difficulty is that it is impossible to achieve such square
summability for the X norms. Fortunately we can truncate u in time and assume without
any restriction in generality that u is supported away from, say, t = —oco. Then the energy
estimates in Lemma 1 show that the first right hand side term in (3.23), (3.24) is always

controlled by the second one. Then one only needs to show that

Dol Swll, L S IVullk + [15ullk

The similar norms for SyO,u are easy to handle, so it remain to estimate the difference,

S 1O,8 ~ S0)ul?, < IVl +110,ul

This can be done using the bounds in (3.20)-(3.22).
A similar argument applies in the case when (1.7) and the energy estimates (1.9) hold,

with the obvious change that the role of the time variable ¢ is now played by r = |z|.
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4 The FBI transform and the proof of the dyadic esti-
mates

The proof of the dyadic estimates is quite similar to the proof of the local estimates in [10],
[9]. Consequently, we just outline the main steps and point out the differences.

The essential tool in our proof of the Strichartz estimates is the FBI transform. For
a presentation of the FBI transform we refer the reader to Delort’s monograph [2]. The
technique we use was first developed in [11]. The idea is quite simple, namely to obtain
estimates for the FBI transform of the solution. This requires conjugating the operator Oy,
with respect to the FBI transform. The first part of [11] is devoted to proving L? error
estimates for this conjugation. The novelty here is that we need to adjust the parameter in
the FBI transform as a function of z,¢. We cannot use directly the error estimates in [11],

but the new estimates we prove are similar in spirit. We first discuss the case when (1.6)
holds.

The FBI transform We define the FBI transform of a temperate distribution f in R**!
is a function in C"*! defined as

3(n+1)

(Tuf)(t = im 3 — i€) = oA "5 ()25 / ¢~ DN (54 dsdy
(4.25)

where m is a smooth function satisfying

t
sup —— < 00 10%m(t)| < com(t)]t| ™

rdyadic rts2r m(t)

This is a small departure from the usual conventions, which has the advantage that it sim-
plifies somewhat the notations.
If m = 1 then the operator T is an isometry from L?(R") into L?(C"). This in turn

implies that T is an inverse for 7). In our case this is no longer true; however,

Lemma 5. a) The operator Ty is bounded from L? into L*(C™).

b) Tx is an approzimate inverse for T in the sense that
IT57 — 1)) < A~ (4.26)
If m = 1 then the function 6%52T,\u is holomorphic,
(50, = 7€) = 8}Ty = 0

Instead for ¢ > 0 we now get

12



Lemma 6. We have

()30, ~ 7)o 7. .

1 | oam! n+1) ,
[m@)(;at N )‘7_) - 87:| T)\ =1 |:)\ 15(83 + 82) + %m T)\
Furthermore, the following estimate holds:
II- t] (m(t)(la — A1) = 0,)T||r2sz2 < 1 (4.27)
m(t) i RSN ARSI AN .

The conjugate equations Start now with the equation for S)u,
ng S}\u = f)\

with Vu € X +A~2 L2 and fe X'N A2 L2 We want to find its counterpart after conjugation
with respect to the FBI transform, i.e. an equation for 7)S\u. An analysis similar to the

one in [10] yields the conjugate equation
[)\p — (m™'pe +ipy)0c — (m ™ 'p, + z'pt)aT] w=g (4.28)

where p(z, €) = ¢%°7% + 29V 7€ + g% €€, is the symbol of the operator O,,, w = AT\S\u and
g = T fr + R)\S\u. The operator R, accounts for the error in the conjugation. The error
term does not do any harm since it has the same regularity as 7 f,.

If we use Lemma 6 we can change 9 with m(t)(30,—A£), and also 0, with m(t)(30,— A7)
modulo an additional error term. Thus we get in effect two equations from (4.28). Due to

the estimate (4.27) the additional error term is negligible in the first one,
[Ap + m H(pede + p-0;) + m(pyOy + P10y — 1Dy - € —ipe - 7)W= g1 (4.29)
but is not negligible in the second one,
[p20¢ + p0r — POy — pr (0 — L)Jw =g, onp=0 (4.30)

where

(n+1)m'
4

L=X"m((8 — iA7)? + (8 — iAE)?) —

13



The first equation is an ode along the gradient flow of p. The Ap term produces a gaussian
decay for the fundamental solution away from the characteristic cone {p = 0}. Solving the
equation (4.29) with Cauchy data on the cone yields a good bound for w away from the
cone, just as in [10].

To deal with the trace of w on the cone we need to use (4.30). The main component of
(4.30) is a transport equation along the Hamilton flow for p. Unlike in [10], here we have an
additional second order term. Modulo normal derivatives on the cone which can be estimated
from the first equation, this second order term produces a slow diffusion on the characteristic
cone forward in time for ¢ > 0. Its presence reflects the spreading of the bicharacteristic rays
for large time. Due to the A~! factor, this diffusion term is negligible within each dyadic
time interval; its influence becomes visible only across dyadic time intervals. The component
of w corresponding to the transport equation on the cone can be again handled as in [10],

provided one obtains good bounds for the regularity of the Hamilton flow.

The case of spatially asymptotically flat coefficients Here we discuss the modifi-
cations in the above approach in the case when (1.6) is replaced by (1.7) plus the energy
estimates (1.9). First observe that if we combine the local results in [10] with (1.9) then
we automatically get the Strichartz estimates in any dyadic cylinder {d < r < 2d}. The
problem is how to sum up these estimates. The summability is, however, taken care of in two
important cases, (i) for the low frequencies, because of the bound for « in (1.9), and (ii) along
bicharacteristics which are not close to the radial direction, because of the bound for the
tangential derivatives of u. This leaves only the (portions of) bicharacteristics which travel
spatially close to the radial direction. But along such bicharacteristics the geometry (i.e. the
size of the derivatives of the coefficients) resembles precisely the geometry corresponding to
(1.6).
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