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1 Introduction

If C is an abelian category, the category Ind(C) of ind-objects of C has many re-
markable properties: it is much bigger than C, it contains C, and furthermore it is
dual (in a certain sense) to C.

We introduce here the category of ind-sheaves on a locally compact space X as
the category of ind-objects of the category of sheaves with compact supports. This
construction has some analogy with that of distributions: the space of distributions
is bigger than that of functions, and is dual to that of functions with compact
support. This last condition implies the local nature of distributions, and similarly,
one proves that the category of ind-sheaves defines a stack.

In our opinion, what makes the theory of ind-sheaves on manifolds really inter-
esting is twofold.

(i) Ind-sheaves allows us to treat in the formalism of sheaves (the “six opera-
tions”) functions with growth conditions. For example, on a complex manifold X,
one can define the ind-sheaf of “tempered holomorphic functions” O% or the ind-
sheaf of “Whitney holomorphic functions” O, and obtain for example the sheaf of
Schwartz’s distributions using Sato’s construction of hyperfunctions, simply replac-
ing Ox with O%.

(ii) On a real manifold, one can construct a microlocalization functor px which
sends sheaves (i.e. objects of the derived category of sheaves) on X to ind-sheaves
on 7" X, and the Sato functor of microlocalization along a submanifold M C X
(see [9]) becomes the usual functor Hom (71 (kyr),-) (where 7 : T*X — X is the
projection) composed with px(-).

When combining (i) and (ii), one can treat in a unified way various objects of
classical analysis.

The results presented here are extracted from [7]. We refer to [5] for an exposition
on derived categories and sheaves, and to [3] for the theory of ind-objects.
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2 Ind-objects

Let U be a universe (see [8]). If C is a U-category, one denotes by C¥ the category
of contravariant functors from C to Set, the category of (U-small) sets. One sends
C into C¥ by the fully faithful functor A" : X — Hom,(-, X).

Let I be a small filtrant category and let ¢« — X; be an inductive system in C
indexed by /. One denotes by “liﬂ” X; the object of CV defined by

C2Y + limHom,(Y, X;).
iel
An ind-object in C is an object of CV which is isomorphic to such a “liﬂ” X;. One
denotes by Ind(C) the full subcategory of C¥ consisting of ind-objects and identifies
C with a full subcategory of Ind(C) by the functor h".
From now on we shall assume that C is abelian. The subcategory V%4 of CV
consisting of additive functors is clearly abelian and the functor A" : C — CV%4? is
left exact.

Since the functor Hom is left exact and filtrant inductive limits are exact, any
ind-object defines a left exact functor on C. The converse holds if C is small.

Example 2.1. Let k be a field. Define the inductive system in Mod(k) indexed by
N by setting X,, = k", with the natural injections X,, — X,,.;. Then “@”Xn is

n

the functor ¥ — lim Hom, (Y, X,). This object does not belong to Mod(k) since
there are no vector space Z such that lim Hom, (Y, X,) ~ Hom, (Y, Z) for all vector

spaces Y.

If f: X — Y isamorphism in Ind(C), one can construct a small filtrant category
I such that X = “liﬂ” X, Y = “@”Y} and f = “liﬂ” fi, with f; : X; — Y;. Then

“lim” ker f; and “lim” coker f; are the kernel and the cokernel of f in Ind(C).

Theorem 2.2. (i) The category Ind(C) is abelian.

(ii) The natural functor C — Ind(C) is fully faithful and exact, and C is thick in
Ind(C).

(iii) The natural functor Ind(C) — CV-* is fully faithful and left ezact.

(iv) The category Ind(C) admits right exact small inductive limits. Moreover, in-
ductive limits over small filtrant categories are exact.

(v) If small products of objects of C exist in Ind(C), then Ind(C) admits small
projective limits and such limits are left exact.
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We shall denote by “lim” the usual inductive limit in Ind(C). With this conven-

tion, one can identify C with its image in Ind(C) by h" without risk of confusion.

Consider an additive functor F' : C — C'. It defines an additive functor I'F :
Ind(C) — Ind(C'). If there is no risk of confusion, we shall write F' instead of IF.
If F' is right exact, or left exact, or fully faithhful, so is I F'.

We shall have to consider the derived category of Ind(C). One proves that the
natural functor D°(C) — D%(Ind(C)) is an equivalence.

Even if C has enough injectives, we cannot prove that Ind(C) has the same
property. However, quasi-injective objects, i.e. ind-objects which are exact functors
on C, are sufficient for many applications.

3 Ind-sheaves

Let X be a locally compact topological space which is countable at infinity. Let k
be a field and let A be a sheaf of commutative k-unitary algebras on X.

One denotes by Mod(.A) the abelian category of sheaves of .A-modules, and by
Mod“(A) the full subcategory consisting of sheaves with compact support.

We call an object of Ind(Mod®(\A)) an ind-sheaf on X and we set for short:

I(A) := Ind(Mod®(A)).

If U is an open subset of X, one defines the restriction of F' to U as follows. If
F = “@”E, one sets
Fly =" lim "(Fiv|v).
i,vccu

Then one proves that for F and G in I(A), the presheaf U — Hom; , (F|v, G|v)
is a sheaf. We shall denote it by Hom (F, G).

In fact, there is a better result: U +— I(A|y) is a stack. Roughly speaking, this
means a sheaf of categories.

Note that Ind(Mod(.A4)) is not a stack.

Example 3.1. Let X = R, and let A = kx. Let F' = kx, G = Ejpqoo, G =
“liﬂ” Gp. Then G|y = 0 for any relatively compact open subset U of X. On the

other hand, HomInd(Mod(kX))(kX, G) ~ @Homkx(kX, Gn) ~ k.

We construct the functors

ix i Mod(A) = I(4), ixF = lim "Fy,
UCccx

ax : I(A) — Mod(A4),  ax(‘lig"F) = lim F.
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The functor ax admits a left adjoint Gx : Mod(A) — I(A).
These functors satisfy:

(i) tx and ax are exact, fully faithful, and commute with lim and Jim,

(ii) By isright exact, fully faithful and commutes with lim, and if A is left coherent,

[x is exact.
(iii) ax is left adjoint to ¢x and is right adjoint to (x,

(iv) ax oitx ~1id and ay o Bx =~ id.

If 7 is locally closed in X and F'is a sheaf on X, recall that the sheaf F; is 0 on
X \ Z and is isomorphic to F|z on Z. We set

Az = Bx(Az).
Since (x is right exact and commutes with liﬂ, it is characterized by its values on

the sheaves Ay, U open. If U is open and S is closed, one has

Ay ~ ¢ limy " Ay, V open, and Ag ~ “@”Av, V open.

vccu VoS

Note that VZ(/J — Ay is a monomorphism and ;4\; — Ag is an epimorphism.

Example 3.2. Let X be a real manifold of dimension n > 1 and let A = kx. For
short, we shall write k; instead of (kx)z. Let a € X. Define N, € I(kx) by the
exact sequence

0— Na — k{a} — k{a} — 0. (3.1)

The derived functor RHomI(kX>(-, -) is well-defined and moreover if G and F; are
sheaves on X,

kx

H*RHom,, (G, @F) ~ li%H’“RHom i (G ). (3.2)

Since heﬂv H?a}(X; k) # 0, we find that the morphism l;{; — k{q) is not an isomor-
phism, hence N, # 0.

On the other hand, for any open neighborhood U of a, we have

RHomI(kX)(kU, N,) ~ 0.
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4 Operations on ind-sheaves

We define the functors internal tensor product, denoted ®, and internal Hom , de-
noted Zhom

®:1(A) x [(A) — I(A),
Thom :1(A)® x I(A) — I(A),

by the formulas:

té@’?ﬂ ® u:mn G] — u:mn (E ® G]),
Ihom(“liﬂ”Fi, unml?ij) — @1 u:mnHom (E,G])

One has:

axThom (F,G) ~ Hom (F,G).
The functor @ is right exact and commutes with “lim” and the functor Zhom is left
exact. The functors ® and Zhom are adjoint:

Homy , (F' ®, K, G) ~ Homy , (G, Thom 4(K, G)),

Now consider a continuous map f : X — Y of locally compact spaces, and
assume A = f~1B, for a sheaf of rings B on Y.
ItG = “liﬂ” G is an ind-sheaf on Y, we define

f71G = “lin” (f'Gi)v. U €C X, U open.

The functor f~! : I(B) — I(A) is exact and commutes with “liy” and ®. Moreover,

it commutes with the functors ¢, a and /3.
It F= “@”E is an ind-sheaf on X, we define:
i

f*F = @L‘ml”f*ﬂl(v K compact.
K i
The functor f, : I(A) — I(B) is left exact and commutes with lim. Moreover, it

commutes with the functors ¢ and a.
The two functors f~! and f, are adjoint. More precisely, for F' € I(A) and
G € 1(B), we have

Homy  (f7'G, F) = Homy (G, f.F).
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If F= “liﬂ”Fi is an ind-sheaf on X, we define fF' by the formula
f!! unmn& — L‘li%n”l” f'E

Note that the natural morphism fiyex F' — ¢y fiF' is not an isomorphism in general.
The functor fy is left exact and commutes with “liﬂ”. Moreover, it commutes with

the functor «.
There is a base change formula as well as a projection formula for ind-sheaves.

Example 4.1. For F € I(kx) and = € X set F, = j'F, where j, : {} — X. Let
N, be as in Example 3.2. Then (N,), ~ 0 for all z € X. On the other hand, one

shows that the functor F' — [] . (£ ® k(,y) is faithful.

5 Construction of ind-sheaves

We assume that X is a real analytic manifold and denote by 7 the family of open
relatively compact subanalytic subsets of X. We denote by R-C(kx) the (small)
category of R-constructible sheaves of k-vector spaces on X and by R-C¢(kx) the
full subcategory consisting of R-constructible sheaves with compact support. Note
that for any F' € R-C(kx) there is an exact sequence F' — F° — F — 0, with
F9 and F! finite direct sums of sheaves ky with U € T.
We set
Ig-c(kx) = Ind(R-C°(kx)).

The natural functor ¢ : R-C°(kx) — Mod(ky) defines the fully faithful exact
functor

L Tpeo(kx) — (k). (5.1)

On the other hand, the forgetful functor Mod‘(kx)¥ % — R-C*(kx)"**¥ induces a
functor

p: I(kX) — IR—c(kX)- (52)
The next theorem formulates a previous result of [6] in the language of ind-sheaves.

Theorem 5.1. Let F' be a presheaf of k-vector spaces on T . Assume:

(i) F(2)=0,

(ii) for any U and V in T, the sequence 0 — F(UUV) — F({U)® F(V) —
F(UNYV) is exact.
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Then there exists Ff € In_.(kx) such that for any U € T,

Hom, . (kv Ff) = F(U). (5.3)

kx

We denote by F'* the image of Fif in I(kx) by the functor ¢ of (5.1). If D is a
sheaf of (not necessarily commutative) k-algebras and F' a presheaf of D-modules,
then F'* belongs to Mod(D, I(kx)), the subcategory of I(kx) of ind-sheaves endowed
with a D-action. Recall that F' € Mod(D,I(kx)) means that F' is endowed with a
morphism of sheaves of unitary rings D — Endy, ) (F).

6 Some classical ind-sheaves

In this section, the base field k is C. We denote by C§ the sheaf of complex valued
functions of class C*°, and by Dx the sheaf of real analytic finite-order differential
operators.

(a) Let f € C®(U). One says that f has polynomial growth at p € X if for
a local coordinate system (zy,---,z,) around p, there exist a sufficiently small
compact neighborhood K of p and a positive integer N such that

sup, excner (dist (v, X \ U)"|f ()] < oo. (6.1)

We say that f is tempered at p if all of its derivatives are of polynomial growth at
p. We say that f is tempered if it is tempered at any point of X. One denotes by
C>*(U) the C-vector subspace of C*°(U) consisting of tempered functions. By a
theorem of Lojaciewicz, the contravariant functor C>*(-) defined on the category T
of open relatively compact subanalytic sets is exact. Hence, we may apply Theorem
5.1, and we get an ind-sheaf:

CX" € Mod(Dx,I(Cx)).

(b) If S is closed in X, one denotes by Z2°(X) the ideal of C*(X) consisting of
functions which vanish on S with infinite order, and for an open subset U in X, we

set ['(X; Cy ® CY) = IX y(X). Again by a theorem of Lojaciewicz, the (covariant)
functor ['(X;- ® C¥) defined on the category 7T is exact. It extends to an exact
functor T'(X; - ® C¥) on the category R-C°(Cy) and we may define

CX™ € Mod(Dx, [(R-C(Cx)))

by the formula
CE™(F) = T(X; HY(D'F) ® C)
where I € R-C°(Cx ) and D'F = RHom_(F,Cx).
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(c) Similarly, replacing ® by ® in the above formula, we find an ind-sheaf C3™
which, in fact, is isomorphic to BxC%.

(d) Now assume that X is a complex manifold with structure sheaf Oy, denote
by X the complex conjugate manifold and by X® the underlying real manifold,
identified with the diagonal of X x X. We define the objects O%, O% and by O%
considering the Dolbeault complexes with coefficients in C3*, ™ and C3¥*:

Oy = R’Hompy((’)y, CIMN, A=t,w,w.

Then, O%, 0% and O% belong to D’(Mod(Dx,1(Cx))). Note that if F is R-
constructible,
RHom (F,0%) ~ THom (F,Ox)

RHom (F,0%) ~ D'F® Oy
RHom (F,0%) ~ D'F®Ox,

where THom (-, Ox) and - ® Oy are the functors of tempered and formal cohomol-
ogy of [4] and [6], respectively.

In particular, let M be a real analytic manifold and assume that X is a com-
plexification of M. We find:

RHom (D'Cy,Ox) =~ By (Sato’s hyperfunctions),

(
RHom (D'Cyr, O%) =~ Dby (Schwartz’s distributions),
RHom (D'Cy;, 0O%) =~ (3 (C*®-functions),
RHom (D'Cy,0%) =~ Ap (real analytic functions).

Replacing Hom by Zhom we find new ind-sheaves. For example, we can define the
ind-sheaf Db, of tempered distributions by setting

DV, = RZhom (D'Cyy, O%).
Note that ax(Db;) ~ Dby;.
Remark 6.1. The object O% is not concentrated in degree 0 if dim X > 1. In fact

if C is an abelian category, a complex A’ 7> A — A" in Ind(C) is exact if and only if
9

the dotted arrows in the diagram below with X € C may be completed with Y € C
in such a way that the morphism « : Y — X is an epimorphism:

A'LA—Q>A”
A

ti s
1/
Y e d»X
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Let us apply this result to the complex

Coovtv(pfl p)

pe ) T> C;{Ovtv( C;Ovta(p+]-)
7]

-
]

and choose F' = Cy, U open in X. Assume OY is concentrated in degree 0. Then,
for any s € C>*®)(U) solution of ds = 0, there exists an epimorphism o : G—F
and ¢t € Hom (G, C>%(P~1)) such that soa = dt. We may assume G is a finite direct
sum of sheaves Cy,, with U = U;U;. We thus find that s|y, = gtj, which is in
general not possible.

Note that the same argument hold with the sheaf Oy, which shows that the
functor p in (5.2) is not exact.

7 Microlocalization

In this section, X denotes a real analytic manifold. We denote by p; and ps the
first and second projection defined on X x X and by A the diagonal. We denote by
7:TX — Xand 7 : 7" X — X its tangent and cotangent bundles, respectively. We
denote by 7Ty X and 77 X the normal and conormal bundle to a closed submanifold
Y of X. In particular, Tx X and 75X are the zero-sections of these bundles. We
shall identify Ta(X x X) with TX by the first projection on TX x TX. If S is a
subset of X', one denotes by Cy(S) the Whitney normal cone of S along Y, a closed
cone in Ty X.

We denote by wx the dualizing complex on X. (Hence, wy =~ orx[dim X].) The
micro-support SS(F') of a sheaf F' and the functor phom are defined in [5].

For a section s : X — T*X of 7, one can construct an object L, € D*(I(kxxx))
with the properties that supp Ly = A and such that

Ly ® Co-1ry x) = Co-1 (13 x)
Ly~ “@”kUﬂV ®py wx over X \ s (T} X),
U,V

where V' ranges through the family of open neighborhoods of A and U through the
family of open subsets of X x X such that:

Ca(U) C{v e T X;{v,s(x)) <0} UTxX.

One defines
Ly o G = Rpiy(Ls ® p3'G),

and one proves that for F,G € I(ky)

s tphom(F,G) ~ RHom (F, L, o G).
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Now assume that s : T*X — T*(T*X) is a section. Then s™'phom(n 'F,77'G) ~
phom(F,G). Taking as s the canonical 1-form ax on 7*X, one can then construct
an object Kx € D (I(kr«xxr-x)) and define the microlocalization functor

px : D*(I(kx)) — D*(I(kr-x)),
px(F)=Kxon 'F.

Theorem 7.1. Let F,G € D*(kx). Then

SS(F) supp fix (F),
phom(F,G) ~ RMom (ux(F), ux(Q)),
RHom (m7'F, ux (G)).

12

8 Applications

Let X denote a complex manifold of complex dimension n. On T* X there are some
classical sheaves associated with a sheaf F on X: the sheaf phom(F,Ox), or (F
being R-constructible) the sheaves tuhom(F, Ox) of [1] and wphom(F, Ox) of [2].
We can obtain all these sheaves in a unified way:

phom(F,Ox) =~ RHom (m7'F, ux(0x)),
tuhom(F,Ox) ~ RHom (1 'F, ux(0%)),
wphom(F, Ox) =~ RHom (n7'F, ux(0%)).

In particular, the sheaf £ of microlocal operators of [9] is isomorphic to the sheaf
RHom (r'Ca, pixcx (OF75)) [n].

Theorem 8.1. The complex jx(Ox)[n] is concentrated in degree 0 on T*X :=
T*X \ TiX. Moreover, ux(Ox)[n] € Mod(£%,I(Cy. ).

Corollary 8.2. Let F € D*(Cx). The object phom(F, Ox) is well-defined in the
derived category D°(£%).
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