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Gilles LEBEAU
Centre de Mathématiques

Ecole Polytechnique, UMR 7640 CNRS
91128 Palaiseau Cedex, France

1 Introduction and results

Let Q be a smooth bounded domain in R?, and p(z,y) a smooth function on
R? x R, such that

(1-1) 0 < prin < p(l‘,y) < Pmax V(x,y)

(1.2) p is 2m-periodic with respect to the second variable, i.e.

p(z,y) = p(z,y+2ml) V€L’

For ¢ > 0, let (w:, e (z)) be the spectrum of the Dirichlet problem for the
operator —p~(z,x/e)A, on L* (Q; p(x, z/e)d,x) normalized in the form

(1.3)
plz,x/e)(wp)? e; () = —Ayer,(7) in
es(r) =0 on OS2
Joen@en@)p(z,z/e)dyr = b0 3 O<wi<ws<...

Here, A, denotes the Laplace operator for some fixed smooth metric g on Q,
and dgz is the volume form associated to g.
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For any given 7y > 0, we shall denote by J the space of solutions u°(t, )
of the wave equation with oscillating density p

(pla,0/2)02 = Ay us(t,r) =0 in R, x O

(1.4)
u(t, 7)zeon = 0

with maximum frequency less than 7 /e.

In other words, J5 is the set

(1.5) S, = u(tz) = Z (Up €™ + u_ o) € (2)

ewy, <70

2 (Ry, L*(2)), of solutions of (1.4),
with lim e, = 0. It is well known that any weak limit of this sequence will
satisfy the homogeneized wave equation in 2

(1.6) {(e(x)af ~Ault,e) =0 inRxQ

Let {u;*} be a bounded sequence (in L7

U(t, x)\meaﬂ =0

where p(z) = § p(z,y)dy is the mean value of p.
Let V' be an open subset of 2, and Ty > 0.

One says that waves solution of (1.6) are observable from V in time Tj if
there exists a constant Cj s.t for any L2-solution of (1.6) one has

(1.7) /0 K /Q fut, ) Pp(a)dtdy < Co /0 K /V fut, ) () dtd,z

If u= > ug,er™ne,(z) is the Fourier series of u in the spectral decompo-
+.n

sition of (—p) ()4, this condition is equivalent to the following

3Co s.t. V(g i p)n € 2 X L2
1.8
U N Sl fu P < Co [y lu(t. o) Ppla)dtd,e
It is proved in [B.L.R.] that (1.7) holds true under the geometric-control
hypothesis

1) there is no infinite order of contact between the boundary
00 and the bicharacteristics of p(2)07 — A,

2) any generalized bicharacteristic of p()d2 — A,
parameterized by t €]0, 7, meets Vv

(1.9)
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Here the generalized bicharacteristic flow is the one defined by Melrose and
Sjostrand in [M-S].

Our main result is the following theorem, which asserts that the estimate
(1.7) remains true under the hypothesis (1.9) for p(z), for solutions of (1.4)

in J5 , if 7o is small enough.

Theorem 1.1 Let the hypothesis (1.9) be satisfied. There exist small positive
constants 7,9 and a constant Cy, such that for any e €]0,e0] and any
u® € J:

70

(1.10)
/OTO /Q s (t, 2)|*p(z, z/e)dtd,x < Cy /OTO /V (8, ) (e, 3 o) dtd,

This is clearly a stability result of the observability estimate (1.7) under the
singular perturbation p(z) — p(x,z/e). Let us recall that Theorem 1.1 has
been proved in the 1-d case by C. Castro and E. Zuazua [C-Z], and that in the
1-d case, the counter-example of Avallaneda-Bardos-Rauch shows that (1.10)
failed for o large. Indeed, in the 1-d case, when p = p(z/¢), C. Castro [C]
has shown that the greatest value of 7, such that (1.10) holds true for some Tj
(when V' € [a,b] = Q) is related with the first instability interval of the Hille
equation on the line (%)2 + w?p(y). In the multi-d case, the understanding
of the best value of o such that (1.10) holds true will clearly involved the
understanding of the localization and propagation of Bloch waves for the
boundary value problem (1.4) : this highly difficult problem is out of the
scoop of the present work.

The conserved energy for solutions of (1.4) is

(1.11) Eu’) = %/Q{|8tu€|2p(x,x/6) + |V uf P, .

Applying the estimate (1.10) to d;u®, one easily gets the energy observability
estimate

Corollary 1.1 Under the hypothesis and with the notations of Theorem 1.1,
there exists a constant Cy s.t. for any e €)0,eo] and any u® € J5, one has

To
(1.12) E(w) < Cy / / 0 P (e, ) b,
0 1%
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2 Sketch of proof

1. Reduction to a semi-classical estimate
2. The Bloch-wave
3. Lopatinski estimate

4. Propagation estimate

1. In the first part, using a Littlewood-Paley decomposition, we reduce the
proof of the inequality (1.10) to the assertion

There exist 7o, €9, ho, Co such that for any ¢ €0, &y[, and

@.1) h € [e/70, ho] the inequality (1.10) holds true for any u® € I,
2.1 .

where If=<qu*= > (upne®™n +u_, e ™n)e(z)
0.9<wrh<2.1

2. In the second part, we choose a coordinate system near the boundary

(2.2)

09 x [0, 7] — R
(', 24) — O(2', x4)

which satisfies

i) ©(02 x [0,70]) € Q
(2.3) it) for x4 small , x4 — O(z', z4) is the geodesic normal to the
boundary at 2’ € 92 , for the metric g on €.

In these coordinates, the Laplace operator takes the form

(2.4) { Ay = 32 (Ao(@)s + Ai(w,00)) + Ao, D)

r= (2 zy), ' € 0N

where A;(z,0,s) are differential operators of order j on 09, with z; as
parameter. Let a;(z,{’) be the principal symbol of A;. The dual metric

g (2, &) ||€|I2 on the cotangent bundle T*Q is

(2.5) €115 = ao()&3 + av(@.§)&a + ax(@, &)
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Let T¢ = (R/27Z)? be the d-dimensional torus and for & > 0,
Se C 99 x [0, 70] x T} the subvariety

(2.6) S: ={(z,y); y = O(z) /e mod (27Z)"}
Let f(x) be a function on 9 x [0,79]. We define a distribution T'(f) on
9 x [0, 7] x T by the formula
(2.7) T(f) = Z €il(y7®($)/5)f($) = (27T)d5y:®(m)/g ® f(z).
Lezd

If X is a vector field on 9Q x [0,7¢], we shall denote by X the lift of
X on S.. If ' = (z1,...,24-1) is a local coordinate system on 0f2, and
(01(z),...,04(x)) = O(x) are the Cartesian coordinates of ©, one has

9 0 1 <& 90,
2. *:— — —] —f 1<k<
(2.8) (8xk D, +6; ﬂik - for kE<d.
and
J\" 0
. — = — <k<d.
o (L) =1 (L) misesa

The Bloch-operator on 99 x [0, 7] x T? is defined by

(2.10)
B. (2,£0,, €0y, 0y) = p(z,y)(€0:)* — e*(Ag)% 5 plz,y) = p(O(2),y)
(89): = (21 (A0@) ()1 + Aslz, (0))2) + Az (2, (D)?)

It satisfies the identity

(2.11) B. (T(u(z,1))) = *T (p(O(x), O(x)/€)0f — Ay) (u(x. 1))
Let /Tj be the operators

(2.12) Ay = (@, (90)?)

and let e;(z) 1 < k < d be the vectors of R?

00

(2.13) ex(r) = ka( x)
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If v(t,z,y) is a distribution on X x T¢, with X = R; x (92 x [0, r¢]), we
shall write the equation B. (v) = 0 as a 2 x 2 system for the vector w = A(v).

(2.14) Alv) = [Zﬂ = r()Ao(x)(e%): +eﬁl)v]

This system takes the form

€ % w+Mw =0
(2.15) M |€a(®) -8y + eAT (n)A,  —AF(x)
e Ay — p(x,y)(€0,)? eq(z) - 9,

The operator M will be seen as a semi-classical operator in ¢, z, 0, = ¢,
=0, = T with operator values in the fiber T¢

2

(2.16) M = Z(%)JMJ' (2, &', 739,0,).

J=0

The differential degree in y of MV is at most 2— 5 and the principal symbol
M is the matrix

(2.17)

(o €.r0.0,) = [ S0t 1 4 0(0)-0) i)

as(z, i’ + €'(x) - Oy) + p(z, y)7° ea() - 0,
Let E* = {E®, s € R} be the scale of Hilbert spaces on the torus
(2.18) Ef = H(T%) @ H*1(T%).

For any p = (2,¢,7), MV (p,y,0,) maps E® into E~' and M’ is an
elliptic operator. Let MJ be the restriction of M° to the zero section & =
T=0.

(2.19)

eq(x) - 0, + agtay (z, € (x) - dy) —ag ()

Mg(l‘, 9y) = M’ (z, 0, 0,y,0,) = ax(z, ¢ (z) - 9,) eq() - 0,

The eigenvalues A} ,(z) of + M (z,d,) on the space e’C?, for £ € Z" are
the complex roots of the equation

(2.20) ao(z) (=X + eq ) + (=X + eg.l)ar (v, e L) + az(x, e .£) =0
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which is equivalent to
(2.21) I*dO(x)(€) — A0, ---,0,1)[7 = 0.
In particular we have

(2.22) igf Igélgl AL (z)] >0

so the double eigenvalue A3 ;(z) = 0 is isolated in the spectrum of M (z, d,).

In the sequel, we shall restrict the values of the Sobolev index of regularity
s on the torus to some fixed large interval, s € [—ay, 0], 09 > g.

Let X = 0Q x R; x [0,79]. We denote by 'T* X the tangential cotangent
bundle

(2.23) "T*X = T"(09 x Ry) x [0, 7]

Let Wy @ W, be two small neighborhoods of the set
{¢ =7=0} x{t € [-Tp,2T0]} in "T*X.

We choose a non-negative function y, € C§°(Wy), such that xo = 1 on
Wi.

If W, is small enough, we define the map po(z,t,¢,7) : E* — C? by the
formula

(2.24) po[w]:mﬁd{i/wz_d%w}[w] we B, s €[00, 00)

(where D C C is a small disk with center z = 0).
It satisfies the estimates

(225) dCVs e [—0'0,0'0] Ywe B* ||p0(w) — Xo ]{de@z S OT2||w||ES
T

and there exists L%(z,t,¢',7) € C®("T*X; My(C)), defined near ¢’ =7 =0
such that

(2.26) pooM’ =Lopy.

By a Taylor expansion near £’ = 7 = 0, one gets

] e A
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We then suitably quantize the above construction and we obtain tangen-
tial pseudo differential operators

(2 28) HO(gvtaxugatugax’) : Lz(XaEs) - Lz(Xu Cz)u s € [_00700]
' L(e,t, x,e0;,e0y) : L(X;C?) — L*(X,C?)

with principal symbol o(Tly) = py, o(L) = L°, which satisfy the relation

(2.29) y(e0,, + M) = (€0, + L)y + R(e, t, 2,0, €0,)

In (2.29), the error term R : L*(X; E¥) — L*(X,C?) will be a tangen-
tial pseudo differential operator such that for any tangential o.p.d. ) with
essential support in W; and any s € [—0y, 0|, one has

(2.30) 1Q 0 By I2(X: ) — L*(X,C2)] € O(c™)

Definition 2.1 For u® € I;, we define the Bloch-wave I'(u®) € L*(X; C?) by
the formula

I_‘ €
(2.31) ['(u’) = { O(UE)} =TT (v) (T=AoT)
F]_(U )
[ |
Let 7o, €9, ho be given small enough, € €0, 9], h € [¢/70, ho]. For u. € I,
uE = S (uy e tu el (x), we define ||uf||? (2 OTO o |u‘5|2>
0.9<ws h<2.1
by
(2.32) lwslP = > Jugnl® + Jueal?

0.9<wgh<2.1

Let Xg, = 0Q x [=T},2Tp] x [0,70], and let K be the compact subset
of 'T*X, K = 09 x [0, Ty] x [0,79/2] x {¢’ = 0,7 = 0} . By a localization
argument near the zero section (7, small), and a propagation argument in
the interior, we first verify

Proposition 2.1 Let Q(e,t,x,e0,,£0;) be a zero order tangential opd on
X, equal to Id near K. If vy, €0, ho are small enough, there exists a constant
C > 0, such that for any e €]0,0], h € [g/70, ho|, one has

(2.33) lull* < C QT (u) 122 (xp)) + 1l (0. 1) cvy | V™ € I
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3. By Proposition 2.1, we shall obtain the inequality (1.10), if we are able to
estimate the L? norm of the first component [g(u®) of the Bloch-wave near
the set K.

The formula (2.29) shows that I'(u®) satisfies the equation

(2.34) (e0y, + L)T'(u) € O(¢*L?) (microlocally in Wy).

By (2.27) this equation is very closed to the homogeneized equation
(p(2)0F — Ag)[Lo(u7)] = 0.

As one can see, all the difficulty in our problem is thus to obtain an
estimate on the first Dirichlet data of I'(u) on the boundary x; = 0, in order
to apply propagation arguments to the equation (2.34).

Proposition 2.2 If vy, e9, hy are small enough, there exists a constant C
such that for any e €0, &0, h € [e/70, ho] the following estimate holds true

(2.35) IT0(4") z=o0l 2 (xry nag=0) < Ce/hllw’]| Vu© € L.

The above estimate is obtain as a consequence of a uniform

3
Lopatinski estimate on w® = T (u°) = [Zg] . More precisely, we have
1

Theorem 2.1 Let () be a scalar tangential o.p.d. with essential support in
Wo ; if Wo, Y0, €0, ho are small enough, there exist s; < 0 and a constant C
such that for any v* € I; the following estimate holds true

(2.36) 1Q(t, 2, €0, £0¢) (W) 2,0l L2 (X1, g0, 121 (7)) < O[]
|
Notice that w* satisfies the equation (2.15), with Dirichlet data wg, _, =0
on the boundary.
The weaker estimate

(2.37) 1Q(w)jz,=oll < C el

is easy to obtain (it is sufficient to commute the equation (1.4) with the
normal vector field ).

The proof of (2.36) is the most technical part of our work. It involves a detail
study of how the spectral theory of M° (z, &', 7; 9, Oy) (see (2.15)) depends on
the parameter (z,£’, 7). This involves both the real and the complex part of
the Bloch variety.

4. The last part is devoted to the proof of the following proposition.
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Proposition 2.3 Let Q(e,t, 2,e0,,¢0;) be a zero order opd equal to Id near
K, with essential support in Wy. There exist vy, €9, ho, and a constant Cy
such that, for any e €]0,¢&0], h € [e/70, ho] and u® € I, the following estimate
holds true

(238) N1QTo(u ) I72(xz) < Co [IT0(w) nu=0ll72 g gm0y + 14 220,751

This estimate is obtain by rather classical arguments in the theory of
control of linear waves, for the rescale equation

(2.39)

We verify that £ is still a h-pseudo differential operator, with ¢/h as
parameter. (We use this rescaling in order to be able to use propagation
arguments in the range ¢ < h).

We finally remark that the validity of (2.1), hence the proof of Theorem 0.1,
is a direct consequence of the Proposition 2.1, 2.2 and 2.3.
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