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1 Introduction

We consider the Schrodinger operator H, = Hyp+v = —A 4+ v in R™ when
n > 3 is odd. Although the arguments would work under less restrictive con-
ditions on the potential v it will be assumed throughout that v € C§°(R"; R).
Sometimes we will assume also that v is small in the sense that

ol == ™ < e, (1)
|a|=n—2

where ¢, denotes small constants which depend on the dimension only. This
assumption will imply that H, has a purely continuous spectrum.

2 Intertwining operators

Our presentation will rely heavily on the existence of intertwining operators
between H, and Hy. We need therefore to recall some facts about these
operators and refer to [3|, [4] and [5] for more references.
An operator U : C§°(R") — D'(R") is called an intertwining operator
(from H, to Hp) if
H,U =UH,.

It is convenient to identify an operator with its distribution kernel. Then
the intertwining equation takes the form of a partial differential equation:

(A = Ay)U(z,y) = v(z)U (2, ). (2)
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In addition to the equation above we are going to require boundedness of
U in some weighted LP-spaces. Let Dg(R™ x R") denote the Schur class.
This is the set of all U € D'(R"™ x R") such that U (viewed as an operator)
and its transpose U7 (with distribution kernel U (z,y) = U(y, )) extend to
continuous linear operators on LP for every p € [1,00). Then U is defined
also on L™ (R™) if we view it as the adjoint of U : L' — L. The elements
of D(R" x R™) are measures, and this space is a Banach algebra under
composition of operators.

We denote by M the set of U such that (9, + 9,)*U € Dy(R™ x R")
for every «. This condition on U implies that any repeated commutator
of U with constant coefficient vector fields is continuous on LP(R"™) when
1 < p < oo. Hence U gives rise to operators on all the classical Sobolev
spaces.

When v is small then there are invertible intertwining operators in M.
This result can not hold for arbitrary v since the existence of such operators
imply that H, has a purely continuous spectrum. We therefore have to
consider other classes of intertwining operators as well. When 6 € S”~1 and
A > 0 we let Mgy be the set of all U € D'(R" x R") such that (y —z,0) >0
in the suppport of U and e M= (z,4) € M. These conditions imply
that U is continuous in the weighted spaces

L \(R") = {f; X" f € LP(R")}.
We notice that M and My ) are Fréchet algebras.

Theorem 1. For every 0 € S™ ! there is a unique intertwining operator
Uy € Ur>oMag\ such that U(x +t0,y +t0) — 0 as t — oo. This operator
is wnvertible and UT, is its inverse. Moreover, if v is small then Ug is an
inwvertible element in M.

We remark also that Uy(z,y) — d(z — y) is a locally integrable function.
It will be seen later on (see formula (11)) that it is possible to express the
back-scattering data in terms of the operators Uy. When doing this we shall
apply the following additional information about the intertwining operators.

Theorem 2. Assume that v is small. Then
[ 1Uata,) = 8o = ) dy 0 as o] = ox. /la] 6.

and the same is true for the inverse of Uy.
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3 The back-scattering transform

We recall that the scattering operator is defined through
S=Wiw_,

where
Wy = lim e/HveitHo
t—+oo

are the wave operators. If A =5 — I, then
A=WHW- —W,),

and it follows then readily from the definition of the wave operators that A
is the strong limit as ¢ — +0 of A, where

oo
A= —i/ e_gwe”HOWive_”Ho dt. (3)
—00

Let
Fu(g) = i¢) = [ ¢ u(a)da

be the Fourier transform and multiply (3) from the left by F and from the
right by F*. Then

A(en) =—i / e~ e MMEP =it (Fyw o F*) (€, —n) dt,

where (FWivF*)(&, —n) is the Fourier transform of

(Wio)(z,y) = Wi(z,y)o(y).

When € — 0 one finds that

A(&.m) = (=2im)0 (€2 — 1) (FWEoF*) (&, —n). (4)

The formal computations presented here may be justified, and one can prove
furthermore that

a(§,n) == (FWivF*)(& —n)

is continuous when £ +n # 0, and it is rapidly decreasing when |€ + 7| — co.
Hence the right-hand side of (4) makes sense, and we see that the scattering
operator determines the function a(€,n) in the set where |£| = |n|. We notice
also that

a(=n, =§) = (FoW, F*)(€, —n).
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The back-scattering data are obtained if one restricts the function

(a(&;n) +a(=n,-£))/2
to the diagonal in R" x R"™ and replaces ¢ by £/2 afterwords:

Definition 3. The back-scattering data is the function
0(§) = (F(oWy + Wiv)F)(§/2,-£/2)/2.

Since the linearization of the operator Wiv at v = 0 is multiplication
by v, it follows that the linerization of v +— o at v = 0 is the Fourier
transformation. This motivates us to compose the mapping v — ¥ with the
inverse Fourier transform:

Definition 4. The back-scattering transform Bv of v is the inverse Fourier
transform of ©.

Remark. Since v is rapidly decreasing at infinity, in view of a previous re-
mark, it follows that Bv is a smooth function. Moreover, since 9(—¢) is the
conjugate of (&) it follows that Bw is real.

The following result gives an expression for Bv in terms of v and W

Theorem 5. The back-scattering transform is given by

(Bo)(w) = 2" Re ([ ol — )W (o =y -+ 9) dy). 9
where the integral is interpreted in the distribution sense. (This makes sense

since v 18 compactly supported.)

Proof. Let W; be a sequence in S(R™ x R") which converges to W, in
S'(R™ x R™) as j — oo. Then the right-hand side of (5) is the limit in
S'(R™ x R"™) of Re Pj(x), where

Pi(a) =2 [ W) =y + ) dy

Since

~

Bi(&) = (F(oWj)(£/2,6/2) = a(=¢£/2,=E/2) asj — o0

it follows that the Fourier transform of Re P; tends to © as j — oo. This
proves (5). O
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4 The wave equation approach

It is often convenient to define the back-scattering data in terms of the wave
group associated to the operator O, = 9? — A+ v in R"*!. Let f = K, (t)u,
where u € C§°(R"™), be the unique solution to

O,f=0, whent>0, f=0,f/=uwhent=0.

Then K,(t) may be viewed as a smooth function of ¢ > 0 with values in
D'(R" x R"), K,(0) =0 and K,(0) = 6(x — y), where K, is the derivative
with respect to t. We define K,(t) = 0 when ¢t < 0. We shall need two
lemmas:

Lemma 6. Let K,(t) be as above. Then
(i) One has K,(t) = Upo Ko(t) o U, "

(i1) If a and b are real numbers with a +b # 0 and if p > 0 is an arbitrary
integer, then one may write

Ky(z,y,t) = Y (bdy —ady)* Ra(w,y.t), >0,
lal<N

where the derivatives with respect to x and y of order < p of Ry (x,y,t)
are continuous functions of t with values in L*°(R™ x R™).

(153) If (1) holds then the derivatives in (i) are exponentially decaying in
t, uniformly with respect to (z,y) € R*" as long as (z,y) stays in a
compact set ,

A combination of (i) of the preceding lemma with explicit expressions
for Ky(t) gives rise to the following result about the behaviour of K,(t) as
t — oo.

Lemma 7. One may write

o(z,y,1) Zat (a9, 1)

where
T (s )] oo = O(EI"™/2) as t — oo,

The following observation gives an important link between K, and the
intertwining operators.
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Theorem 8. One has
A% Uslovy) dy = 8((w.6) ) = [ Kol = 0)olw)ds.— (6)
y,0)=t

where the integrals are interpreted in the distribution sense.

Proof. We shall assume first that v is small. Let us define Lg : Cg°(R) —
C>®(R"™) by (Lgg)(z) = g((x,0)). If we view Ly as a distribution then Ly is
equal to the first term in the right-hand side of (6). Since eM#:%) L4g € L
for every A it is true also that Uy o Ly is defined, and its distribution kernel is
the left-hand side of (6). In order to get a suitable representation of the last
term in (6) we introduce the mapping Ay : Cg°(R"xR) — C°(R"xR"xR)
by
(Agp) (@, y,t) = (2.t + (y,0))v(y).

We then define Ty € D'(R"™ x R) by

<307 T9> = <A9307 Kv>7

where K, is viewed as an element in D'(R" x R" x R).
Set
Sg = (Up—I)o Ly + Tp,

and view Sy as an element in D'(R" x R). Since

nmwz/me¢—@mww@

the lemma is equivalent to the assertion that Sy = 0. When proving that
this holds we first notice that [J, o Ag = Ay o [J,. Hence

<907 DUT9> = <|:]1,A9<p, Kv> = <A0(Pa Dva>-

Since Oy, Ky (2,y,t) = d(x — y)o(t) we find that 0,7y = vLg, and the inter-
twining property of Uy implies that

Oy(Ug o Lg) = Ug o (Lo Lg) = 0.
Combining these observations we see that
0,59 = 0. (7)

Since v is compactly supported, and since |z — y| < ¢ in the support of
K,(t), it follows that Ty must be continuous from C§°(R) to &'(R™) and
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(z,0) < t in the support of Ty. An application of (ii) of Lemma 6 with
b= 0, a =1 implies then that T} is continuous from C§° to C§°. Hence Tj
is continuous from C§°(R) to L>(R™). Since (x,#) = ¢ in the support of Ly
and (y — x,0) > 0 in the support of Uy we see that

(#,60) <t in supp(Ss) (8)

Let us consider now Ry = U, 1o Sy. This is defined since Sy must be
continuous from C§°(R) to L>°(R™). The bounds given by Lemma 6 show
that Rg € S'(R™ x R). It follows from (7) and the intertwining property
that OgRy = 0. Since Ry € S', and since (z,6) < ¢ in its support, one may
conclude now that

Ry(w,t) = > a%ga(t — (v.0)),

where the sum is finite, g, € S'(R) and ¢ > 0 in the support of g,. Since R,
is continuous from C§°(R) to L>*(R") it follows that Ry can only depend
on (z,0) and t. Hence

Re(xat) = Z<m79>j9j(t - <LE,9>),

J

where the g; have the same properties as the g,. The support conditions on
the g; together with the fact that OygRy = 0 imply now that g; = 0 when
j>0.
In order to prove that Ry = 0 we consider translations 7, f(z) = f(z+y).
Then
T)\QORQ OT_\ :Rg.

By applying Theorem 2 it is easily shown that Ry must be the limit in D’
as A — +oo of Tyg o Sy o 7_). Another application of Theorem 2 shows that
this must have the same limit as Ty \ = Ty\goTyo7_). In order to prove that
Sy = 0 it remains there only to prove that

Ty — 0 in D'(R"xR) as A — oo. 9)
Let ¢ € C§°(R™ x R) and set
%\(«'anat) = @(x - /\07t - A+ <y79>)v(y)

Then
<<p7 Te,/\> = <<p/\7 Kv>
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An application of Lemma 7 shows that the right-hand side is O(A(:=™)/2) as
A — oo. This settles (9) and we have proved the theorem in the case when
v is small. In the general case one replaces v by cv where ¢ € R. Then
it can be proved that both sides of (6) can be viewed as an entire analytic
function of ¢ with values in D'(R"™ x R). Since this vanishes for small ¢ we
have proved the theorem in the general case. O

Now we have made all preparations necessary in order to express the
back-scattering transform Bv in terms of K,. In order to avoid some tech-
nical complications we limit ourselves to the case when v is small

Theorem 9. Assume that v € C§°(R™;R) is small in the sense that (1) is
fulfilled. Then

(Bo) (@) =
o)~ 3(-20)" " [ Koo -y = w00 dy dzas,

where the integral has to be interpreted in the distribution sense (cf. Lemma

6).
Proof. Let us introduce the generalized wave functions

o, €) = / U ()¢9 dy,

where we have extended Uy to a homogeneos function of §. Then one can
show that

p(x,6) = (W F7) (2, ). (10)

Recalling Definition 3 we may now express the back-scattering in terms of
the Ag. We obtain

(M) = 1 / / o) (Ua(y.2) + Uoglary)) e NEH02 gy dz (1)

when # € S ! and A € R. Notice that both sides are even in (\,0). We
shall now carry out some formal computations which may easily be justified.
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We first write

(Bo)(x) = (21)" / @95 (¢) de

(2
// 1™ ®05(¢0) dt do

Sn— 1><R+

= (2m) 27! / / L@ 5(40) dt do

Sn—1xR

= (2m) "2 (- Ag) 2 // 5 0)5(16) dt ).

Sn—1xR

We combine this expression for Bv with (11) and make use of the identity
/ @0 =t WH20)/2 4t — 9 6((x — (y + 2)/2,0)).
R
This leads to

(Bv)(2) = 3(32¢) ”1/2/// DUs(y, 2)5((x — (y + 2)/2,0)) dy d= db.

The proof is then completed by (6) and the following computations
[ U 2)5((Ge = -+ 2)/2.0))
— [ Vst 23((2.6) — (20— .6 dz
= 3((.0) = (20 = .0) — [ Koy, (20— y = 2,6))0(2) dz
=16((z —y,0 /K (y,2z, (22 —y — 2,0))v(2) dz

0

We finally remark in this section that the back-scattering data have been
expressed in three different ways:

(i) in terms of v and W by (5);
(i) in terms of v and the family Uy by (11);

(iii) in terms of v and K, as in Theorem 9.
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5 The inversion problem

We shall now make some remarks on the inverse back-scattering problem.
We refer to the papers [1], [2]|, and [6] and the references given therein for
some recent discussions.

It will be assumed througout in this section that v is small. Since the
intertwining operators may always be expressed in convergent power series
in v it follows from (11) that Bv can be expanded in a power series in v.
This can also be seen from Theorem 9, since iteration techniques in the
construction of K, give such an expansion. Letting Bjv denote the part of
Buv which is homogenoeus of degree 7 in v we have therefore an expansion

o0
Bv=Y_Bjv, (12)
1

with convergence in D'(R"™) for small v. We notice that Byv = v.

It is natural to ask for a Banach space X continuously embedded in
D'(R™) such that (12) is convergent in that space. This would make it pos-
sible to approach the inversion problem with methods from nonlinear func-
tional analysis. The analysis carried out in the construction of intertwining
operators indicates that one should try with

X =X, ={vell . R"%R); v e L' when |a| =n — 2}

with the norm ||v|| given by (1). In fact, this is the norm one has to control
when one constructs the operators Uy and proves that these are in the Schur
class.

We can now formulate the following problem:
Problem A: Can one find a constant C,, depending on n only, such that
the inequalities

1Bjoll < G3loll? (13)

hold for every j when v € C§°(R™)?

Recent investigations of R. Lagergren indicate that Problem A has an
affirmative answer in the case when n = 3. Some details of the proof remain
to be checked. The proof is based on Theorem 9. One expresses K, j,
the part of K, which is homogeneous of degree j in v, in terms of integral
formulas involving Ky and v, and then one estimates VB;v by carrying out
partial integrations in the formulas so that each factor v is differentiated
exactly once . Although the idea is simple the method offers problems of
combinatorial nature.
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We shall finish our discussions by making some remarks on a somewhat
simpler problem
Problem A;: Can one find constants C, ; such that

1Bjoll < Cujllvll’ (14)

when v € C§°(R")?
When j = 1 then Biv = v. Hence C,; = 1. We shall prove now that
the constants (), 2 also exist:

Theorem 10. There are constants C = Cy, 2, when n > 3 is odd, such that
|B2v]| < Cllof?, v € CF°(R™;R).

We need some preparations in order to prove the theorem. Since n > 3
is odd it is true that A, — A, has a fundamental solution in the form

E(z,y) = Eu(z,y) = cad "2 (2* = o).
Lemma 11. Assume that u € S'(R™ x R") satisfies the following:
(1) (A = Ay)u = 0;
(i1) w is rotation symmetric in x and y separately;
(113) |z| < |y| in the support of u;
(1v) u is homogeneous of degree 2 — 2n.
Then v = 0.

Proof. An application of Asgeirsson’s theorem shows that |z| = |y| in the
support of u. Since (£2—n?)a(¢,n) = 0, the rotation invariance together with
homogeneity implies that & = cd(&2 — %) for some constant ¢. Computing
derivatives in polar coordinates one finds that (A — Ay)"24(¢,n) = 0.
Hence (22 — y?)"2u(z,y) = 0. Taking homogeneity into account one can
prove that this implies that v = ¢ E(z, y) for some ¢. Since (A, —Ay)u =0
it follows therefore that u = 0. U

Let us denote by ko(x,t) the forward fundamental solution of [y so that
K()(Qf,y,t) = k‘o(l’ - yat)

Lemma 12. There is a constant ¢, # 0 such that

AP [ oo (10)d0 = ,Bla)
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Proof. Set w(z,y) = Az(,nfl)/szo(m, (y,0))df. Since

(Ar—A,) / o, (4.0)) d6 = —6(x) / 5((4.0)) do.

and since
AP [ 5(00.0))d0 = i5(w).

it follows that
for some ¢, # 0. Since u = w — ¢, F satisfies the hypotheses of the preceding
lemma it follows that w = ¢}, E. O

Proof of Theorem 10

It is an immediate consequence of Theorem 9 and the previous lemma that
there is a constant ¢!/ such that

(Bav)(z) =) // E(y — 2,2z —y — z)v(y)v(z) dy dz. (15)

We write the right-hand side as

a // E(y — z,y + z)v(z + y)v(z + 2) dy d=.

The explicit formula for F = E,, above allows us to replace Bov by Q(v,v),
where we define

(Qor,12)) (@) = / / 5D (2o (& + y)oale + ) dydz. (16)
Let us introduce

la|l=n—2
and write
ogvi(z + y)va(z + 2) = (9y + 05)“vi(z + y)va(z + 2).
A combination of (16) and Lemma 13 below gives us then the inequality
(02 + 0y)* (Q(v1,02)) ()]
< [[ vt +u)sto+ P + 122 )602) dyd
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|2—n

Let us consider the contribution from |y . In polar coordinates y = rw

we may write this as a constant times

/// Vi (& + rw)os (z + 2)0(wz) dr dw dz.

We are going to integrate this expression with respect to z. If one take z + z
as a new variable of integration instead of = one gets the expression

/- y /vf(x 1w — 2l (2)5(w2) dr dw dz da.

By integrating first with respect to z and r one finds that the integral may be
estimated from above by a constant times ||v1]|||vz||. Since the contribution
from |2|27™ may be treated in the same way this finishes the proof.

It remains to prove the following lemma.
Lemma 13. Assume that « is a multi-index of length || = n — 2. Then
(0 +0,)*60 D (ay) = Y 0 (wap, (x,y)d(xy)),  (17)
1Bl=[v|=n—2
where the uqp, are Borel measurable functions satisfying the estimates

[uagy (2, y)| < Oz~ + [yP™). (18)

Proof. Let us denote by hy(x) any function that is homogeneous of degree
—a and smooth away from the origin. Let b and ¢ be nonnegative integers
with b+ ¢ =n — 2. We claim that

3 ay) = Y 0Oy (@) hn—2—c(y)d(wy). (19)
|8|=b,|v|=c

We prove this first in the set where |z||y| # 0. Consider the formula

32 (@y) = (y/ |y, ) (w/|2|?, 8y) 0 (2, y).

By commuting the factors involving d, to the left of the coefficents involving
y/|y|? one finds that

0 wy) = D O hy_apy ()he()d(xy).
1Bl=b,|v|<e
Since h,,_3_},|(y)d(wy) is homogeneous of negative degree in y we may write

this as a linear combination of yy" h,_o_|,(y)d(xy), with |u| = ¢ — |y].
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This leads to (19) in the set where |z||y| # 0. Since both sides are separately
homogeneous of degree 1 —n in x and y it follows that (19) holds everywhere.

Consider now 85855("_2)(xy) when |u| + |v| = n — 2. By choosing b =

n—2—|u| and ¢ = n — 2 — || we find that the conclusion of the lemma
must be true for 9yl 6(m=2)(zy)), and the lemma follows then by expanding

(9 + 9,)*6"=2) (2y) in such terms. O
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