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Ground states of supersymmetric matrix models

G.M. Graf
Theoretische Physik, ETH-Honggerberg, CH-8093 Ziirich

Abstract

We consider supersymmetric matrix Hamiltonians. The existence of a zero-
energy bound state, in particular for the d = 9 model, is of interest in M-theory.
While we do not quite prove its existence, we show that the decay at infinity such a
state would have is compatible with normalizability (and hence existence) in d = 9.
Moreover, it would be unique. Other values of d, where the situation is somewhat
different, shall also be addressed. The analysis is based on a Born-Oppenheimer
approximation. This seminar is based on joint work with J. Frohlich, D. Hasler,
J. Hoppe and S.-T. Yau.

Bosonic matrix models

Matrix models are Schrédinger operators which first arose [7] in the early 80’s as
an approximation by finitely many degrees of freedom of relativistic membranes. More
recently, supersymmetric matrix models have been interpreted [15] to describe a collection
of particles with non—commutative coordinates (DO-branes). In this interpretation, some
of the models have been conjectured [2] to describe a strong coupling limit of string
theory and, as a result, are believed to have a bound state with energy at the bottom of
the essential spectrum.

For expository purposes, let us postpone the definition of supersymmetric matrix
models and begin with the simpler bosonic matrix models instead. They depend on two
integers N, d > 2 and are as follows. The configuration space is X = [i-su(N)]¢, i.e., each
configuration is a d—tuple of symmetric, traceless, N x N matrices:

X=(X1,....Xs), X,ci-su(N), s=1,....d

Coordinates 234 € R can be introduced through X, = Taxs4 (with sum over A), where
Ta, A=1,...N?—1 are generators of i-su(N) with tr(T4Tg) = d4p5. The corresponding
momenta are then given as P; = —iT40/0xs4. The Hamiltonian, acting in the Hilbert
space L2(X), is

H = ZtrP2+Ztr i[X,, Xi))?) , (1)

s<t

where the trace is w.r.t. su(N). The group SU(N) x SO(d) > (U, R) acts as a group of
symmetries of the Hamiltonian: X, — U*X, U, X, — R;X;.
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Note that the potential in (1) is large at infinity in X" except for some narrowing ‘val-
leys’ along its submanifold where all X; commute. Nevertheless, the quantum mechanical
motion of a particle in that potential is confined, because of the increasing zero—point
energy associated with the motion transverse to the valley. Indeed, it has been shown [11]
that the spectrum of H is purely discrete.

Before indicating the supersymmetric extension of the model we shall illustrate a phys-
ical motivation for the bosonic matrix models. We sketch their original derivation [7] as
an approximation to 2-dimensional membranes. More generally, but temporarily, consider
an M-dimensional closed surface in space R™! and view it as an M + 1-dimensional world
sheet in space-time R¢*2? parametrized as

at =ax* Ny, Aur) (p=0,...,d+1). (2)

The dynamics of the surface is governed by the action

ox* Oz
S:/d)\o...d)\M\/—|G|, G = det (G- k). (3)

which represents the volume of the world sheet induced by the Minkowski metric zy =
2% x; = —x', (i =1,...d+1) of space—time. We anticipate that, as result of the invariance
of the action (3) under a reparametrization of (2), one will obtain the Hamiltonian (1)
restricted to SU(N)—invariant states. Moreover, the matrices X will be traceless because
the membrane will be described in its center of mass frame.

A Hamiltonian description of this model is obtained by passing to light cone coordi-

nates

1 1 S
A= (e 42 =S =T d =)

The coordinate A is taken as (fictitious) time; at fixed Ay the configuration &, Z is a
field in the variables A = (A1,..., Ay). Denoting by m = w(A), p'= p(A) the canonically
conjugate fields, one finds the Hamiltonian

or 07

dMA
q oz A
OX, 8)\,,) (4)

with constraints

oz n o
. i =
oo o,
resulting from reparametrization invariance. As m = m(\) is a cyclic coordinate, one is left

with a field #(A) with d components. The Gram determinant g can be expressed through
Lagrange’s identity as a sum over M x M submatrices of (0z;/0A,)i=1... . d:a=1...0:

85@ 2
= E det —=) .
g (et 5a)
This expression is particularly simple in the case of membranes M = 2:

B Ors Ovy Oz O0T5\2 2
9= Z(ml s 0N 8)\2) = ;{”"S’xt} ‘

s<t

0, (a=1,...M)
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It should at this point appear plausible that an approximation of the membrane by means
of finitely many degrees of fredoom results in the replacement of the Hamiltonian (4) by

(1).

Supersymmetric matrix models

Let us now indicate the supersymmetric extension [3, 13] of the model (1). Consider
first Clifford generators 7%, (i = 1,...,d), i.e., {7*,7'} = 20, realized as real matrices

’yz = (’yééﬁ)avﬁzla“"sd ?

where s4 is the dimension of the irreducible (real) representation. Furthermore, consider
Clifford generators Ou4 (= 1,... 855 A=1,... ,N?—1) (with relations {O44,Opp} =
dop 04p) irreducibly realized on some representation space C. We shall set O, = T40O,4,
a Clifford algebra valued su(/N) -matrix.

The Hilbert space is now L?(X,C) (instead of L?(X)) and a further term is added to
the Hamiltonian (1):

H = Zter + ) tr((i[ Xy, X)) = tr(0a4[Xs, Op]) - (5)

s<t

The symmetry group of the model is as in the bosonic case, except that SO(d) is re-
placed by its covering group Spin(d). In addition the model admits supersymmetry [1] in
dimensions d = 2,3,5,9: On SU(N) invariant states,

{Qav@ﬂ} = 6a/BH7

where the (),’s are the supercharges

1
Qa = 735 tr(GBPs) - 1[787 ’Yt]oaﬁ tr(GB[XSa Xt]) .

It should be noted that the spectrum of (5) is no longer discrete. In fact [14], o(H) =
[0, 00).

According to recent developments in string theory and M-theory [15, 2] the d = 9
model is conjectured to describe N DO-branes. In line with this conjecture the following
question about the existence of zero-modes is expected to be answered in the affermative:

Is 0 an eigenvalue of H? More precisely: Does there exist ¢ € L2(X,C) with Hyp = 0,
which is SU(N) x Spin(d) invariant? Is it unique?

Among the various works predating ours we mention for N = 2 [16, 10], indicating
the existence of such states, and [8], where an asymptotic analysis of such states (related

to ours) is made. See also [9] for general N. On the other hand, the expected answer is
no for d =2,3,5 (see [5] for d = N = 2).

A simple model

Before stating our result concerning (5), let us illustrate the issue and the method by
discussing a simpler model. Consider the Hamiltonian

H:p§+pz+x2y2+xag+yal, (6)
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acting on L?(R?, C?), with oy, (i = 1,2, 3) being the Pauli matrices. The potential z%y?
exhibits 4 valleys, one of which, indicated by an equipotential line, is seen here:
Yy A

xr = const

\;
/_/_:a:

The Hamiltonian can be written as
®
H:piﬂ—/ dx H(z) ,

with H(z) acting on the fiber FF = L*(R, C?). Treating yo; as a perturbation, the ground
state of the latter is

_ a2 0 1
plasy) = m M a Hem 2 [(1) = Z () +.]

with ground state energy

1
E =r—x— —+....
(x)=z—2x 8x2+

Note that the contribution z of the harmonic oscillator pz + x2y? is cancelled by an
equal and opposite contribution from zoz. This parallels the fact that bosonic matrix
models have purely discrete spectrum, whereas their supersymmetric counterparts have
only essential spectrum. It is now natural to postulate that the ground state of H is
given, asymptotically along the valley, by a Born-Oppenheimer ansatz:

P(x,y) = f()e(z;y) - (7)
The effective Hamiltonian for f is computed as

1 1
thi%—E(x)—i—||Ag0(x)||%+...:pi—8?4—8?4—...:]7:28—1-0(36’5) :
Besides of E(x) a term of the same order arises because the infinitesimal translation p,
is dilating the state along the valley (A = (p,y + yp,)/2 is the generator of dilations in
the fiber). A possible zero-mode, i.e., a state satisfying hf = 0, should then behave as
f(z) =1 or f(x) = z at infinity (actually: the second solution is spurious) and is thus
not expected to occur, as it would not be square integrable. Let us mention that this
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approach, being purely asymptotic, does rule out zero-modes of the form (7) with ¢(z;-)
an excited state of H(z).
The Hamiltonian (6) is supersymmetric:

H:Q2, Q:meS_pyal_xyoé-

One may thus just look for zero-modes of (), which we again analyze asymptotically. We
anticipate the length scale 2~ /2 of the ground state by a change of variable, § = z'/2y,
as this quantity is effectively of order 1. Then

~ d
Q=Qur"?+Q—+Quz",
dx
where the coefficients are operators on F':

G ~ ) ) 0
Qo = 101a—g ) Q = —ios Q1= —(1/2)0396—?7 .

The equation Q1 = 0 is therefore an ordinary differential equation in z for i (z,-) € F,
with £ = oo being a singular point of the second kind [4]. The generalized power series
ansatz corresponding to the eigenvalue 0 of () is

Y, g) =z "> a M),

k=0
which yields
Qoo =0
ff@% = Q1% + Qo1

~2

The solution of the first equation is 1, (7) = e=¥"/2( (1) ), and the projection of the second

onto 9y is #(to, Qo) r = (o, Q1to)r. implying x = —1/4 (corresponding to f(z) = 1
above).

N = 2 supersymmetric matrix models

The above analysis can be carried over to N = 2 supersymmetric matrix models.
Writing X € isu(N = 2) as X = ¢-7 , ¢ € R®, the configuration spaces becomes
X =R* and the Hamiltonian

H =

S

B2+ 3 (@ % @) +id - (Ba x 65) 735 - (8)

9
=1 s<t

The potential >°,_,(¢s % ¢)? vanishes on the (d + 1)-dimensional manifold

{¢=(q1,.-.,43) | 4 || G for all s, t} .

Its points can thus be expressed as ¢, = réE, with 7 > 0 and € € S*7!, E € S9! points
in a conical neighborhood of the manifold can be expressed in terms of tubular coordinates

—

G, = réE, +r /2,
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with ¢, - €= 0, §,E, = 0. A prefactor has been put explicitely in front of the transversal
coordinates 7;, so as to account for the length scale ~ /2 of the ground state. Also note
that the change

(57 Evy) = (_a _Evy) (9)

does not affect ¢;. Hence only states which are even under the antipode map (9) lift to
X.
We can now describe the structure of a putative ground state.

Theorem. Consider the equations Qpy = 0 for a formal power series solution near
r = oo of the form

p=r Ry (10)
k=0

where: Py, = Pp(€, E,y) is square integrable w.r.t. de dE dy;
Yy is SU(2) x Spin(d) invariant;
o # 0.

Then, up to linear combinations,
o d=9: The solution is unique, and k = 6;
o d=5: There are three solutions with kK = —1 and one with Kk = 3;
e d=3: There are two solutions with k = 0;
o d=2: There are no solutions.

All solutions are even under the antipode map (9),

wk(é’v Evy) = wk(_é: _Evy) )

except for the state d =5, k = 3, which is odd.

The integration measure is dg = dr - r2de - r¢=1dE - 7~ 22@"Ydy = r2dr de dE dy. The
wave function (10) is square integrable at infinity if [~ drr?(r=")% < oo, i.e., if K > 3/2.
The theorem is consistent with the statement according to which only for d = 9 a (unique)
normalizable ground state for (8) (which would have to be even) is possible.

We refer to [6] for the proof of the theorem. Here we merely sketch the argument in
the d = 9 case for uniqueness of the SU(2) x Spin(9) invariant ground state. As in the
simple model described above, the equation to be solved at lowest order is Q%, = 0.
Ignoring invariance, this equation admits a large space of solutions, namely

(€, E,y) = e” =2 F(E, &)

with |F(E,é)) € N(FE,¢), a 2°~dimensional subspace of C. While SU(2) acts trivially on
these solutions, Spin(9) > R does not:

(R(R)1)(, E,y) = e~ ="/ *Re(R)|F(RE, ) ,
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where R denotes the ‘fermionic part’ of the representation, i.e., it acts on C only. Invari-
ant states, R(R)Yy = 1)y are thus in bijective correspondence to states invariant under
the ‘little group’ Spin(8), i.e., to states |F(E,€)) € N(E,¢€) satisfying

Re(R)|F(E,€) = |F(E,é))

for some arbitrary but fixed £ and all R with RE = E. Infinitesimally, such rotations
take place in a plane (with vectors U, V' € R?) orthogonal to E: U,E, = V,E, = 0. The

generators of the little group are represented on N(F,¢€) as Ms”tUth with

M), = —(i/4)(8, - @)725(85 - ) | (11)

where 7** = (1/2)(y*~" — v'y*). We need to decompose the Spin(8) representation on
N(E, é) into irreducibles. To begin with, the Clifford algebra of the operators O, ¢, a=
1,...,89 = 16 acts irreducibly on N(FE,¢€), but the representation decomposes (see e.g.
[12]) by passing to the subalgebra of even elements, resp. to Spin(16):

N(E,?) = 128_ & 128, .
The further branching under the embedding Spin(16) <= Spin(9) given by (11) is
N(E,&) = (44 & 84) & 128 ,
followed by Spin(9) <= Spin(8):
N(E,&)= (1®8, @ 35,) ® (28 56,) ® (85 ® 8 ® 56, B 56¢) .

This shows that exactly one 1-dimensional representation occurs.
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