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EIGENVALUE ASYMPTOTICS FOR NEUMANN
LAPLACIAN IN DOMAINS WITH ULTRA-THIN CUSPS

VICTOR IVRII

ABSTRACT. Asymptotics with sharp remainder estimates are recovered for number
N(7) of eigenvalues of the generalized Maxwell problem and for related Laplacians
which are similar to Neumann Laplacian. We consider domains with ultra-thin
cusps (with exp(—|z|™*1) width; m > 0) and recover eigenvalue asymptotics with
sharp remainder estimates.

1. Introduction. We are interested in eigenvalue asymptotics for Maxwell
operator A in X C R?. Namely, let $ = L?(X,A*) @ L?(X, A**+1), A* is a space
of exterior forms of a degree k =0,...,d", and let for

(1) ¢:Z¢Id$[, de:dxll/\dekI:(Zlayzk),Z]_<<Zk
I

we define ||4|? =Y, ||¢1||%2(X) and || <i> I = ||#]|*> + ||||*. Let us consider an

operator

([ 0 BiD*al
(2) A_<ozDﬁ 0 >

with domain D(A) = {<$> € 9, Au € H,tox¢p = 0} where D = i(dz, D)A :

C>(X,A*) — C°°(X,A¥*1) is the operator of the exterior differentiation and
D* : (X, A**1) — C~(X, A¥) is the formally adjoint operator?; for ¢ in form
(1) we have ng = Zj(z’quﬁI)dxj A\ dx'[, ; D*gb = Zlgpgk(iDipgbI)(_1)pd$1\7:p7

t Work was partially supported by NSERC grant OGP0138277.
DAt given point, dim AF = W and we consider complex rather than real spaces

2)We can define action of D, D* and A at distributions as well
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a(z) € L(AFTL AkFL); and B(x) € L(A*, A¥) are nondegenerate matrices smoothly
depending on z and constant close to infinity (or quickly stabilizing to constant),
vy : C®°(X,AF(X)) — C=(X,A*(Y)) is the restriction of the exterior form to
submanifold Y3

There is no problem with self-adjoint expansion of such an operator defined on
functions with compact support first provided 0X, a and § are smooth enough.
Furthermore, we assume that o and  are Hermitian positive matrices (otherwise
Tl 0

one can reach it by means of the unitary transformation < 0 T
2

> with unitary

matrices T} (z) and Ty (x).
¢
(4

Da~ Y = D*B3'¢ = 0, and further, toxa~'¢y = 0. Further, <_¢1/)> is an

Obviously for eigenfunctions ( > with non-zero eigenvalues automatically

eigenfunction with an eigenvalue —7 and moreover, the number of eigenvalues
of operator A belonging to (0, 7) is

(3) Ni(r) =Nz, (%) =Nz, (0+0)

where N (1)) is the number of the eigenvalues of operator Ly generated by

a quadratic form Q(@) = ||aDB¢||? + ||a; ' D*B71¢||? on the space Hy o = {¢ €
L?(X,A*),D*371¢ = 0} with domain D(Q) = {¢ € Hy.0, Q(¢) < 00, tax B¢ = 0},
which are less than A; later in our conditions it will be a finite number; a; €
L(A*=1 A*=1) is a nondegenerate matrix (usually constant close to infinity).
Furthermore, considering the same form Q(u) on the space Hy = {¢ € L?(X,A")}

with domain D(Q) = {¢ € Hg, Q(d) < 00,taxB¢ = 0}, we get an operator Ly;
one can check easily that for 7 > 0 eigenspaces Hy(7) and Hy,0(7) of Ly, 0 and Ly
satisfy

(4) %k(T) - /Hk,()(T), Hk(T) ) 7‘[&0(7’) = ﬂ_lDOzl_l (Otl_l'D*ﬁ_LHk(T))

and that ale*ﬁ_l’Hk (1) is an eigenspace of the operator Lj_; o generated by
a form || 1Da;'¢’||? + ... on the space Hy_10 = {¢' € L*(X,A*" 1), D*a ¢ =
0,toxa] ‘¢ = 0}. Therefore

(5) N(r) =Nz, (%) =Np, (0+0) —=N, _ (7%) =Nz, (0+0)

This reduction is not necessarily correct for non-smooth problems unless we are
able to prove that (L) C HZ_(X) which is not true even for o« = 3 = I and

loc

X = W @ R%2 with a sector W with an angle between 7 and 27.

3)One can see easily that if Y is smooth of codimension 1 and ¢ € L2(X,AK), D¢ € L2 then
ty @ is well-defined; if Y = {z1 = 0} in appropriate coordinates and ¢ is of the form (1) then
by ¢ =315 ¢rlyder.
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Note that for k =d -1, a =1, =1 and ¥ = udxy A --+ A dry we obtain
exactly eigenvalue problem for the Neumann Laplacian.

These formulae lead us to standard (known) asymptotics for compact domains
with smooth boundaries:

(6) N(72) = co? + O(r%71)

(here and below we omit indices k£ and may be 0) and even

(7) N(7?) = cor? + 179! + o(r971)
provided
(8) det (72 — BD(€)'a*D()8) = (v ~ g(z,6))"

where D(§) = i(dx, &) A is a principal symbol of D, g is a metrics on X and standard
billiard condition holds.

The same results hold for other types of compact domains: the irregularity of
the boundary should be of the type described in [Ivrl], sect. 10.2, inner cone
condition should be fulfilled [IF], and (5) should hold.

2. Thin cusps. Heuristics. Let us consider domains with cusps; I consider
one cusp for simplicity: we assume that unbounded part of X is {z : 2" € f(z')Q
where = (2/;2"), ' € X' = R? which is the base of the cusp (or X’ = RT
for d' = 1), Q (which is cross-section) is a bounded domain in R?" with smooth
boundary, d =d' +d", 1 < d <d—1, f(2) > 0 and decays as |z'| — co. Look
first for operators Lj. As we know, boundary conditions are very important for
the Laplace operator: if we have Dirichlet boundary condition then the spectrum
of operator is discrete (provided cusp shrinks at infinity).

On the other hand for operator with a Neumann boundary condition spectrum
is discrete only if cusp is very thin (log f < |2z'|'*™ with m > 0) and for such
operators asymptotics with sharp remainder estimate are derived in [Ivr2].

So basically we should determine first if for operator Lj condition is “Dirichlet”-
like or “Neumann”-like at infinity; then for “Neumann”-like cusp assume that it
is ultra-thin and write the cusp contribution; for “Dirichlet”-like cusp we need to
describe non-Weyl contribution.

Let us consider the space ®;, = {¢p € C=(Q, AF)D"B¢p = D"* B~1¢ = 0,1x1 8¢ =
0} (so we consider full forms with coefficients depending on z” only); one can see
easily that dim ®; does not depend on the choice of 3 and

) d'! .
Y i =3 g P
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where @ = {¢ € C>(Q,AL),D"¢ = D"*¢ = 0,10 = 0}. From the point of view
of operator Lj the cusp is “Dirichlet”-like iff dim ®; = 0; we will discuss this case
later and assume that dim ®; > 1. Let us consider operator

(10) £(z', D") = PpBMy(2', D')*a* My, (', D") B+
ﬁ—le_l(xl,D/)al—QMk_l(xl,Dl)*ﬁ—1¢

acting from C® (X', ®;) to C° (X', ®;) with

1

(11) M(z',D') =D’ + %(D’ log f)A)

acting from : C° (X', ®;) to COO(X’,Af)“), M(z', D")* a formally adjoint oper-
ator and Py orthogonal projector from L2(£2, A¥) to ®;. Then the cusp term for
operator L; will be

(12) Ny o(7) = (2m)~ / / ni (2, €', 72)da’ de’

where ny, (2, £/, 7) is the eigenvalue counting function for finite-dimensional®) sym-
bol 4 (z',¢&") of an operator ¢y (z', D).

Applying then (5) we get cusp contribution for operator L, given by the
formula (10) with ng (2, &', 72) replaced by ny o(z', ', 72) which is the eigenvalue
counting function for £(®y o, Pr.0)-valued symbol £y o(x’, &) = Py o(2, &) lk0(2', E);
here @y o(z',&') = {¢ € By, My_1(2',£)*B71¢ = 0 and Py o(z',&’) is the orthog-
onal projection on @y o(z’,&’).

One can see easily that

(13) dim q)k,O = dim q)k — dim @k_l’o, dim @0’0 =0
and (9),(13) yield that

: (d'—1)! )
(9)/ dim @4 o :Zj!(d’—l— ,),dlm@g_j.

; :

Furthermore, for « = I, f = I near infinity
(14) Ni.o(7?) = dim @, N.(72), Nio.o(7?) = dim @y o N,(77)

where N,.(72) is a cusp contribution to the asymptotics for Neumann Laplacian.
One can expect that L, or Ly, ¢ are “Neumann-like” iff dim ®;, = 0 or dim &, o =
0 respectively.

4>£(¢>k, P}, )-valued
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3. Thin cusps. Results.
THEOREM 1. Let either L = Ly, dim®; > 1 or L = Ly o, dim ®y o > 1. Let

(15) a=1, =1 as |z| > C
and let

(16) [V log f| < Cla’ |11l

(17) —log f < [&'|"™,  |V*log f| < |=|™

with m > 0. Then
(i) For d’ > 2 the following asymptotics holds

(18) N(r?) = cor® + Ne(7?) + O(747") + O(79)

where ¢y and ¢y (see below) are standard Weyl coefficients, N.(1) < 19 is defined
by (12), p = dl(”;fl), q= (dl_lzrgm+1) and we omit operator-related indices k and
may be 0;

(ii) For d" =1 the following estimate holds

(19) N(72) = cor? + No(r2) + O(r%(log 7) 71 ) + O(r9),

(iii) Moreover, if d’ > 2, (8) holds L = Ly, o (and similar condition for L = Ly,)
and standard Hamiltonian condition is fulfilled, then one can replace O(t4~1) in
asymptotics (18) by (cy + o(1))7¢471). One can find in theorem 0.1 [Ivr2] how to
improve O(719).

THEOREM 2. Letd” =1, m > d— 2 and conditions (15) — (17) be fulfilled and
let log f be positively homogeneous of degree m + 1. Then
(i) Asymptotics

(20) N(r2) = cor? + v(72) + N(r?) + O(A"T")

d—1
holds with v(72) = c3t4 L(log7)m*T + O(7%71) the Weyl expression for second
order term in domain {f(z")T < 1}.
(ii) Moreover, if m > d — 2, (8) holds L = Ly, (and similar condition for
L = L) and standard Hamiltonian condition is fulfilled, then one can replace
O(7971) in Asymptotics (20) by (c1 + o(1))747L). One can find in theorem 0.3
[Ivr2] how to improve O(719) for m =d — 2.

REMARK 3. One can weaken condition (15). Moreover, same asymptotics hold
for manifolds and for manifolds with compact boundary one can skip condition
(15).

4. Thick cusps. Sketch. In the case of ‘Dirichlet’-like’ cusp condition of
being ultra-thin is no longer necessary and in this case one can derive asymptotics
with sharp remainder estimates exactly in the same type as in [Ivrl], section 12.1.
The only one difficulty is in the case of operator Ly o, dim ®; o = 0 and dim &3, > 1
but one can overcome them taking «; fast growing rather than constant at infinity.
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