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Abstract

We investigate the multiplicative properties of the spaces H 5.3 As in the case of
the classical Sobolev spaces H? this space does not form an algebra. We investigate
instead the space H2 N L® , more precisely a subspace of it formed by products of
solutions of the homogeneous wave equation with data in H z,

It is a well known fact that the classical Sobolev spaces H (R"), s > 5 , form

an algebra relative to the standard multiplication of functions. This properties fails
however for the critical exponent s = %, unless we consider the smaller space H 2 N
L°°(R) for which it is still true. If n is an even integer this fact can be easily proved
with the help of the Gagliardo-Nirenberg inequality. If n is odd a simple proof of this
fact can be obtained with the help of the following characterization of H,(R™) spaces
for 0 < s < 1: A function f € Hy if and only if f € L? and,

//If:c+y G

|y |2

Another proof!( see [C]) can be obtained with the help of Littlewood-Paley decompo-
sitions.

In recent years the spaces H 5,5(Rn+1) have surfaced as reasonable hyperbolic ana-
logues of the classical H, spaces. See [B]. In [K-M2] it was proved that, if § > 2, § > 1
and n > 2, these spaces form an algebra. This fact played a fundamental role in the
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'We shall present yet another proof of this fact below



proof of local well posedness of the Wave Maps equations in H?, for any s > 3. By
analogy with the case of classical Sobolev spaces one may expect that, in the case of
the critical exponents s = 5, § = % the space H%% N L®(R™*!) forms also an algebra.
Such a fact may play an important role to prove the well posedness of the Wave-Maps
equations for the critical exponent s = 5. There are reasons to believe that such a
result is however false. In this note we shall establish a weaker version of this fact con-
cerning products ujus ... uy of solutions of the wave equation Ou; = 0 with H n data.
It is known, see [K-M1], [K-M2] and [K-S], that for N = 2 the product ujus € H%,%
This result does probably fail for N = 3 , we believe that the following conjecture is
true.

Conjecture: If Du=0,u=f, Quu =0 att =0, there exists f, with ||fx||g. =1
2

such that for the corresponding solutions uy,

i, , — o

Our main results are contained in the following theorems:

Theorem 1 Letn > 3. Letu;, i = 1... N verifying Ou; = 0 with data® u; = f; € H%,
Oyu; = g; € H%_l at t = 0. If in addition u; € L™ then ujus...uy € H

n
2

1.
)

Theorem 2 Let n > 3. Let F be an analytic function of one real variable whose
Fourier transform is a compactly supported measure®. Let u be an arbitrary solution
of Ou =0 with Hy data. Then F(u) € H%,%'

Remark: We expect these results to be correct also for n=2. In fact there is only
one place in the proof, the estimate for ||Es||;2> that requires n > 2. This term could
probably be handled by a direct but long calculation.

As a warm up for the proof of theorem 1 we shall start by presenting an elementary
proof of the algebra property of Hz N L>™. Let u,v € Hz N L>; to estimate D3 (uv)

it suffices to estimate the commutator £ = D%(uv) —uDZv —vD%u. In fact we can
show that
[Ell12 < el D> ul[2 [DZ vl (1)

from which we derive,
1812 < (1D ulz 1DF ol + IDFulle ol + 1D Fols o) (2)
To prove 1 we write the Fourier transform E” in the form,

£ = [ o6 = n.mu (€~ no” ()

2In what follows we shall simply say that the u; have H? data
3The exact reqirement is that [ e’ |F||dA be finite.



where o(£ —n,1) = |£|2 — |€ — 5|2 — |n|2. Now observe that,

|0(€ = n,m)| < emin(|€ — 7], [n]) max 2" (1€ — g, |n]).
Thus , writing || [u” ()] = f(£).]€]% 0" (€)| = g(€) with f,g € L2,

1 1
EA < n n - d
| (€)|_c/<|§—77|51|77|+|77|51|§—77|>f(£ mg(n)dn

from which 1 is immediate.
We shall next prove Theorem 1 in the particular case of N = 3. Define the operator
a

n 1 . .
D= WEW? by WeF(t,z) = [ [eiTei®8||7| £ £|| u™(7,€)drdE where ~ deotes the

space-time Fourier transform of F. We have to prove that D(ujuou3) € L? for all
solutions Ou; =0, 4 =1,2,3 with H% data and u; € L*°.
The main idea of our proof is to consider the following commutator,
= D(U1U2U3) — ulp(uQu;),) — uQD(u;),ul) — U3D(U1U2), (3)

for which we prove the estimate,

| Ellz2@nt1y < C

with a constant C' which depends only on the size of the H 2 norm of the data for
uy, ugus. Clearly, it suffices to prove this estimate for

fi(§)
€12

where ¢; = £1 and f; € L?. More precisely we shall prove the estimate,

i (7€) = 0(7 — €))7

(4)

1 Ell2@n+1y < Cllfillz2@e)ll f2ll 2 ey | 31l 22 )- (5)
The proof of he Theorem is then an immediate consequence of (5) and the result for
N = 2. To prove (5) we write the space-time Fourier transform of E in the form ,

(1,6) = /// m (&1, &2, §3)ur” (A1, §1)ug™ (A2, §2)us ™ (A3, §3)dTdE
A1+ +A3=T,{1+82+E3=¢
(6)
where, u;” are given by (4) and
m(&1,€2,83) = dlerl&i] + e2|éa| + €3/és], & + &2 + &3) — d(ex|éa| + €3/, &2 + &3)
— d(erl&i] + es|€s], & + &) — d(en]éi] + e2léal, &1 + &2) (7)
and,
n 1
d(r,&) = (I7[ + [€)) = [[7] — [¢]]?
is the symbol of the operator D. The commutator £ was define with the intent that

m(&1,€2,&3) = 0 if any of the vectors &1,&o, &3 vanish? . In fact we can prove the
following:

m(&1,€2,6)] < Cmin 2 (€], €], |€3]) max 3 (€4, &), |&3]) (8)

“Observe that that d(e|¢], &) = 0.



Without loss of generality we may assume that in (6) we integrate only on the region
1

|€1] < [€o] < |€s]. Then, [m(&1, &2, &)| < C(I€1] - [€20)7[€5] and,
wrol<cf [ (11D F16slE fun™ Oty 1) ™ O 2)us™ (s, )1
A1+A2+A3=7,&1+€2+83=¢

Henceforth,
|E~(1,€)] < wvi” *vy” xv3 (71,€), where
v (1,6) = (1 —€l&il)gi(€)
with 917 (§) = mzﬁlh(ﬁ)l, 92" (§) = mzﬁlh(ﬁ)l, and g3”(§) = |f3(¢)]- Thus vy, vy
and vs are solutions of Ov; = 0 with data in H =5 and respectively L?. By Plancherel
formula and Holder inequality,

1Bl > < Cllorvgus|lp> < Clluslipgepz lonllpapge lv2ll oz

and the proof follows from the following version of the Strichartz-Pecher inequalities.
See [E-V]. It is this step than does not work for n=2.

Proposition 0.1 Let v™(1,&) = 0(7 —|£])g" (&) . If n >3 and 2 < ¢ < 00, we have ,
with a constant C' = Cy,, depending only on g and the dimension n,

[l zgz5e < Conllgliy

n_
2

ESI

Moreover, for large q,

Cq,n < Cn\/a
where Cy, is a constant depending only on n and not on q. For n = 2 we have to take
4 < g < oo.

We next proceed to prove the theorem in full generality. Given u; ...uy , as defined
in (4 ), we form the commutator,

N—-2
E :D(ul...uN) + Z(—l)k Z ug(l) ...u(,(k)D(uo_(k+1) ...UU(N)) (9)
k=1 O'EAk

where Ay denotes all permutations of {1,..., N} with o(1) < 0(2)... < o(k) and
ok+1) <o(k+2)... <o(N). Thus Ay has Ck = % distinct elements. We
shall prove that,

|Elz2@n+1y < OnIl fill 2ny - 1 NI 22 gn)

More precisely we will prove the following,

Theorem 3 Consider u;” = (1 — EZ|€|){T(%) with f; € L? and the commutator E
defined by (9) Then,

1Bl 2 @nt1) < (CVN)V [ fillpagemy - fell2any -~ 1wl L2 geny



Proof of Theorem 3: The Fourier transform of £ can be written in the form,

B (r,€) = / /ZiAi:T,Zigizfm(a,...fN)uf(Al,a)---uN~(AN,fN>dAdf (10)

where
N—2 N N
m(&,.En) =Y (CDF DAY euléonl D o) (11)
k=0 o€A,  i=k+1 i=k+1

Observe that m = 0 whenever any one of the vectors £, ... &n vanishes. In fact we
shall prove the following inequality,

m(&r,...Ex) < C2Y min %(|§1|,... lEx]) max 2 (|&1],. .. |Ex]) (12)

Assuming the above inequality the theorem can be proved as follows: From (10), if
we assume, without loss of generality, that |§;]| < [&o| < ... < |€n]| then,

1

m| < Cl&|21€]F < C(l&y] -+ [En 1) T D [¢n %

Therefore,

|E7] < CQN(Ul cvg - vN)”

where vy ... vy verify Ov; = 0 with data g;" (¢) = —————|f;"(¢)| fori=1,...,N—1

g =D

and gy~ (&) = |fn"(&)|- Now , in view of Proposition 0.1, for alli =1,2...,N —1

PRSI T 1
loill poov-1) oo < ONZ[ D2 20D g3 12 = ONZ| il 2.

Therefore,

1Bl < 02N||01||L3<N—1>Lgo oov=ill oy llowllgerz
N
< CNVN2 (| fillge - I fwllze

and thus prove the desired inequality.
To finish the proof of Theorem 3 it remains to prove (12) and Prop. 0.1. To prove
(12) first rewrite (11) in the form

N—2
m(éy,. . &n) = D> (=" > dn ik Eotrrn)s Eorra)s - - Eo())
k=0 oEAy

where N B A .
di(€r, oy &) = |G Y alel - 136l
=1 =1 =1

Assume, without loss of generality, that |{1] < ...|¢n]|. Clearly m(&y,...€N) can
be written in the form as a sum of CX | terms of the type dgi1(¢1, &iyy---y &) —

5



dp(&iyy- .., &),) where 1 < iy <idg...i , for 2 <k < N —1, as well terms of the type
da(&1,&;). Thus the inequality (11) follows from the following,

dy(&1,6) < cléi|?|en]? (13)
i1 (61, Eins o &) — di(Eins - )| < cl€r|ZlEn]E (14)

The inequality (13) follows easily from,

\||§| Ll — ¢ +n|\ < 2min(l¢], |n))-

To prove (14) we can write the left hand side L in the form

L
2

L &1+ Al>

Bl = 4]

1
2

)

where A =&, + ... +&,, B =¢€,[&,|+ ... +¢€,|&,.|- Now, the result follows easily

€1+ AlF — |A]3| < clé]|én|57F and, since

1
2 n
|e1|a|+B|—|§1+A|\ a3

<|§1 + A% - |A|%>

le1|€1| + Bl — [§1 + A|

1
n 5
4 J4gE (flalel + 51~ la+ 4 - 181 14

from ul? — |v|2| < |u—v|?,

1 1 1
erlén] + B — e + 4] - \|B|—|A| | < eler) + Bl = je + Al - 1Bl + 4]
: :
< el + 51 1BI|" +|ies + 41 - 4]
< 206

Proof of Prop. 0.1: Let T be the operator defined from L?(R") to functions of
(t,z) € R"*! defined by

Tf(t, z) = /eit\swm-f;1
o

By the usual 77" argument to show that ||T'f| sz < c\/ql|f|[z2 it suffices to check
that |[TT*F|ap < CqllF|| Now observe that T7T* can be written in the form,

fr(&)de

L'y
TT*F(t,x) = //k(t —s,x—y)F(s,y)dsdy (15)
where ,
k(t,x) = /eit\ﬁ\ﬂ'zf%dé
& e

We shall show that, for large ¢,



Ikt 2)] < Cq— (16)

Thus , from (15),

i 1
ITTF(t, )l < Ca [ ——1F(s, )l

t— s|a
By applying the Hardy-Littlewood inequality® we infer that,
IT7°Fl 10 < Call Pl
as desired. It remains to prove (16). We shall prove it for n = 3, the proof for
n > 3 is only slightly more involved. In that case, k(t,z) = [;° eit)“gi;‘—)ﬁ/\i% d). Let
k = k1 + ko with

i
ky = [ pHASTAZ] 1 gy

2
A z] N
OO gt SinA|z 1
k2 _Iﬁez )“—93"')\1—%('1)\

Clearly

1
[t]

2 2
al < | >\_1+3d>\:g|t|_3.

On the other hand , if %' <z,

1 oo 1 11 gl-2
|2 <?\fﬁ deﬁqmm ‘

_2
< Clt| .

]

Finally, for |z| < 5, we make a change of variables and then integrate by parts as

follows,
_2 [ lHysin A _q42
ka(e) = la| @ /E‘ SN EE Ny
Tel
_2 [z d , Ly sinA _q42
= — —(e'lal A dA
2| /—| e :
= ko1 + koo + kos.
The absolute value of the boundary term Ky, is clearly bounded by |w|7§ % (%)7“% =
|t|_§. Also,

5Which is valid for all ¢ > 2 , with a uniform constant.



,2|1‘| 0 iﬂ)\sin)\ d 142
|k22| = |CC| qm /z‘ e l=l Ta)\ +q
Gl
< |x—§M( _2) OOA—2+§d>\

N it gt i
< |t s
_2x|| [ ildad o sinA | _qi2
e qg o] " —((—— q
al = 1ol [ R ERON
o0 -
< C|x|§% R
Tel
2
< Clt .

Hence |k2| < C|t|7§ as desired.

This ends the proof of Theorem 3. Theorem 1 is an obvious consequence of formula
(9) and Theorem 3.

Proof of Theorem 2: Without loss of generality we may assume that u is a
solution of Du = 0 with data u = f € H%, Oyu =0 at t = 0. In view of Theorem 3 we
have the formula,

DuN) = C}VuD(uNfl) — CZQVU2D(UN*2) + ... (=D 24N 2D (u?) + Ex (17)

where Ey verifies the estimate,

|1Exz2gans1y < CNN'E (18)
Next, we remark ©
D(e)e ™ :Z 5 (19)
k=0
Hence,
Ay 2
1D 12 < Ce“N |1 fll s (20)
Therefore, if we write
F(u) = /e““F’(A)dA (21)
we conclude
s ~
IDF(u)l2 < CIIfIIHn/z/GCA [F(A)]dA (22)

60Qur formula is not true for general functions u, but is true for bounded ones. Out of convenience, let’s
assume u has Schwartz data, thus is bounded, and we prove an a priori estimate with constants independent
of the L* norm of u.
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