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ASYMPTOTICS OF HOLOMORPHIC SECTIONS OF POWERS OF A
POSITIVE LINE BUNDLE

STEVE ZELDITCH

1. Introduction

In this lecture we will describe some recent results [Z.1][Sh.Z] (obtained partly in collabora-
tion with B.Shiffman) on the asymptotic properties of holomorphic sections sN ∈ H0(M,LN)
of the Nth tensor power LN of a positive hermitian holomorphic line bundle (L, h)→ (M,ω)
over a compact Kahler manifold of dimension m. Here, ω = c1(h) is the curvature form of h.
Using the Boutet de Monvel-Sjostrand parametrix for the Szego kernel [BS] we first obtain
a rather simple and direct proof of a result due to G. Tian on the asymptotic isometry of
the Kodaira embeddings [T]. We then apply this result to prove the asymptotic uniform
distribution of zeros of certain sequences of sections sN ∈ H0(M,LN) as N →∞, namely

• to ‘random sequences’ of sections
• to eigenfunctions of an ‘ergodic quantum map’.

In the simplest case where M = CPk, where L = O(1) (the hyperplane line bundle) and
where ω = ωFS (the Fubini-Study form), H0(PCk, O(N)) consists of homogeneous holomor-
phic polynomials p(z0, . . . , zk) of degree N on Ck+1. Our subject then specializes to the
asymptotics of polynomials as the degree N → ∞. The distribution of zeros of random
polynomials of large degree was first studied by Bloch-Polya, Littlewood, Kac and others
(see [BlD] for references). More recently, mathematical physicists [BlD][BBL][Ha][NV][Z2][V]
have been interested in random polynomials (and more general sections) as a model for eigen-
functions of quantum chaotic maps. The large N limit of powers LN of a positive line bundle
arises in physics as the semi-classical limit in the geometric quantization of a compact Kahler
manifold.

Our first result concerns the Kodaira embeddings ϕN : M → PH0(M,L⊗N)∗ defined by
ϕN(z) = {s : s(z) = 0}. In a standard way [GH], one may express the Kodaira embeddings
in terms of an orthonormal basis of sections. Namely, for each N ∈ N, h induces a hermitian
metric hN on L⊗N . Let {SN0 , . . . , SNdN} be any orthonormal basis of H0(M,L⊗N), with respect
to the inner product 〈s1, s2〉hN =

∫
M hN(s1(z), s2(z))dVg where dVg is the volume form of g

of volume one. For large N , there are no common zeroes of the sections {SN0 , . . . , SNdN} and
the Kodaira map may be expressed as:

ΦN(z) = [SN0 (z), . . . , SNdN (z)] (1)

where [SN0 (z), . . . , SNdN (z)] denotes the line through (SN0 (z), . . . , SNdN (z)) as defined in a local
holomorphic frame.
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2 STEVE ZELDITCH

Theorem 1.1. ([Z.1]) There exists a complete asymptotic expansion:

dN∑

i=0

||SNi (z)||2hN = a0N
m + a1(z)Nm−1 + a2(z)Nm−2 + . . .

with a0 = c1(L)m

m!
in the sense that, for any k,R,

||
dN∑

i=0

||SNi (z)||2hN −
∑

j<R

aj(z)Nm−j||Ck ≤ CR,kN
n−R.

It follows easily that the Kodaira embeddings are asymptotically isometric:

Corollary 1.2. Let ωFS denote the Fubini-Study form on CPdN . Then:

|| 1
N

Φ∗N(ωFS)− ωg||Ck = O(
1

N
)

for any k.

This result was first proved (simeltaneously and independently) by G.Kempf [K] and S.Ji
[Ji] in the case of abelian varieties (with C0 convergence) and for general projective varieties
with C4 convergence by G.Tian [T, Lemma 3.2(i)]. Heat kernel proofs of the C0-convergence
result were later found by T. Bouche [Bou.1] [Bou.2] and J.P.Demailly [D]. The author has
also recently learned that D.Catlin independently proved the theorem and its corollary by a
method similar to ours [C].

Corollary (1.2) is the starting point for some results on the distribution of zeros of random
sequences of holomorphic sections. Namely, we consider the probability space (S, dµ), where
S equals the product

∏∞
N=1 SH

0(M,LN) of the unit spheres SH0(M,LN) in H0(M,LN) and
µ is the product of Haar measures on these spheres. Given a sequence s = {sN} ∈ S, we
associate the currents of integration [ZsN ] over the zero divisors ZsN of the sections sN . In
complex dimension 1, [ZsN ] is the sum of delta functions at the zeros of sN . Our first result
states that for a random (i.e., for almost all) s ∈ S, the sequence of zeros of the sections sN
are asymptotically uniformly distributed:

Theorem 1.3. ([Sh.Z]) For µ-almost all s = {sN} ∈ S, 1
N

[ZsN ]→ ω weakly in the sense of
measures; in other words,

lim
N→∞

(
1

N
[ZsN ], ϕ

)
=

∫

M
ω ∧ ϕ

for all continuous (m− 1,m− 1) forms ϕ. In particular,

lim
N→∞

1

N
Vol2m−2{z ∈ U : sN(z) = 0} = mVol2nU ,

for U open in M (where Volk denotes the Riemannian k-volume in (M,ω) ).

Tian’s theorem combined with some plurisubharmonic analysis also gives a uniform distri-
bution theorem for zeros of eigenfunctions of ergodic quantum maps. Recall that a quantum
map is a sequence Uχ,N of unitary operators on H0(M,LN) which ‘quantizes’ a symplectic
map χ : (M,ω) → (M,ω). For the precise definitions, we refer to [Z3]. We call Uχ,N a
‘quantum ergodic map’ if χ is an ergodic transformation of (M,ω). Since the zero set of a
wave function represents the locus of points where the quantum particle is least likely to be,
it is natural to try to connect the distribution of zeros to dynamical properties of the map.
In the ergodic case we have:
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Theorem 1.4. ([Sh.Z]; see also [NV]) Let (L, h) → (M,ω) be a positive Hermitian line
bundle over a Kähler manifold with c1(h) = ω and let Uχ,N : H0(M,LN) 7→ H0(M,LN) be a
ergodic quantum map. Further, let {SN0 , . . . , SNdN} be an orthonormal basis of eigensections
of Uχ,N . Then there exists a subsequence Λ ⊂ {(N, j) : N = 1, 2, 3, . . . , j ∈ {0, . . . , dN}} of
density one such that

lim
N→∞,(N,j)∈Λ

1

N
[ZSNj ]→ ω

weakly in the sense of measures.

This result was conjectured by LeBoeuf-Voros and was proved independently (and prior to
us) by Nonnenmacher-Voros [NV] in the case of the theta bundle over an elliptic curve C/Z2.
We would also like to mention a result in a work in progress [NZ] at the opposite extreme
where the quantum map Uχ is completely integrable in the strong sense of commuting with
a Hamiltonian torus action. Let J : M → IRn denote the moment map of the action and
let ∆ = J(M) denote the moment polytope. Then for each eigenfunction SN,j of Uχ,N , we
have J(ZSN,j) ⊂ ∂∆, i.e. the zeros are contained in the inverse image of the boundary of the
moment polytope.

2. Preliminaries

2.1. Notation. We begin by recalling some basic notions and establishing notation. A holo-
morphic line bundle L→M over an m-dimensional compact complex (projective) manifold
M is called positive if it has a hermitian metric h of positive curvature. The curvature form
c1(h) is the (1, 1) form given locally by

c1(h) = −
√−1

π
∂∂̄ log ‖eL‖h ,

where eL is a nonvanishing local holomorphic section of L, and ‖eL‖h = h(eL, eL)1/2 denotes
the h-norm of eL. The form c1(h) is a de Rham representative of the first Chern class
c1(L). Positivity means that ω = c1(h) is a Kähler form, i.e. if ω = i

∑
jk ωjk̄dzj ∧ dz̄k

then the hermitian form
∑
jk ωjk̄dzjdz̄k is positive definite. We give M the volume form

dV = 1
c1(L)m

ωm , so that M has unit volume:
∫
M dV = 1.

As above, we denote the space of global holomorphic sections of L by H0(M,L) and that of
its powers by H0(M,LN) where LN = L⊗ · · · ⊗L. The dimension of H0(M,LN) is denoted
by dN + 1. It is well known that for N sufficiently large, dN + 1 is given by the Hilbert
polynomial of L, whose leading term is c1(L)m

m!
Nm [G.H]. The metric h induces Hermitian

metrics hN on LN given by ‖s⊗N‖hN = ‖s‖Nh . We give H0(M,LN) the inner product

〈s1, s2〉 =
∫

M
hN(s1, s2)dV (s1, s2 ∈ H0(M,LN) ) , (2)

and we write |s| = 〈s, s〉1/2.

2.2. Kodaira maps ΦN . We now fix an orthonormal basis {SN0 , . . . , SNdN} of H0(M,LN).

We also fix a local holomorphic section eL of L over U ⊂M . It induces sections eNL of L⊗N |U
and we may write SNi (z) = fNi (z)eNL (z) for certain holomorphic functions fNi on U . The
Kodaira map is defined by

ΦN(z)M → PCdN , ΦN(z) = [fN0 (z), . . . , fNdN (z)] (3)
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where [· · · ] denotes the line thru the vector in CdN+1. Recall that the Kahler form ωgFS of
the Fubini-Study metric gFS on CPm is given in homogeneous coordinates [w0, . . . , wm] by

ωFS =
√−1
2π
∂∂̄ log(

∑m
j=0 |wi|2). Hence

Φ∗NωFS =

√−1

2π
∂∂̄ log(

m∑

j=0

|fj|2). (4)

It is easy to see that this form is independent of the choice of orthonormal basis.

2.3. Currents of integration [Zs]. For a holomorphic section s ∈ H0(M,LN), we let
[Zs] denote the current of integration over the zero divisor of s. Recall here the notion of
current: We let Dp,q(M) denote the space of C∞ (p, q)-forms on M , and we let D′p,q(M) =
Dm−p,m−q(M)′ denote the space of (p, q)-currents on M ; (T, ϕ) = T (ϕ) denotes the pairing
of T ∈ D′p,q(M) and ϕ ∈ Dm−p,m−q(M). Then for ϕ ∈ Dm−1,m−1(M), ([Zs], ϕ) =

∫
Zs
ϕ. In

the local frame eNL for LN , we write s = feNL , where f is a local holomorphic function. The
zero current is then given by the Poincaré-Lelong formula

[Zs] =

√−1

π
∂∂̄ log |f | =

√−1

π
∂∂̄ log ‖s‖hn +Nω . (5)

We also consider the normalized zero divisor

[Z̃N
s ] =

1

N
[Zs] ,

so that the currents [Z̃N
s ] are de Rham representatives of c1(L), and thus

(
[Z̃N

s ], ωm−1
)

=
c1(L)m

m!
. (6)

Equation (6) says that the currents [Z̃N
s ]s all have the same mass. For background on

currents of integration see [GH][LG].

2.4. Holomorphic sections and CR holomorphic functions. Following [B.G], we study
asymptotics of high powers of line bundles by lifting the problem to the unit circle bundle X
associated to L. That is, let L∗ be the dual line bundle to L and let D = {v ∈ L∗ : h(v, v) <
1} be its unit disc bundle relative to the metric induced by h and let X = ∂D = {v ∈ L∗ :
h(v, v) = 1}. The positivity of c1(h) is equivalent to the strict pseudoconvexity of the disc
bundle D in L∗ (see [Gr]). We will denote the S1 action on X by rθx and its infinitesimal
generator by ∂

∂θ
.

Let us also denote by T ′D,T ′′D ⊂ TD ⊗ C the holomorphic, resp. anti-holomorphic
subspaces and define d′f = df |T ′ , d′′f = df |T ′′ for f ∈ C∞(D). Then X inherits the CR
structure TX ⊗C = T ′ ⊕ T ′′ ⊕C ∂

∂θ
. Here T ′X (resp. T ′′X) denotes the holomorphic (resp.

anti-holomorphic vectors) of D which are tangent to X. They are given in local coordinates
by vector fields

∑
aj

∂
∂z̄j

such that
∑
aj

∂
∂z̄j
ρ = 0. A local basis is given by the vector fields

Zk
j = ∂

∂z̄j
− ( ∂ρ

∂z̄k
)−1( ∂ρ

∂z̄j
) ∂
∂z̄k

(j 6= k.)

The Cauchy-Riemann operator on X is defined by

∂̄b : C∞(X)→ C∞(X, (T ′′)∗), ∂̄bf = df |T ′′ . (7)
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In terms of the local basis above, it is given by

∂̄bf =
∑

j 6=k
Zk
j fdz̄j|T ′′ . (8)

Also associated to X are

• the contact form α = 1
i
d′ρ|X = −1

i
d′′ρ|X

• the volume form dµ = α ∧ (dα)n

• the Levi form Lρ(z) =
∑ ∂2ρ

∂zj∂z̄k
zjz̄k.

• the Levi form onX LX = Lρ|T′⊕T′′∩TX

(9)

which are independent of the choice of ρ. The Levi form on X is related to dα = π∗ωg by:
LX(V,W ) = dα(V, W̄ ).

The Hardy space H2(X) is the space of boundary values of holomorphic functions on D
which are in L2(X), or equivalently H2 = (ker ∂̄b) ∩ L2(X). The S1 action commutes with
∂̄b, hence H2(X) = ⊕∞N=1H

2
N(X) where H2

N(X) = {f ∈ H2(X) : f(rθx) = eiNθf(x)}.
A section s of L determines an equivariant function ŝ on L∗ − 0 by the rule: ŝ(z, λ) =

〈λ, s(z)〉. Here, z ∈ M,λ ∈ L∗z. It is clear that if τ ∈ C∗ then ŝ(z, τλ) = τ ŝ. We will
usually restrict ŝ to X and then the equivariance property takes the form: ŝ(rθx) = eiθŝ(x).
Similarly, a section sN of L⊗N determines an equivariant function ŝN on L∗−0: put ŝN(z, λ) =
〈λ⊗N , sN(z)〉 where λ⊗N = λ⊗λ⊗· · ·⊗λ. The following proposition is well-known and easy
to prove:

Proposition 2.1. The map s 7→ ŝ is a unitary equivalence between H0(M,L⊗N) and
H2
N(X).

2.5. Parametrix for the Cauchy-Szego kernel. The key analytic objects in this paper
are the orthogonal (Szego) projection Π : L2(X) → H2(X) and its Fourier components the
finite dimensional projections ΠN : L2(X)→ H2

N(X). We define their kernels by

ΠNf(x) =
∫

X
ΠN(x, y)f(y)dµ(y), (10)

which differs from the definition of [B.S] in using dµ as the reference density.
The main result on the Szego kernel Π(x, y) for a strictly pseudoconvex domain is the

following:

Theorem 2.2 (BS, Theorem 1.5 and §2.c). Let Π(x, y) be the Szego kernel of the boundary
X of a bounded strictly pseudo-convex domain Ω in a complex manifold L. Then: there
exists a symbol s ∈ Sn(X ×X × IR+) of the type

s(x, y, t) ∼
∞∑

k=0

tm−ksk(x, y)

so that

Π(x, y) =
∫ ∞

0
eitψ(x,y)s(x, y, t)dt

where the phase ψ ∈ C∞(D ×D) is determined by the following properties:
• ψ(x, x) = 1

i
ρ(x) where ρ is the defining function of X.
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• d′′xψ and d′yψ vanish to infinite order along the diagonal.

• ψ(x, y) = −ψ̄(y, x).

The integrals are regularized by taking the principal value (see [BS]). The second condition
states that ψ(x, y) is almost analytic. Roughly speaking, ψ is obtained by Taylor expanding
ρ(z, z̄) and replacing all the z̄’s by w̄’s, i.e. the Taylor expansion of ψ near the diagonal is
given by

ψ(x+ h, x+ k) =
1

i

∑ ∂α+βρ

∂zα∂z̄β
(x)

hα

α!

k̄β

β!
.

For example, in the case of the unit ball Bn+1 ⊂ Cn+1, the Szego kernel is given by

K∂B(z, w) =
1

(1− 〈z, w〉)n+1
=

∫ ∞
0

eitψ∂B(z,w)tndt

with ψ∂B(z, w) = 1− 〈z, w〉.
The principal term s0(x, x) on the diagonal was determined in [B.S (4.10)], using that Π

is a projection:

s0(x, x)dµ(x) =
1

4πm
(det LX)||dρ||dx (11)

where LX = Lρ|T ′⊕T ′′∩TX is the restriction of the Levi form to the maximal complex subspace
of TX.

3. Proof of Theorem (1.1) and Corollary (1.2)

The proof of Theorem 1.2 begins by lifting everything to X. As above, we fix an orthonor-
mal basis {SNi } of H0(M,LN) and lift it to abasis {ŜNi } of H2

N(X). The following proposition
is straightforward and we refer to [Z1] for the proof:

Proposition 3.1. {ŜNi } is an orthonormal basis of H2
N(X). Moreover, ||SNj (z)||2hN = |ŜNi (x)|2

for any x with π(x) = z.

The following lemma links our problem to the Szego kernels:

Lemma 3.2.
√−1
2πN

Φ∗NωFS = ωg +
√−1
2πN

∂̄b∂b log ΠN(x, x).

Proof We first observe that

√−1

2πN
Φ∗NωFS = ωg +

√−1

2πN
∂̄∂ log(

dN∑

j=0

||SNj (z)||2hN ) (12)

which follows by writing ||SNj (z)||2hN = aN |fNj | and using that ∂̄∂ log aN = −Nωg. We lift
this statement to X in the form:

π∗
√−1

2πN
Φ∗NωFS =

√−1

2πN
∂̄b∂b log(

dN∑

j=0

|ŜNj |2). (13)

Next we observe that

ΠN(x, y) =
dN∑

i=0

ŜNi (x)ŜN∗(y) (14)
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or, in local coordinates,

ΠN(z, θ, w, θ′) = a(z)
N
2 a(w)

N
2 eiN(θ−θ′)

dN∑

i=0

fNi (z)f̄Ni (w). (15)

Hence we have

(a)
∑dN
j=0 ||SNj (z)||2hN = ΠN(z, 0, z, 0)

(b)
√−1
2πN

∂∂̄ log(
∑dN
j=0 ||SNj ||2hN ) =

√−1
2πN

∂̄b∂b log ΠN(z, 0, w, 0).

(16)

This completes the proof.
The projections ΠN are Fourier coefficients of Π and hence may be expressed as:

ΠN(x, y) =
∫ ∞

0

∫

S1
e−iNθeitψ(rθx,y)s(rθx, y, t)dtdθ (17)

where as above rθ denotes the S1 action on X. Changing variables t 7→ Nt gives

ΠN(x, y) = N
∫ ∞

0

∫

S1
eiN(−θ+tψ(rθx,y)s(rθx, y, tN)dtdθ. (18)

¿From the fact that Imψ(x, y) ≥ C(d(x,X) + d(y,X) + |x− y|2 + O(|x− y|3) (see [B.S])
it follows that the phase

Ψ(t, θ;x, y) = tψ(rθx, y)− θ. (19)

has positive imaginary part. Hence the integral is a complex oscillatory integral. Before
analysing its asymptotics we simplify the phase. As above, we choose a local holomorphic
co-frame e∗L, put a(z) = |e∗L|2z, and write ν ∈ L∗z as ν = λe∗L. In the associated coordinates
(x, y) = (z, λ, w, µ) on X ×X we have:

ρ(z, λ) = a(z)|λ|2, ψ(z, λ, w, µ) =
1

i
a(z, w)λµ̄ (20)

where a(z, w) is the almost analytic function on M ×M satisfying a(z, z) = a(z). On X

we have a(z)|λ|2 = 1 so we may write λ = a(z)−
1
2 eiϕ. Similarly for µ. So for (x, y) =

(z, ϕ, w, ϕ′) ∈ X ×X we have

ψ(z, ϕ, w, ϕ′) =
1

i
(1− a(z, w)

i
√
a(z)

√
a(w)

)ei(ϕ−ϕ
′). (21)

On the diagonal x = y we have ψ(rθx, x) = 1
i
(1− a(z,z)

a(z)
eiθ) = 1

i
(1− eiθ). So

Ψ(t, θ; x, x) =
t

i
(1− eiθ)− θ. (22)

We have

dtΨ = 1
i
(1− eiθ)

dθΨ = teiθ − 1
(23)

so the critical set is C = {(x, t, θ) : θ = 0, t = 1}. The Hessian Ψ′′ on the critical set equals
(

0 1
1 i

)
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so the phase is non-degenerate and the Hessian operator is given by LΨ = 〈(Ψ′′(1, 0)−1D,D〉 =

2 ∂2

∂t∂θ
− i ∂2

∂t2
. It follows by the stationary phase method that

ΠN(x, x) ∼ N
1√

det(NΨ′′(1, 0)/2πi)

∞∑

j,k=0

Nm−k−jLjsk(x, x) (24)

for various differential operators Lj of order 2j More precisely, for any R ≥ 0, one has (cf.
[Ho I, Theorem 7.7.5])

|ΠN(x, x)−N 1

det(NΨ′′(1, 0)/2πi)

∞∑

j+k<R

Nm−k−jLjsk(x, x)| ≤ CNm−R ∑

k<R,|α|≤2R−2k

||Dαsk||∞.
(25)

The expansion can be differentiated any number of times. After some rearrangement, the
series has the form

ΠN(x, x) = Nms0(x, x) +Nm−1a1(x, x) + . . . (26)

where the coefficients s0(x, x), a1(x, x) . . . depend only on the jets of the terms sk along the
diagonal. From the description above of the leading coefficient s0(x, x) we have:

ΠN(x, x)dµ(x) =
1

(2πm)
Nmα ∧ ωn +O(Nm−1). (27)

Relative to the canonical volume measure, the coefficient is a (non-zero) constant times
Nm; it is determined by comparison to the leading coefficient of the Hilbert polynomial,
completing the proof of the theorem.

3.1. Proof of Corollary (1.2). Because ΦN is a CR map, the asymptotics of the deriva-
tives follow immediately from the asymptotics of ΠN(x, x). Indeed, ∂̄b∂b log ΠN(x, x) =
∂̄b∂b log ΠN(x, y)|y=x.

By (a) we have

log ΠN(x, x) = log(Nms0(x, x)[1 +N−1 s1
s0

+ . . . ])

= m logN + log s0(x, x) + log[1 +N−1 s1
s0

+ . . . ]) = m logN + log s0(x, x) +O( 1
N

).
(28)

By differentiating the expansion we get

∂̄b∂b log ΠN(x, x) = ∂̄b∂b log s0(x, x) +O(
1

N
) = O(1). (29)

4. Zeros of random sequences of sections

We now turn to the distribution of zeros of random sequences of sections. Our purpose is
to show that if we choose a sequence {s1, s2, . . . } at random from the space (S, µ), then the
zero sets ZsN become uniformly distributed relative to ω.

A few remarks on the theorem before we begin the proof. First, it may seem to be rather
tautologous that the limit distribution reproduces ω since the measure µ was defined in terms
of ω in the first place. However, the result is not circular and in related settings the problem
of determining the almost certain distribution of zeros is open. For instance, let us choose a
(real-valued) spherical harmonic pN of degree N at random from the unit sphere SVN of the
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space of Nth order real spherical harmonics VN ⊂ L2(Sn, IR) and look at its zero set ZpN ,
a real hypersurface in Sn. Does the zero (nodal) set of almost any sequence {pN} become
uniformaly distributed relative to the volume measure as N →∞? The answer is probably
‘yes’ but has not (at this time) been proved; the difficulty than is that the formula for the δ
function on ZpN is more complicated than in the holomorphic case.

Now let us turn to the proof. What we do is calculate the expected values and variances
of the random variables ([Zs], ϕ). Corollary (1.2) determines the expected value and it turns
out that the variances are so small that one can immediately deduce almost everywhere
convergence. Somewhat surprisingly it is not even necessary to use the strong law of large
numbers.

4.1. Expected distribution of zeros. We first determine the expected value of the nor-
malized zero divisor Z̃s as s is chosen at random from the unit sphere

SH0(M,LN) := {s ∈ H0(M,LN) : |s| = 1}
(or equivalently as [s] ∈ PH0(M,LN) is chosen at random with respect to the Fubini-Study
volume). As above, we fix one orthonormal basis {SNj } of H0(M,LN) and write SNj = fje

N
L

relative to a holomorphic frame (= nonvanishing section) eNL over an open set U ⊂M . Any

section in SH0(M,LN) may then be written as s =
∑dN
j=1 ajfje

N
L with

∑dN
j=1 |aj|2 = 1. To

simplify the notation we let f = (f1, . . . , fdN ) : U → CdN (which is a local representation of
ΦN) and we put

dN∑

j=1

ajfj = 〈a, f〉.

Hence

Z̃N
s =

√−1

Nπ
∂∂̄ log |〈a, f〉| . (30)

We shall frequently use the notation E(Y ) for the expected value of a random variable Y
on a probability space (Ω, dµ), i.e. E(Y ) =

∫
Ω Y dµ.

We view Z̃N
s as a D′1,1(M)-valued random variable (which we call simply a ‘random

current’) as s varies over SH0(M,LN) regarded as a probability space with the standard
measure, which we denote by µN . The expected distribution of zeros of the random section
s is the current E(Z̃N

s ) ∈ D′1,1(M) given by
(
E(Z̃N

s ), ϕ
)

=
∫

S2dN−1

(
Z̃N
s , ϕ

)
dµN , ϕ ∈ Dm−1,m−1(M), (31)

where we identify SH0(M,LN) with the unit (2dN + 1)-sphere S2dN−1 ⊂ CdN . In fact, we
have the following simple formula for the expected zero-distribution in terms of the map ΦN :

Lemma 4.1. For N sufficiently large so that ΦN is defined, we have:

E(Z̃N
s ) =

1

N
Φ∗NωFS

Proof
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For simplicity, write ωN = 1
N

Φ∗NωFS. Then we have:

ωN =

√−1

2πN
∂∂̄ log

dN∑

j=1

|fNj |2 =

√−1

2πN
∂∂̄ log |f |2, (32)

where f = (f0, . . . , fdN ). Let ϕ be a smooth (m − 1,m − 1) form, which we shall refer to
as a ‘test form’. We may assume that we have a coordinate frame for L on Support ϕ. By
(30), we must show that

√−1

πN

∫

S2dN−1

∫

M
∂∂̄ log |〈a, f〉| ∧ ϕdµN(a) = (ωN , ϕ) . (33)

To compute the integral, we write f = |f |u where |u| ≡ 1. Evidently, log |〈a, f〉| = log |f |+
log |〈a, u〉|. The first term gives

√−1

πN

∫

M
∂∂̄ log |f | ∧ ϕ =

∫

M
ωN ∧ ϕ. (34)

To complete the proof it suffices to show that the second term equals zero. But it is given
by
√−1

π

∫

S2dN−1

∫

M
∂∂̄ log |〈a, u〉| ∧ ϕdµN(a) =

√−1

π

∫

M
∂∂̄

[∫

S2dN−1
log |〈a, u〉|dµN(a)

]
∧ ϕ = 0,

(35)

since the average
∫

log |〈a, ω〉|dµN(a) is a constant independent of u for |u| = 1, and thus
the operator ∂∂̄ kills it.

Combining Corollary ?? and Lemma 4.1, we obtain:

Corollary 4.2. E(Z̃N
s ) = ω +O( 1

N
); i.e., for each smooth test form ϕ, we have

E(Z̃N
s , ϕ) =

∫

M
ω ∧ ϕ+O(

1

N
) .

4.2. Variance estimate. Now we obtain the variance estimate we need to obtain Theo-
rem ??. Let ϕ be a test form. It follows from our formula for the expectation (Lemma 4.1)

that the variance of (Z̃N
s , ϕ) is given by

E
(
(Z̃N

s − ωN , ϕ)2
)

= E
(
|(Z̃N

s , ϕ)− (ωN , ϕ)|2
)

= E
(
(Z̃N

s , ϕ)2
)
− (ωN , ϕ)2 . (36)

We have the following estimate of the variance:

Lemma 4.3. Let ϕ be any smooth test form. Then

E
(
|(Z̃N

s , ϕ)− (ωN , ϕ)|2
)

= O(
1

N2
).

Proof: By (30) we easily obtain

E
(
(Z̃N

s , ϕ)2
)

=
−1

π2N2

∫

M

∫

M
(∂∂̄ϕ(z))(∂∂̄ϕ(w))

∫

S2dN−1
log |〈f(z), a〉| log |〈f(w), a〉|dµN(a)

(37)
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As in the previous lemma we write f = |f |u with |u| ≡ 1. Then

log |〈f(z), a〉| log |〈f(w), a〉| = log |f(z)| log |f(w)|+ log |f(z)| log |〈u(w), a〉|
+ log |f(w)| log |〈u(z), a〉|+ log |〈u(w), a〉| log |〈u(z), a〉|.

The first term contributes
−1

π2N2

∫

M

∫

M
(∂∂̄ϕ(z))(∂∂̄ϕ(w)) log |f(z)| log |f(w)| = 1

N2
(ϕ,Φ∗NωFS)2 = (ϕ, ωN)2.

(38)

The middle two terms contribute zero to the integral by (35). The lemma at hand thus
comes down to the following claim:∣∣∣∣

∫

M

∫

M
(∂∂̄ϕ(z))(∂∂̄ϕ(w))

∫

S2dN−1
log |〈u(z), a〉| log |〈u(w), a〉|dµN(a)

∣∣∣∣ = O(1).
(39)

By an explicit calculation of the integral one can show ([SZ]) that

GN(x, y) :=
∫

S2dN−1
log |〈x, a〉| log |〈y, a〉|dµN(a) = CN +O(1) (x, y ∈ S2dN−1),

(40)

where CN is a constant and the O(1) term is uniformly bounded on S2dN−1 × S2dN−1. It
follows that

E
(
|(Z̃N

s , ϕ)− (ωN , ϕ)|2
)
≤ C

π4N2
sup ‖∂∂̄ϕ‖2 (41)

4.3. Almost everywhere convergence. We can now complete the proof of Theorem 1.3.
An element in S will be denoted s = {sN}. Since

|(Z̃sN , ϕ)| ≤ (Z̃sN , ω
m−1)‖ϕ‖C0 = c1(L)m‖ϕ‖C0 ,

by considering a countable C0-dense family of test forms, we need only consider one test form
ϕ. By Lemma 1.2, it suffices to show that

(Z̃sN − ωN , ϕ)→ 0 almost surely .

Consider the random variables

YN(s) = (Z̃sN − ωN , ϕ)2 ≥ 0 . (42)

By Lemma 4.3, ∫

S
YN(s)dµ(s) = O(

1

N2
) .

Therefore ∫

S

∞∑

N=1

YNdµ =
∞∑

N=1

∫

S
YNdµ < +∞,

and hence YN → 0 almost surely.

5. Zeros of SU(k) polynomials

To make the preceding result more concrete, we apply Lemma 4.1 to the case of random
polynomials, with M = CPm, L = O(1), where we give L the standard Hermitian metric
hFS, whose curvature is the Fubini-Study Kähler form ω = ωFS on CPm.
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5.1. SU(2) polynomials. First consider m = 1. Elements of H0(M,LN) = H0(CP1,O(N))
are homogeneous polynomials in two variables of degree N , or equivalently, polynomials in
one variable of degree ≤ N . A basis is given by σj = zj, j = 0, . . . , N . The inner product
in H0(M,LN) is given by

〈σj, σk〉 =
∫

C

zj z̄k

(1 + |z|2)N
ω =

1

π

∫

C

zj z̄k

(1 + |z|2)N+2
dxdy .

Writing the integral in polar coordinates, we see that the σj are orthogonal, and

|σj|2 = 2
∫ ∞

0

r2j+1

(1 + r2)N+2
dr =

1

(N + 1)
(
N
j

) . (43)

We thus can choose an orthonormal basis

SNj = (N + 1)
1
2

(
N
j

) 1
2 zj, j = 0, . . . , N .

Next, we note that

N∑

j=1

‖SNj ‖2 = (1 + |z|2)−N
N∑

j=1

(N + 1)
(
N
j

)
|z2j| ≡ N + 1 ,

and thus ωN = 1
N

Φ∗NωFS = ω. We thus recover the following result of [?, Appendix C] on
‘random SU(2) polynomials’:

Theorem 5.1. [?] Suppose we have a random polynomial

P (z) = c0 + c1z + · · ·+ cNz
N ,

where Re c0, Im c0, . . . , Re cN , Im cN are independent Gaussian random variables with
mean 0 and variances

E
(
(Re cj)

2
)

= E
(
(Im cj)

2
)

=
(
N
j

)
.

Then the expected distribution of zeros of P is uniform over CP1 ≈ S2.

In fact, Theorem 1.3 tells us that for a random sequence of such polynomials, the distri-
bution of zeros approaches uniformity.

5.2. SU(m+ 1) polynomials. We now turn to the case of polynomials in several variables.
An ‘SU(m+1) polynomial of degree N ’ is an element of the probability space of homogeneous
polynomials of degree N on Cm+1 with an SU(m+1)-invariant Gaussian probability measure.
Recall that this space can be identified with H0(CPm,O(N)). We give H0(CPm,O(N)) the
standard inner product. A basis for H0(CPm,O(N)) is given by the monomials

σJ = zj00 · · · zjmm , J = (j0, . . . , jm), |J | = N .

One easily sees that the σJ are orthogonal. We compute

|σJ |2 =
∫

CPm
|σJ(z)|2
|z|2N ωmFS =

∫

S2m+1
|σJ(z)|2dµ2m+1 =

m!j0! · · · jm!

(N +m)!
(44)

(where µ2m+1 is Haar probability measure on S2m+1), by writing
∫

Cm+1
e−|z|

2|σJ(z)|2dz =
(∫

C
e−|z0|

2|z0|2j0dz0

)
· · ·

(∫

C
e−|zm|

2|zm|2jmdzm
)
.
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Therefore, the sections

SNJ :=

[
(N +m)!

m!j0! · · · jm!

] 1
2

zJ

form an orthonormal basis for H0(CPm,O(N)). Furthermore
∑

|J |=N
‖SNJ ‖2 ≡

(
N+m
m

)
, (45)

since the sum is SU(m+ 1) invariant, hence constant, and the integral of the left side equals
dimH0(CPm,O(N)).

In our results on zeros, we can replace the unit sphere SH0(M,LN) with the complex

dN -dimensional vector space H0(M,LN) with the Gaussian probability measure 1
πdN

e−|s|
2
ds

(where ds means 2dN -dimensional Lebesgue measure). The space of SU(m+ 1) polynomials
of degree N is by definition the space H0(CPm,O(N)) of homogeneous polynomials of degree
N in m + 1 variables (or equivalently, polynomials in m variables of degree ≤ N) with this
Gaussian measure. We can use (44) to describe the space of SU(m+1) polynomials explicitly
as follows. For P ∈ H0(CPm,O(N)), we write

P (z0, . . . , zm) =
∑

|J |=N

aJ√
j0! · · · jm!

zj00 · · · zjmm . (46)

The Gaussian measure on H0(CPm,O(N)) is then given by

1

πdN
e−|A|

2

dA , A = (aJ) ∈ CdN ,

where dN =
(
N+m
m

)
.

Lemma 4.1 and (45) now tell us that if P is a polynomial given by (46), with the aJ being
independent Gaussian random variables with mean 0 and variance 1, then the expected zero
current ZP equals NωFS. Furthermore, Theorem 1.3 yields the following:

Proposition 5.2. Suppose we have a sequence of polynomials

PN(z0, . . . , zm) =
∑

|J |=N

aNJ√
j0! · · · jm!

zj00 · · · zjmm ,

where the aNJ are independent Gaussian random variables with mean 0 and variance 1. Then

1

N
ZPN → ωFS almost surely

(weakly in the sense of measures).

6. Ergodic eigenfunctions

Now we consider eigenfunctions of ergodic quantum maps. We recall that a quantum map
is the quantization Uχ,N = ΠNσTχΠN of a symplectic map χo of (M,ω). To be quantizable,
χo must lift to a contact transformation χ of (X,α). We can then define the the unitary
translation operator Tχ by χ on L2(X). It commutes with the S1 action since it is lifted
from the base. Unless χo is a holomorphic map, Tχ will not preserve H2(X) so to get an
operator on H2

N(X) we need to compress it by ΠN . This will not usually be unitary so we
need to put in a symbol σ ∈ C∞(M) to make it so (at least modulo smoothing operators).
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The quantum map Uχ,N is then a sequence of unitary operators which forms a semiclassical
Toeplitz-Fourier integral operator. We refer to [Z3] for further details.

We call the quantum map Uχ,N ergodic if χo is an ergodic transformation of (M,ω). The
following result, proved in [Z3], belongs to a long line of results originating in the work
of A. Shnirelman [?] in 1974 on eigenfunctions of the Laplacian on compact Riemannian
manifolds with ergodic geodesic flow.

Theorem 6.1. [Z3] Let {SNj } be an orthonormal basis of eigenfunctions of an ergodic quan-

tum map Uχ,N on H0(M,LN). Then there is a subsequence {SNjk} of density one such that

||SNj (z)||2hN → 1 in the weak sense that for any open set U whose boundary has measure zero,∫
U ||SNj (z)||2hNdV → vol(U).

We now prove 1.4 by showing that if ||SNj (z)||2hN → 1 then [ZSNj ]→ ω. We write

uN =
1

N
log ‖sN(z)‖hN .

The main point of the proof is:

Lemma 6.2. If ||SNj (z)||2hN → 1 then uN → 0 in L1(M).

Granted the lemma, it follows by the Poincaré-Lelong formula (5) that for any smooth
test form ϕ ∈ Dm−1,m−1(M),

(
1

N
ZN − ω, ϕ

)
=

(
uN ,

√−1

π
∂∂̄ϕ

)
→ 0 ,

proving the theorem for smooth forms. Since by(6),
(

1

N
ZN , ϕ

)
≤ c1(L)m

m!
sup |ϕ| ,

the conclusion extends to all C0 test forms ϕ.

Proof of Lemma: We first note that

i) the functions uN are uniformly bounded above on M ;
ii) lim supN→∞ uN ≤ 0.

Indeed, since sN(z) =
∫
M ΠN(z, w)sN(w)dV we have by the Shwartz inequality that

‖sN(z)‖2
hN
≤ ΠN(z, z) =

(
c1(L)m

m!
+O(1/N)

)
Nm.

Hence ‖sN(z)‖hN ≤ CNm/2 for some C <∞ and taking the logarithm gives both statements.
As always, let eL denote a local holomorphic frame for L over U ⊂ M and let eNL denote

the corresponding frame for LN . Let a(z) = ‖eL(z)‖h so that ‖eNL (z)‖hN = a(z)N , and write
sN = fNe

N
L with fN ∈ O(U) and ‖sN‖hN = |fN |aN . Instead of uN let us consider the

function

vN =
1

N
log |fN | = uN − log a ,

since it is plurisubharmonic on U . Let U ′ be a relatively compact, open subset of U . To
show that uN → 0 it suffices to show that vN → − log a in L1(U ′). Suppose on the contrary
that uN 6→ 0 in L1(U ′). Then we can find a subsequence {uNk} with ‖uNk‖L1(U ′) ≥ δ > 0.
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By a standard result on subharmonic functions (see [Ho I, Theorem 4.1.9]), we know that
the sequence {vNk} either converges uniformly to −∞ on U ′ or else has a subsequence which
is convergent in L1(U ′). Let us now rule out the first possibility. If it occurred, there would
exist K > 0 such that for k ≥ K,

1

Nk

log ‖sNk(z)‖hNk ≤ −1. (47)

However, (47) implies that

‖sNk(z)‖2
hNk
≤ e−2Nk ∀z ∈ U ′ ,

which is inconsistent with the hypothesis that ‖sNk(z)‖2
hNk
→ 1 in the weak* sense.

Therefore there must exist a subsequence, which we continue to denote by {vNk}, which
converges in L1(U ′) to some v ∈ L1(U ′). By passing if necessary to a further subsequence,
we may assume that {vNk} converges pointwise almost everywhere in U ′ to v, and hence

v(z) = lim sup
k→∞

uNk(z)− log a ≤ − log a (a.e) .

Now let

v∗(z) := lim sup
w→z

v(w) ≤ − log a

be the upper-semicontinuous regularization of v. Then v∗ is plurisubharmonic on U ′ and
v∗ = v almost everywhere. Since ‖vNk + log a‖L1(U ′) = ‖uNk‖L1(U ′) ≥ δ > 0, we know that
v∗ 6≡ − log a. Hence, for some ε > 0, the open set Uε = {z ∈ U ′ : v∗ < − log a − ε} is non-
empty. Let U ′′ be a non-empty, relatively compact, open subset of Uε; by Hartogs’ Lemma,
there exists a positive integer K such that v∗ ≤ − log a− ε/2 for z ∈ U ′′, k ≥ K; i.e.,

‖sNk(z)‖2
hNk
≤ e−εNk , z ∈ U ′′, k ≥ K, (48)

which contradicts the weak convergence to 1. This contradiction completes the proof of the
lemma and hence of the theorem.

References

[Bis.V] J-M.Bismut and E.Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high
powers of a positive line bundle, Comm.Math. Phys. 125 (1989), 355-367.

[BlD] P. Bleher and X. Di, Correlations between zeros of a random polynomial, J. Stat . Phys. 88 (1997),
269–305.

[BBL] E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum chaotic dynamics and random polynomials, J.
Stat. Phys. 85 (1996), 639–679.

[Bou.1] T.Bouche, Convergence de la metrique de Fubini-Study d’un fibre lineaire positif, Annales de
l’Institut Fourier (Grenoble) 40 (1990), 117- 130.

[Bou.2] T.Bouche, Asymptotic results for hermitian line bundles over complex manifolds: the heat kernel
approach, in Higher-dimensional Complex Varieties (Trento, 1994), 67-81, de Gruyter, Berlin (1996).

[BG] L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators, Ann. Math. Studies
99, Princeton Univ. Press, Princeton, 1981.

[BS] L.Boutet de Monvel and J.Sjostrand, Sur la singularite des noyaux de Bergman et de Szego, Asterisque
34-35 (1976), 123-164.

[C] D.Catlin (to appear).
[D] J.P.Demailly, Holomorphic Morse inequalities, in: Several Complex Variables and Complex Geometry,

Part 2 (S.G.Krantz, ed.), AMS Proceedings of Symposia in Pure Math. 52 (1991), 93-114.



16 STEVE ZELDITCH
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