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Resonances for strictly convex obstacles.
(Based on joint work with M.Zworski.)

Johannes Sjostrand*

Résumé: On considere le probleme de Dirichlet & I’éxtérieur d’un obstacle strictement convexe borné & bord
C'°°. Sous une hypothese sur la variation de la courbure, on obtient & un facteur 1 + 0(1) pres, le nombre de

résonances de module < 7T, associées & la premiére racine de la fonction d’Airy.

Let O cC R™, n > 2 be a convex open bounded set with C'*° boundary. Assume
that O is strictly convex in the sense that the second fundamental form on the tangent
space T'OO is positive definite. By A we denote the (self-adjoint) Dirichlet realization of
the Laplace operator Y 7 %jz on R™\ O with domain (H? N H})(R™ \ O). Then it is
well-known that (A2+A)~1 : L2 — H2NH{, holomorphic for Im A > 0, has a meromorphic
extension R(A) : L2, (R™\ O) = (H> N Hg)ioc(R"\ O) to XA € C when n is odd and to A
in the logarithmic covering space of C \ {0} when n is even. In this talk we only consider
this extension in a small angle e—i[oﬂ[]o, +00o[. The poles of the meromorphic extension are
called resonances or scattering poles. If \g is a resonance different from 0, we define its
multiplicity as the rank (which is finite) of the formal spectral projection 5= fv R(\)d(\?),
where «y is a sufficiently small (to contain no other resonances) positively oriented circle
centered at Ag.

Filipov and Zayev [FZ] have obtained detailed results about the extended resolvent
in the case of dimension 2. In a number of works it has been established that there is
a constant C' > 0, depending on the geometry of the obstacle and the regularity of the
boundary, such that there are only finitely many resonances in a domain of the form

ImA > —C(ReA)3, ReA > 1. (1)

In the case n = 3, this was obtaind by Babich and Grigoreva [BG], in the case of obstacles
with analytic boundary it was obtained as a consequence of Lebeau’s results [Le] on the
diffraction of Gevrey 3 singularities, by G.Popov [P] and Bardos, Lebeau, Rauch [BaLeR].
For C*° boundaries in arbitrary dimension, the result was obtained by Hargé and Lebeau
[HLe]. We will comment more about the the best known constants below.

Zworski and the author [SZ2] obtained several upper bounds on the number of reso-
nances in domains of the form

ImA> —C(ReA)3, 1 <ReA<r, (2)

when r — oo as well as in other domains of the same type with the exponent 1/3 replaced
by other values. One result in this direction says that the number of resonances in the
domain (2) for any fixed value of C'is O(r"~!). More refined results were also obtained
when C' in (2) approaches the infimum of the set of best known constants. In the case of
analytic boundaries even more refined bounds can be obtained in terms of the dynamics
of the boundary geodesics and the curvature [S1].
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As for the existence of infinitely many resonances in some region of the form (1) (or
even in any sector away from the imaginary axis) very little has been known, at least
in dimension > 3. Bardos-Lebeau-Rauch [BaLeR] showed for generic (strictly convex)
obstacles with analytic boundary in odd dimension > 3, that there is constant C' > 0 such
that the domain (1) contains infinitely many resonances. By adding a simple Tauberian
argument, Zworski and the author [SZ3] showed under the same assumptions that the
number of resonances in the domain (2) with C' > 0 large enough, grows at least as fast
as r37¢ for every € > 0.

Let @ be the second fundamental form, defined as a positive definite quadratic form
on the tangent space TOO of the boundary. Equip the tangent space with the induced
Euclidean norm, and define the tangent sphere bundle SO0 C T9O of normalized tangent
vectors. The geodesic flow on JO as a Riemannian manifold with the induced Euclidean
metric is then a group ®; : TOO — T00O, t € R which conserves SO0O. Put

— 0% cos T imin O2/3
Coo =2 360561%1862 C1, (3)
_1 T . 1 g 2/3
Cy=2 3COS€TEI£OO(%18T i Q" o ®dt)(y, (4)

where —(y, —(o, .. are the zeros of the Airy function, ordered so that 0 < (; < (5 < ...
Notice that C', > Cy,. We then know:

There is a constant C' > 0, such that there are at most finitely many resonances in

ImA > C — Coo(ReA)3, ReA > 1. (5)

When 00 is analytic, then for every € > 0 there are at most finitely many resonances

in
ImA > —(Cy — €)(ReA), ReA > 1. (6)

These results are established in [SZ2] and [S1] respectively, but could undoubtedly
be deduced from [HLe] and [BaLeR] respectively. Recently B. and R. Lascar [LL] have
extended the second result to the case of obstacles whose boundary is of Gevrey class of
order s < 3.

We now describe the new result ([SZ4]) and consider an obstacle with C* boundary
which is not too far from a ball in the sense that:

G
G

Put k =273 cos Tinfggo Q%/, K = 271/3 cos T supgyp @3, so that K¢; < k(s and the
constant Co, in (5) is equal to k(3. We then have

Theorem ([SZ4)).
A) There exists a constant C > 0 such that there are at most finitely many resonances in

ReA > 1,

Supgso @

3
i T 2 31186 . H
infspo Q ) (])

<

K¢ (ReN)Y? +C < —Im )\ < k(a(Re N)Y? — C. (7)
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B) For every sufficiently large and fized C' > 0, the number of resonances with1 < Re A < r,
kG (ReA)Y? —C < —ImA < K¢ (Re M) Y3+ C, (8)
15 equal to

1
_H:ll// dz'de")r" ™1, r — 4o0.
(2 {(a',&")eT=005]¢'|<1}

Here |€'| is the induced Euclidean norm on the cotangent space of the boundary.

In the following we give an outline of the proof. We work with the method of complex
scaling up to the boundary ([SZ1], [HLe]), which permits to define the resonances in a conic
neighborhood of 0, +oc[ as the eigenvalues of —A|F9, where 'y is a maximally totally real
submanifold of C™ which coincides with e R™ near infinity, where § > 0 is small and
which has the same boundary as d0. We only describe this scaling near the boundary,
and it will be convenient to introduce a small semi-classical parameter. Near the boundary
we introduce geodesic coordinates (x',y,) so that y, is the distance from the point z to
the boundary and z’ € 9O is the corresponding projection. In these coordinates:

—h*A —1—1h*32 = (hD,,)? — 2y, Q(z, yn, hDyr; h) + R(x', hDyr; ) — 1 — h*32, (9)

where () and R are elliptic semiclassical differential operators. To the leading order R
is equal to —h%2As0, the Laplace Beltrami operator of the boundary, and the principal
symbol Q(z',¢") of Q(z',0, hD,; h) can be indentified with the second fundamental form.
Following an observation of Hargé and Lebeau [HLe], as in [SZ2], [S1], we put y,, = €™/,
Assuming also Q(z', yn, hDy; h) = Q(x', hDy; h) to simplify the exposition, we get

e~ 2" /3((hDy )2 + 22,Q(a, hDyr; h)) + R(2', hDy) — 1 — h?/32. (10)

The idea is to try to treat this operator as a degenerate elliptic one. Put z,, = h?/3t, divide
by h?/? and write z instead of z':

e~ 2m/3(D2 4+ 2tQ(z, hDy; h)) + h=2/3(R(z, hDg; h) — 1) — . (11)

We want to microlocalize in the boundary variables, and the most crucial region is of
course the one given by the glancing hypersurface ¥ := {(z,{) € T*00; A = 0}, where
A= h723(R(x,€) — 1) and R = || also denotes the principal symbol of R(x, hDy;h).
The eigenvalues of

e 2D} + 26Q(,€)) + A — 2

on the positive half-line with Dirichlet condition are given by
e~ 2 3(2Q)%3¢ + A — 2. (12)

We therefore expect to be able to reduce problems to the study of h-pseudodifferential
operators on the boundary with principal symbols given by (12) or rather by a N x N
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system whose principal symbol vanishes precisely when one of the values (12) does, for
j=1,..,N. Asin the earlier works on diffraction (see for instance [Le]) this leads to second
microlocalization. In our setting this is because we first need to apply a Fourier integral
operator to reduce R(xz, hD,;h)—1 to hD,,. The second microlocal calculus then concerns
h-quantizations of symbols a(z, &, A\; h), A = h=2/3¢,, where 8&75)8/‘@ = O((X)™*).
Using such a calculus also with operator valued symbols, we construct auxiliary oper-
ators Ry : C°(R"\ O) — C*(00), R_ : C>*(00) — C*(R™\ O) such that the Grushin

problem
(% ) ) =) (13)

is wellposed in natural function spaces for z in a region
Q :]a27a'4[_i]a17a’3[7 (14)

where a; are independent of h though a4 — ay is chosen large, and
0 <ay < (icos % inf(2Q)2/3 < (7 cos % sup(2Q)2/3 < az < (5 cos 6 1nf(2Q)2/3 (15)

where the supremum and the infimum are taken over the glancing hypersurface. For the

mverse
E E
£ = + ) |
( E_ E_,

the operator E_, has roughly the principal symbol E? | = z— (A+e72m/3¢ (2, €)), where
we put (i(z,&) = (2Q(x,€))?/3¢1. Let W =]by, ba[—i]b1, bs] be relatively compact in €
with by, bs satisfying (15). We observe that E° is elliptic (in the 2nd microlocal sense)
for z €]ag, as[—i(Jai, b1[U]bs, as]) when A is bounded.

Let f = f(z) be holomorphic in Q with |f| < 1 in (Jag, b2[U]bs, a4]) — i]a1, az[. In the
spirit of the local traceformula in [S2], we prove

tro— | FE-(2) 0. B4 (2) = B_1.(2) 0. E_1(2))dz = (16)

> F) + O(nt=m+20%),
{2z€W;h—14/14+h2/32 isaresonance}

Here 1, 3 are the horizontal parts of the positively oriented boundary of an intermediate
rectangle I' with W CcC ' CC Q, and F_ is obtained from E_, by a finite rank (of the
order hl_”+2/3) perturbation of F_, and is invertible for z € (.

If ay — az > a3z — a; and b; are suitably chosen, then we can take f to be a Gaussian,
centered at the middle of €2 and independent of h. Using the second microlocal calculus,
we see that the LHS of (16) is

pl-n+2/3

W//;XR )\+€_2W1/3<1( ))lf(w)()‘)LE(dw)d)\—f-(’)(hl n+2/3) (17)
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where Ly, denotes the Liouville measure on ¥, and I(w) is the interval of values A such that
A+ e~2m/3¢; (w) belongs to W. f can be chosen to be large near the middle of © and to
satisfy the bound prior to (16). We can then arrange so that the integral in (17) dominates
over the remainder. Using this in the trace formula (16), we get a lower bound on the
number of resonances which is of the right order of magnitude. To get the full asymptotic
result, we fix ay, ag and let ay —ag =: L be very large. Then it is still possible to have (16)
(though the choices of Grushin problem and of E_, will have to depend on L,) now with
a remainder O(Lh'~"*2/3)  and we notice in this case that we can find Gaussians whose
restrictions to €2 take their values in a small sector around the positive half-axis. We are
then almost in the situation of sums and integrals of positive quantities and can conclude
by standard arguments.
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