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A trace formula for resonances and application
to semi-classical Schrodinger operators.

Johannes Sjostrand*

Résumé. On décrit une formule de trace [S] pour les résonances, qui est valable en toute dimension et pour
les perturbations & longue portée du Laplacien. On établit une nouvelle application a I’éxistence de nombreuses

résonances pour des opérateurs de Schrédinger semi-classiques.
0. Introduction.

A very useful formula in the study of resonances is the so called Poisson formula in
Lax-Phillips theory. Let Py = —A, where A is the standard Laplace operator on R", and
let P; be some other operator which is equal to —A outside a compact set, and which
satisfies suitable additional assumptions that will not be recalled here. Then assuming
also that the dimension n is odd:

27tr (cos tV/ P — cost\/Py)’ = Zew‘j, t>0. (0.1)

Here )\; are the resonances of P; in the upper half-plane, while below we shall rather take
the opposite convention and define resonaces as the corresponding complex conjugates. The
quotation marks indicate that the definition of the left hand side needs some work, since
P; and Py do not act in the same Hilbert space in general. This Poisson type formula was
proved first by Lax-Phillips [LP2]and then with successive extensions by Bardos-Guillot-
Ralston [BGR], Melrose [M], Sjostrand-Zworski [SZ3]. These results were obtained in the
frame work of the Lax-Phillips scattering theory. An analogous reult was obtained for
hyperbolic surfaces by Guillopé-Zworski [GZ], and the proof uses more general scattering
theory and among other things the Birman-Krein formula for the scattering phase. This
trace formula has lead to a number of results on the existence of infinitely many resonances,
and also on results on lower bounds on the number of resonances in various zones. See
[BLRa], [1], [M2], [Saz], [SaZ], [$22,3], [P].

In this exposé, we explain a trace formula valid in all dimensions, and even for long-
range perturbations of the Laplacian. A detailed proof can be found in [S], where it is
also explained how the new trace-formula permits to recover most (and perhaps all) the
lower bounds on the density of resonances near the real axis, for certain compactly sup-
ported perturbations of the Laplacian, and to extend them to the case of even dimensions.
L.Nedelec [N] has recently studied certain Schrodinger operators with linear matrix val-
ued potentials and used a trace formula directly based on Lidskii’s theorem. Discussions
around that work were useful for [S].

The new trace formula is stated and proved in the frame work of dilation analytic
operators, but the main new elements could be easily adaptable to other frame works,
such as the one developed with Helffer in [HS]. The trace formula is stated in section 1
and we refer to [S] for proofs and further details. In section 2, we establish a very general
application to semi-classical Schrodinger operators.

* Centre de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau, France and URA
169, CNRS



1. The trace formula.

In the following we shall consider two operators, Py, P; acting on two different Hilbert
spaces. It will be practical to write P., where - = 0,1 and use the same system of notation
for the various objects associated to P.. We will use essentially the same abstract frame-
work as in [SZ], and we will use the same type of analytic distorsions as in that work. (See
also [AC], [Hu] for analytic distorsions.) In the following & will be a small parameter with
0 < h < hy.

Consider two complex separable Hilbert spaces H. with the orthogonal decomposition

H.=H.p, ©@L*(R")\ B(0, Ry), (H1)

where Ry > 0, H. g, is some Hilbert space, and B(0, Ry) denotes the open ball in R™ of
center 0 and radius Ry. The corresponding othogonal projections are denoted by 1p(o,r,)
and 1g=\B(0,Ry)- If X € Cp(R™) (the space of bounded continous functions) is constant on
B(0, Ry), then there is a natural way of defining the multiplication operator x : H. — H..
(See [SZ].)

Let P. = P.(h) be an unbounded self-adjoint operator: H. — #H. with domain D. =
D(P.). Assume

lrn\B(0,r,)D. = H*(R™ \ B(0, Ry)) uniformly in h. (H2)

Here we equip D. with the norm ||(P. +i)u|3., and H? with the norm ||(hD)?ul| 2, where
(&) = /14 &2 The precise meaning of the uniformity requirement is then that the
restriction operator in (H2) should be uniformly bounded D. — H? and have a uniformly
bounded right inverse.

Further, assume:

1B(0,re)(P. + i)~ is compact, (H3)
Lr=\B(0,R)Pu = Q.u = Z a.o(z;h)(hD)%u, where (H4)
|| <2

a..o(z; h) is independent of A for |a| =2, a., € C;°(R") uniformly in A.

Here we use standard multi-index notation and Cp°(R™) denotes the space of C*°-functions
which are bounded with all thier derivatives. Further assume,

> @) 2 ZleP, (H5)

jal=2

Za.,a(x; h)E™ — €2, uniformly in A when |z| — oo.

[a. o(z; )5 < Clz)™", where 7t > n. (H6)
Here we use the notation [a.]} = a1 — aq, (z) = /1 + |z|2.
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Let T be a torus of the form R"/(RZ"™) with R >> Ry, and view B(0,Ry) as a

subset of 7' in the natural way. Define the Hilbert spaces #H* as the orthogonal sums
H.r, ® L*(T \ B(0,Ry)). There is then a natural but non-unique way of defining self-

adjoint reference operators P*: H* — 1" which satisfy the natural modifications of (H2-4)
and the first part of (H5) and which ”coincide with P. near B(0, Ry)” (in a precise sense
as in [SZ], [S]). We assume

#(o(PHN[=A2,2%]) = O((A\/h)™), A > 1, where n. > n. (HT)

Here the n. do not depend on the choice of the P* above. Put Nmax = max(ng,ny). The
following result is proved in [S]:

Proposition 1.1. Let 2~ > 1 and let f € C*(R) be independent h with 8* f(E) =

O((E)=™=%) for every k € N. Let x € C5°(R"™) be equal to 1 near B(0, Ry) and view ¥,
1 — x as multiplication operators in H. or in L? depending on the context. Then x f(P.),
F(P)x, [(1 = x)f(P)(1—x)]§ are of trace class and

Ptr[f(P)]g” = [tr(xf(P)x + (1= x) f(P)x + xf(P)(1 = x)]g + tr([(1 = x) f(P) (1= x)]5)

is independent of x and = Q(h™"max).

We now introduce dilation analyticity and make the assumption:

30y €]0, [, € > 0, R > Ry, such that the coefficients a. ,(z; h) extend (HS)
holomorphically in z to {rw; w € C", dist(w,S""!) < ¢, r € C, |r| > R,
argr € [—¢,0p + €]} and (H6), (H4) and the second half of (H5) extend to this set.

Realizing P. on a suitable contour T'g, as in [SZ], [S] which coincides with e?®oR" near
infinity in C", we can define the resonances of P. as the eigenvalues in ei]_290’0]]0, +ool.
They form a discrete set Res(P.), where the elements are counted with their natural
multiplicity. Let 0 < ep < 27 — 200 and let W cC Q cC e=200<l]0, 4o0[ be relatively
open, independent of A and assume that 2 is simply connected. Let I. = W N Ry,
J1r = QN R4 and assume that I, J, are intervals. Let W_ Q_ be the intersections of
W, Q with ¢120.0110, +00[. The main result of [S] is:

Theorem 1.1. Let f = f(z;h) be holomorphic in Q with |f(z;h)| < 1, for z € Q\ W.
Let x4+ € C5°(J4) be equal to 1 near I, and independent of h. Then

"tr (x4 £) (P h)e” = [ Z fOuR)E -] Z F(; h)L = O(R™max),

AERes (P.)NW_ uEo(P)NI_

Here o(P.) denotes the spectrum of the (undistorted) operator P., known to be discrete
on R_.

Remark 1.2. 1t is well-known that #o(P.) N J_ = O(h™™) and the proof of the trace
theorem above gives the essentially well-known fact that #Res (P.)NQ_ = O(h~""). This
means that the remainder appears to be quite optimal in general.

3



Remark 1.3. If P. are independent of A and satisfy all the assumptions with h = 1, then
h2?P. satisfy all the assumptions of the theorem, which then gives a trace formula with
remainder for resonances which tend to infinity in a sector.

In [S] we used the trace theorem above to deduce a Poisson formula with remainder,
valid in all dimensions. This Poisson formula was then used as in [SZ2], to extend the
lower bounds there on the resonance density in logarithmic neighborhoods of the reals, to
the case of even dimension. The passage over a Poisson formula was for convenience only,
since we could then use the arguments of [SZ2], we suspect strongly that a direct use of
the trace theorem could have given the same results quite as easily.

2. Application to semiclassical Schrodinger operators.

We shall establish the existence of ~ A~ resonances in specific bounded subsets of
the complex plane for semiclassical Schrodinger operators —h2A + V(x) under very weak
assumptions. The method will consist in combining the traceformula with a semi-classical
trace formula of D.Robert [R] and with the existence of analytic singularities in certain
measures, related to phase space volumes. We start by discussing such measures:

Let Vy, V7 be continuous real valued functions on R"™ which tend to 0 at infinity and
which satisfy:

3% > n; [Vi(z) — Vo(z)] < Clz) ™. (2.1)
For E > 0,let vy .(E) = [, (0)> B 4, piy, . (E) = —2Lv, (E) (in the sense of distributions).

Notice that v .(F) is a decreaing function and consequently p4 . is a positive measure (of

locally finite mass) on Ry =]0, +o00[ with support in ]0,sup V.]. Similarly for £ < 0, we

put v_ .(E) = [, (0)<p 47, p_,.(E) = 4v_ (E) so that v_ . is an increasing function and

p— . a positive measure with support in [inf V., 0.
For ¢ € C5°(R), we put

(1, 8) = / [0 V. (@))de = / (6(Vi () — d(Vi(x)))da.
We have
(1 8)| < (sup |¢']) / Vi(2) - Vola)|de,

so  is a distribution on R of order < 1, with

supp ¢ C [min inf V;(z), max sup V;(z)],
7=0,1 7=0,1

/M(E)dE = 0.

(Here the integral is to be interpreted in the sense of distribution theory as (u,1).) We
observe that

tr, = B+, ]o-
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For f € C5°(R), we put:

i) = [[10(€ + Vila)hdade,

The integrand has uniformly compact support in &: If supp f C [a,b], V.(z) > —c, the
support of the integrand is contained in the set || < v/b+ c. It follows that

|(w, f)| < sup|f’| vol Br~(0,vb+ c) / Vi(z) — Vo(z)|dez,

so w is a distribution on R of order < 1 with support in [mininf V.(z), +o0].

For R > 1, let VR(z) = 1p(o,r)(x)V.(x) and define vE , pff , pft, wf as above but
with V. replaced by V.. Clearly V:ﬁ, — v4 . locally uniformly, when R — 400, and
,ui_ — fht .y u® — 4, w® — w in the sense of distributions. We have

R o 2 1 _
W ) = //Wf(f Vi (2))dedg]l = / F(E)dpr(E),
so that wf = %pR, where

= zd€)} = vol Brn — )" ?dvp .
) =(ff =B o) [0 a0, @2

where

vn(t) = | dal,
Vi(z)>t, |z|<R

It is clear that
o(t)dvg(t) = oV (x (l)dx = | ¢(F RE dF,

so dvg = pftdE.
Rewrite (2.2) as a convolution

pr = vol Brn(0,1)(-)"V? % ug,

differentiate w.r.t. E:

-1

W = Cp()2 7 s g, Cp = %volBRn (0,1),

and let R — +o00:

w=Cn(-) 2 5 (2.3)

In general, if o > —1, and if H,(x) = H(x)z“, where H(z) = 1r, (), then Ho(€) =
Co(€ —i0)~1=% where C, # 0. Let E, € S'(R) be the inverse Fourier transform of
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Ea = 2 (£ —i0)!**. Then we have supp E, C [0,4+00[, Hy * Eq = E, x H, = 6. If

Ca
1+ a € N, then E, is a constant times a derivative of §, and in general, we know that
E,(z) = Choz™27, for x > 0. We can now invert (2.3) and get,
' g (2.4)
= —Ln_1 % W. .
n=gEy

If near some point to € R, we know that p extends to a holomorphic function, then
the same holds for w and vice versa. Since u, w are real,

WF, (1) = WF,(w),

where WF, denotes the analytic wavefront set.
Let us consider the extension of w(E) from | maxsup V.(x), +00[ to the complex domain
C\] — 0o, maxsup V.(z)], given by

wi(E)=C, / (B — ) pu(t)dt,

where we take the branch of the square root which is positive on |0, 00[. Consider two
cases depending on the parity of n:

n

Case 1: n is even > 2. Then § —1 € N and w, () is a polynomial of degree < 5 — 1.
Case 2: nis odd. If By € R, then when F — Ey, SE < 0, we see that the factor (E—¢) !
converges to (Ey —t)2~! when t < Ey, and to i>~"|Ey — t|>~1, when t > E;. When E
converges to the real axis through the lower halfplane, we therefore get the limit (in the
sense of distributions):

W (B = i0) = Cu((-— i0) 3™ 5 ) (B) = w(E) + " (1_e ] - [F) # p(E), E <0.
In both cases, we see that,
WFo(wi (B —1i0) —w(E)) = WFq(p).

We now discuss resonances close to analytic singularities of ;1 on the open positive half-
axis. Let P; = —h?A+V;(z), j = 0,1, V; € C°(R"; R) satisfy the general assumptions for
our trace formula. Recall that the assumption (2.1) follows from those general assumptions,
so we can define u as above. Then we have:

Theorem 2.1. Let 0 < Ey € singsupp,(u). Then for every complex neighborhood W
of Ey, there exists hg = ho(W) > 0, and C = C(W), such that when 0 < h < hgy:

>0 #(Res (P)) N V) > zamh ™"

Here sing supp, denotes the analytic singular support and Res (P;) denotes the set
of resonances of P; in e‘1=200-01]0, 400, where 0 is the dilation angle that appears in the
general assumptions of the trace formula. The proof of the theorem will give a slightly
more precise conclusion, which may be of independent interest.
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Corollary 2.2 Let P, = —h?A + Vi(x), Vi € C*(R™;R) satisfy all the general as-
sumptions that one of the operators should satisfy for the trace formula. Let 0 < Ey €
singsupp, (v4.,1). Then for every complex neighborhood W of Ey, there exist hy =
ho(W) >0, C = C(W) > 0, such that for 0 < h < ho(W): #(Res (P1)NW) > C(%/V)h_".
Proof of the Corollary. It suffices to construct Py = —h%2A + Vy(z), Vo € C*(R™; R)
so that (P, Py) satisfies the general assumptions for the trace formula and such that in

addition

sup supp v4,0 < Ej, (2.5)

3 a complex neighborhood Wy of Ej such that (2.6)
Res (Py) N Wy = 0 when h > 0 is small enough.

We shall produce V; from Vi by a cutoff and regularization. Put K (z) = Cpe™" /2, with
Cy > 0 chosen so that the integral of K over R™ is equal to 1. Put Ky (z) = A""K (A~ !x),
for A > 0. We make an z-dependent choice of A\; A\(R,z) = R(R™z) "o where R > 1 is a
large parameter and Ny is fixed, but sufficiently large depending on the dimension n. Put
Kgr(z,y) = Kx(ra2)(r —y). Let x € Cg°(5(0,2);[0,1]) be equal to 1 for |z| < 1. For R
large enough, put

Volz) = / Kn(e,y)(1— x(R™12))Va(y)dy.

If & > 0 is small enough independently of R, we check that in the domain |Sz| < 6(Rx),
Vo(x) is holomorphic and satisfies

Vo(z)| < e(R),

Vi(z) = Vo(o)| < C(R)(z)™"

We clearly have (2.5) and using that the resonances near Fj can be viewed as the eigen-
values of Pp|.io/2gn, We see that (2.6) holds. #

Notice that if Vi(z) > 0 for some real z, then the Corollary can be applied with
Ey = sup Vy(x).
Proof of Theorem 2.1. We have previously seen that WF,(u) = WF,(w) and since u
and w are real, it is clear that (Fy,1), (Fop,—1) € WF,(w). Considering the definition of
WF,(w) by means of the FBI-transform, we see that there are sequences (a;, 5;) = (Fo, 1)
in R%, \; = 400, €; — 0, such that

|/eikj(ﬂj(aj—E)+%(aj—E)2)X(E)W(E)dm > e~€iM, (2.7)

Here x € C§3°(Ry) is equal to 1 near Ey and has its support in a small neighborhood of
Ey. Let a,b,a/b be small and positive and let

Q =|Ey — b, Ey + b[+i] — a,a], W =]Ey — b/2, Ey + b/2[+i] — a/2, a].
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Let I, J be the intersections of W, Q respectively with the real axis, and choose x € C§°(J)
equal to 1 on I. Let |
f5(B) = et (Bs(@s=E)+(0,=E)%),

Then [fjg\wl < e_cio)‘j, and (2.7) reads:

U0z e
The trace formula gives

()P =1 Y fOR+O01)h e dN, (2.8)

Res(P.)NW_

On the other hand, by a traceformula of Robert [R], that we can apply under our
slightly different hypothesies (and we sketch a proof of that at the end of this section), we
have

P = G [ U0 E)(E)E+ Oy ) (29)
Combining (2.8,9) we get
Y 0= G [ U0E(EE £ 00N 4 0,1,

AERes(P.)NW_

SO
1

e N — e o Aj
D S Y e R}

AERes(P.)NW_

Here we first fix j large enough, and then let h be small enough, and conclude that,

S D16V

A€ERes(P.)NW_

where f = f; (with j fixed) is independent of h. From this we get the required lower bound
on the number of resonances in W_ and since we can choose W as small as we like, we get
the theorem. H

We next consider resonances generated by analytic singularities on the negative axis.

Theorem 2.3. We make the same assumptions as prior to Theorem 2.1, and assume that
the angle of scaling 0y is > 5. Let 0 > Ey € singsupp,(p). Let v : [0,1] — C be a C*
curve with Ey =4e¢ v(0) €] supsupp u, +oof, v(1) = Eq1, Sy(t) < 0 for 0 < ¢t < 1. Also
assume that v is injective and +'(t) # 0, Vt. Then for every neighborhood W of v([0, 1]),
there exist C(W), ho(W) > 0, such that

1

Y #((Res(P)nW) >

0

—h" < .
car" , 0 < h < ho(W)
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We do not know if the corresponding analogue of Corollary 2.2 is valid with the same

degree of generality. If V; is sufficiently short range, the assumptions of Theorem 2.3 will
be satisfied with Vy = 0, and we then have an analogue of Corollary 2.2, that we leave to
the reader to formulate.
Proof of Theorem 2.3. We first need some preparations in order to solve a O-problem,
and which will affect the choices of some domains. Let Q¢ C arg™!(] — 7, ¢o]) be a small
simply connected relatively open neighborhood of ([0, 1[), which near F; coincides with
J_ +i] — a, 0] for some small open interval J_ containing F;. We also choose ) so that
it satisfies the geometric assumptions for ”7{2” in the trace formula. Let J, be the open
interval of intersection with Ry. Let Q. = Qo U (J_ 4 i[0, ¢[). We also arrange so that Qg
has smooth boundary except at the corners at the end points of J_.

Let K be a compact subset of QoN3 ™1 (] — o0, 0[). Let f. > 0 be a continuous function
on 9, which is = 0 everywhere except on some subinterval of Qy Narg=!(e) (assumed
to be non-empty by construction), where f is non-vanishing and independent of e¢. Let
ue > 0 be the harmonic function on (2., with boundary value f.. Then u. > 0 in the
interior of Q. (where we consider Q. as a subset of C). In particular infx u. > 0.

Let R. = J_ +i[0, ¢[. If € > 0 is small enough, we have

1

supu, < infu, — —
P Ue L Ue CO’

R.

for some Cy > 0 which is independent of €. Consider

1
Ve = Ue — SUP Ue — —
¢ € R}) ¢ 200 ’
SO that Ve iS harmonic on Qe and
< 1 f >
sup v mrov .
€= 200, K €= 200

€

We take W = W, CC Q. as in the trace formula, relatively open with the property that

1
Ve S _2—610 on Q\W, ’}/([0, 1]) c W.

We may also arrange so that WN] — oo, 0[= I_, WN|0, +oo[= I are intervals. As we saw
in the beginning of this section, we have (E1,1), (F1,—1) € WF,(w_), where we put

w_(F) =w(F) — wi(E —1i0).

Consequently there are sequences (a;, 3;) — (E1,—1) in R?, ¢; — 0, A\; — 400, such that
|/ew((aj—E)ﬂj+%(aj—E)2)X_(E)w_(E)dE| > e~€iN (2.10)

Here we let x_ € C§°(J_) be equal to 1 near T_.

9



Consider ‘
J?;. (E) = i@ =E)Bit5(ay -E)?)

as a function on Q4 and on €2.. This function has to be modified before applying our trace
formula. Let ¢ € C°°(R; ][0, 1]) have its support in | — 2, co[ and be equal to 1 on [—1, col.

-~

Consider the function f;(E) on Q with support in some fixed neighborhood of J_, given
there by

~

Fi(B) = F(B)s(538).

i/\. . .
Then °F f; has its support in

{E € Qp; =26 < SE < —4, E in the fixed neighborhood of J_} (2.11)
and we can split:
of
8—% =Tj1+Tj2,

where 7; 1, r; 2 have their support in the same set, moreover supp ;1 C K, where K CC g
is a subset of the set (2.11), and

1
. = A
|Tj,1| < GCO)\J, ’rj’2 <e 0”7,

Having now fixed K, we choose {2 = (), as above, and solve

0
—=hj2 =2

OFE
S . . .
with hjo = O(e” o A7) in Q. Using the harmonic function v = v, above, we can solve

0
8—Ehj,1 =Tj1,
with hjq = O(e“1%iv).
Put f; = f; —hj1—hj2. Then f; is holomorphic on Q and f; = (’)(e_CLl)‘j) in Q\ W
(with W = W, chosen as above). Moreover f; — J:"; = O(e_CLlAj) in a fixed neighborhood
of J_. With a possibly new sequence ¢;, we get from (2.10) and the previous estimates:

| [ HEN- (B (E)dB| > . (2.12)

We shall now apply the trace formula. Let x; € C5°(J,;) be equal to 1 near I,. Choose
x € Cg°(Q2) with x = 1 near W and with x;;, = x+. Then we get

PN =1 Y LW =1 D =Wl +O(R™") suwp |f],

AERes P.NW_ peo(P) AW
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which can be written

[ Y B =l )P+t (- £ (P + O(h™™e &Y. (2.13)

AERes PNW_

Now by the same semi-classical trace formula as before:

1

(L) (P = e [ () E)(E)E + 0,1,

We choose x almost analytic at J and J_, use Stokes’ formula and get

O ) EIEE = - [ ) (B (B - i0)dE + 0 H),

where the last term corresponds to an integral over (2\W)NS™1(]—o0, 0[) whose integrand
contains %X- Recalling that w_(F) = w(E) — wy (E —i0), we get:

[ Z fj()\)](l) = ! /(X_fj)(E)w_(E)dE + O(h_n)e_C%’\j + Oj(hl_"),

(2mh)"
AERes PNW_

Combining this with (2.12), we get

—€i s
1 e I 1y, . -
I Z fi]ol = @rh)y O(l)e” M h™™ — O;(h'™™),
AERes PNW_
and we can conclude as in the proof of Theorem 2.1. "

We end by outlining a proof of the semiclassical trace formula ([R]) under the slightly
different assumptions that we need, following ideas of Dimassi [D] (see also [DS]). Let
P = —h?A+ V. with V. € C3°(R™;R), V.(z) — 0 when |z| — oo, and assume (2.1). We
shall then discuss a proof of the fact that for every f € C§°(R), independent of h:

1
(2mh)"

b [ (P} = / / [ (p.(,€)) hdaedé + O(H'™). (2.14)

Let x € C§°(R;[0,00[) be conveniently chosen, so that the infimum of the spectrum
of
P.= —h?A + V.(z) + x(hD)

is larger than 1 + supsupp f. Combining the resolvent identity,
(z—P) '=(z=P) '+ (z= P) 'x(hD)(z — P)~"

with the operator Cauchy-Riemann-Green-Stokes formula [HS2], we get:

s = -2 [ By D) - Py @), @)

T 0z
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where f is an almost analytic extension of f with support close to that of f, and where
L(dz) = dzdy is the Lebesgue measure on C. It follows from the estimates in the proof
of Proposition 2.1 in [S], that the trace class norm of the bracket inside the integral is
O(h™"|Sz|~No) for some fixed Ny in trace class norm. The trace of the integral will
therefore change only by a term O(h>°) if we restrict the integration to |Sz| > h? for some
fixed 4 > 0, that we can choose arbitrarily small. We are then in a region where we can
apply symbolic calculus on the bracket in the integral, and if we write this bracket as the
sum of two terms containing [(z — P.)~!]} and [(z — P.)~!]} respectively, we see that the

bracket in the integral is an h-pseudor with symbol in the class Sas(h™2%(¢)~No(z)™"),

where we say that a(z,&; h) € Sx(m(z, & h)) if 83‘8?(1(:):,6; h) = O(h=0Uel+1BDmy (2, &; h)).
Moreover we have a complete asymptotic expansion of the symbol of the bracket, and we
can then get the leading terms in the asymptotics of the trace.

It is quite likely, that we can find large families of resonances also in the following
situation: Let v be a curve parametrized over [0, 1[, with values in some Riemann surface,
where w is holomorphic. It is also assumed that (0) lies on the positive real axis, and
that ~(¢) approaches some limit point (1) when ¢ — 1 and that w is not holomorphic
near (1), but on one side of a C?-curve which passes through «(1). The likely conclusion
would then be that for every neighborhood of ([0, 1]), the corresponding projection will
contain ~ h~" resonances when h is small enough.
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