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0. Introduction

This article concerns smoothing effects of dispersive evolution equations, especially Schrodinger

evolution equations associated with complete Riemannian metrics. Our aim is to clarify the
relationship between the global behavior of the Hamilton flow of the principal symbol and the
smoothing effects specified later. More precisely we shall consider two problems.

Problem 1: Define for the complete Riemannian metric g the subset S(g) of the unit
cotangent bundle where a certain microlocal smoothing effect of the associated Schrodinger
evolution group does not hold, and describe it as precisely as possible in terms of the geodesic
flow.

Problem 2: Prove (higher order) smoothing effects not only for metrics with short range
perturbation of the Euclidean metric but also for other types of metrics including (i) metrics
with long range perturbation of the Euclidean metric, (ii) conformally compact metrics, (iii)
metrics of warped product.

We shall explain the two problems by using examples.

Ezample 1. Let (M, go) be (i) the Euclidean space, or (ii) the hyperbolic space of constant
curvature —p? (p > 0). Let g be a C* Riemannian metric in M such that ¢ = go outside a
compact set. Let A, (< 0) be the associated Laplace-Beltrami operator. Then

LA(M) 3 u s ™oy € I, (R; HY? (M) (1)

loc

is continuous if and only if there is no complete geodesic of g that is relatively compact. The
continuity of the map (1) is an expression of smoothing effects. This example suggests that
the existence of trapped geodesics prevents the smoothing effect. We shall explain this kind of

relation more precisely from the microlocal viewpoint in Section 1 according to [Dol] (Problem
1).

Ezample 2. In Example 1, consider the case (i). If there is no complete geodesic of ¢

that is relatively compact, then the following maps are continuous (see Craig-Kappeler-Strauss



[CKS]): for k € Z, ={0,1,...}

LERY, (14 |z|M)dz) 3 u — t:/2eR9y € L2 ([0, 00); HETH/2(RY)) (2)

» 24 loce

L2RY, (1 + |2M)dx) 3 u — t7/2eR9y, € C(]0, 00); Hk/Z(Rd)) (3)

» T loc

In comparison with Example 1, one might say that the continuity of maps (2) and (3) is an
expression of smoothing effects of higher order. Craig-Kappeler-Strauss [CKS] consider the
microlocal version of these mapping properties, and prove that if a point zg € T*R? is not
trapped backwards by the Hamilton flow, then the maps above suitably microlocalized near
the backward orbit through zy are all continuous for every metric g = Z;{k:l gjk(x)dxj ® dx®
satisfying the following conditions:

(i) with C > 1: C~|dz|? < g < C|dz|? in R,

(i) |0%(gjx(x) — ;)| < Ca(l + |z])~7UeD, 2 € RY, for every o € Z4,1 < j, k < d.
Here 7(m) >m+1 (m =0,1,...). Their method depends on the global calculus of pseudodif-
ferential operators on R?, and on detailed analysis of the asymptotic behavior of the classical
orbits. However, if we consider global smoothing effects not along each backward orbit as
in [CKS] but in an “incoming region”, then we shall find that they are reduced to a simple

functional-analytic structure: a Mourre-type condition.

From this viewpoint, we shall first consider smoothing effects in an abstract settings. After
preparing a scale of spaces associated with two operators A, B (Section 2), we shall introduce
suitable classes of operators characterized by the mapping properties of the multiple commu-
tators with A, B in the spirit of Gérard, Isozaki and Skibsted [GIS] (Section3) . Using the
commutator calculus of these classes, we shall construct a series of conjugate operators under a
Mourre-type condition, from which we shall deduce the desired smoothing effects in a suitable
incoming region (Section 4). After that, we shall translate the results in our concrete settings;
for this purpose, we shall need a kind of propagation of smoothing effects (Section 5).

We conclude the introduction by referring to the related works. In contrast to many works
on smoothing effects for dispersive evolution equations of principal part of constant coefficient,
there are few works that treat dispersive equations of principal part of variable coefficient:
Craig, Kappeler and Strauss [CKS], Craig [Cr]|, Doi [Dol], Kapitanski and Rodianski [KR].
We remark here that the difficulty of the global behavior of the Hamilton flow appears only
in the latter case (however, if we treat another category where the meaning of principal part
differs from the normal case, for example, Schrodinger equations with quadratic potentials, the
same type of problem occurs; see Zelditch [Ze], Yajima [Ya], Kapitanski and Safarov [KS]). In

[KP], the link between the local energy decay of wave equations and the smoothing effect of



Schrodinger equations is investigated. In [CKS] and [Cr], they derive the detailed estimates of
classical orbits, and prove the smoothing estimates by commutator methods.

The main part of this work is done during the stay of the author at Centre de Mathématiques
de I'Ecole Polytechnique as a post-doc researcher with the aid of a grant of the French gov-
ernment. The author would like to express his gratitude to the staff members at CMAT for
hospitality, especially to Professor J.-M. Bony for inviting him and giving him the opportunity

to talk in this seminar, and to Professor C. Gérard for useful discussion.

1. Breaking of smoothing effects of the lowest order

Let (M,g) be a C*° complete Riemannian manifold, ;, the associated density, and A,
the Laplace-Beltrami operator. Since M is complete, A|Cg°(M) is essentially self-adjoint in
the Hilbert space H = L?(M, u,). Denote its self-adjoint extension by the same symbol A,.
Denote by W™ (M) (¥7(M)) the set of all (classical) pseudo-differntial operators of order m
of type (1,0) on M. An operator in W™ (M) is called compactly supported if its distribution
kernel has compact support.

Let h be the principal symbol of —A,4, and ®; the flow of the Hamilton vector field Hjof
q=Vh. Put S*M = {z € T*M;h(z) = 1}.

For z € S*M, the limit set L(z) of z is the collection of all points 2’ € S* M such that there
exists a sequence of real numbers {t,} satistying [¢,| = oo, @4, (2) — 2" as n — oc.

Now we microlocalize the notion of trapping.

Definition 1.1. Sy(g) is the set of all z € S*M such that for every neighborhood of z in
S*M

sup m{t € R;®(2') €U} =00 (m: 1-dimensional Lebesgue measure).
2'eS*M

We can see that Sy(g) is closed and ®s-invariant (¢ € R); that it cotains all limit points
and is contained in the set of all non-wandering points.

Next we introduce the microlocal smoothing effect of the lowest order.

Definition 1.2. S(g) is the subset of S*M satisfying the following condition: z ¢ S(g) if
there exists a compactly-supported operator A € \If(ljl/ 2(M ) with principal symbol oy,,i,(A) # 0
at z such that the map

L3(M) 3 u— Aoy e L2(I; L2 (M))

is continuous for some nonempty (or equivalently, for all) open-bounded interval I C R.
We are ready to state our main result obtained in [Dol].

Theorem 1.3. S(g) is closed and ®4-invariant (¢t € R).



Theorem 1.4. S(g) contains Sy(g); so, if there exists a complete geodesic that remains in
a compact set, then S(g) is nonempty.

Corollary 1.5. If the volume of M is finite, then Sy(g) = S(g) = S*M.

Corollary 1.6. If S(g) is compact, then S(g) \ So(g) is of measure 0 with respect to the
Liouville measure on S*M.

Corollary 1.7. If S(g) is compact, then the following conditions are equivalent:

(i) S(g) =0; (ii) no complete geodesic is contained in a compact set.

Last, we give several applications.

I. Let g = Z?’,k:l gik(z)dz? ® dz* be a C* Riemannian metric in M = R?. Assume that
(i) with C > 1: C~|dz|? < g < Cldz|? in R
(ii) [0%g;r(w)| < Co, x € R4 for all « € Z4,1 < j,k < d;
(iii) |0igjx(z)| = o(|z|™!) as |z| = oo for all 1 <4, j,k < d.
Then S(g) is compact

II. Let M be a C* manifold with boundary OM, and let ¢ € C>°(M,R) be a defining
function of OM; that is, M := M \ OM = {¢ > 0}, OM = {¢p = 0},dp # 0 on OM. Let gy be a
C® Riemannian metric in M, and define the Riemannian metric in M by g = ¢ 2%gq (s > 0).
Then g is complete if and only if s > 1. Assume that s > 1. Then S(g) is compact. In [Dol],

conformal metrics g = a(¢) 2gp and their metric perturbations are considered.

ITI. Let (M,g) be a C*° Riemannian manifold. Assume that there exist a C'* compact
Riemannian manifold (N, w), and a C*° diffeomorphism y from (0,00) x N to an open subset

U of M satisfying

x'g=dt@dt + f(t)*w; M\ x((1,00) x N) is compact.
Here f € C*°((0,00); R) is assumed to satisfy

1FEE)/FO)] < Cry t > 1,k =1,2,3; f/(t) >0(t >> 1).

Then S(g) is compact. This is applicable, for example, to the case that M = R%; g = |2|>*|dx|?
for |z| >> 1 (s > —1), g = e2*l|dz|? for |z| >> 1 (a > 0).

2. Scale of spaces associated with two self-adjoint operators

In this section, we shall briefly discuss the scale of spaces associated with two self-adjoint
operators. Let H be a Hilbert space, and A, B positive definite self-adoint operators on H.
For simplicity, we assume A > 1, B > 1. Put D**) = D(B'A®) (t,s > 0), S = S(A,B) =

ﬂtyszoD(t""’). We assume the following conditions.



(A1) For z ¢ o(A), (z — A)~! € L(D(B)).

(A2) Withsome0 < v < 1: D(A)ND(B) is dense in D(B'~"); ad}) B, firstly defined as a
quadratic form on D(A) N D(B), is extended to an operator in L(D(B'), D(B?)) inductively
on N € N; further, it belongs to L(D(B!*1="), D(B?!)) for every ¢ > 0.

Here L(X,Y) denotes the set of all continuous linear operators from X to Y and L(X) =
L(X,X);ad%B = B, adaB = [ A, B]. Inapplication, H = L?(M, 1) where M is a C™ manifold
with C'*° positive density u, A is a multiplication operator, and B is an elliptic differential
operator of order 1/v. A simple example is as follows: H = L2(RY), A = (z) = (1 + |z|?)"/?
(multiplication operator), B = 1 — A with domain H?(R%), v = 1/2.

Set da(z) = dist(z,0(A)), dp(z) = dist(z,0(B)), z € C. S™(R) is the set of all f € C*(R)
such that for every k € Z

IFB#)] < Cr(1+ )™, teR.

Under the assumptions (A1) and (A2), S is dense in D) (t,s > 0); A*, Bt € L(S) (s,t €
R). For the proof, we use the resolvent estimates following from (A1), (A2):

1B (2 = A) "B < Ceda(z) 'L +da(z) "), 2 ¢ o(A), t>0;

145(: — B)1 A= < Cydp ()" (1 + ()1 /dp(2))*), = & o(B), 5 > 0.

Let 8’ = S'(A, B) (respectively H') be the space of all anti-linear continuous functional on
S (respectively H). By Riesz’s lemma, the mapping H > v — T, = (u,-)y € H' gives an
identification, through which # can be regarded as a subset of §’, since S is dense in H.

For t,s € R, Put D% = {y € S'; B'A*u € H}. Here, in general, T € L(S) is identified
with its unique extension in L(S') if T* € L(S). We now summarize the basic properties.

(i) D) = {u € S'; A*Blu € H}.

(ii) S is dense in D),

(iii) f(A) € L(D®), DWs=A)y - f(B) € L(D®*), D=2 if f € SM(R).

(iv) (D®#))" = D(=t=9) (with equivalent norms).

Finally we state the continuity property of the evolution group e~*5.

Proposition 2.1. Put D*) = ﬂ;?:OD(j(l_”)’k_j), k=0,1,.... Then e*F € L(D®) and
|| B ||L(D(k>) < eCkltl for every ¢ € R. In particular, e 8 € L(S), t € R.

3. Commutator algebras

In this section, we shall construct algebras of operators that admit certain asymptotic
calculus and are characterized by the mapping properties of the multiple commutators with
A and B. They are the basic tool in the following section. We shall preserve the notation in

Section 2.



Definition 3.1. P®® is the set of all P € L(S) such that P can be extented to an operator
in L(H®tbsta) gt5)) for every t,s € R. Here H®5) = Dmbs) = 1/ > 1.

Definition 3.2. Q(*® is the set of all P € P®® such that for every N € {1,2,...},Ly,---,Ly €
{4, B}

ady, ---adp,, P € pUtfm=—Nata=N)

Here o = #{1 <j < N;L;j = A}, B =#{1<j < N;L; = B}.
Lemma 3.3. (1) If P; € Q%) (j = 1,2), then P P, € Q(1tbza1taz),
(2) If P € Q| then P* € Q" if P* is identified with P*|s € L(S) by convention.
Hereafter, we assume (A3) in addition to (Al) and (A2).
(A3) A e QY. B e QmY); that is, for every N € {0,1,...},Lg,---, Ly € {A, B}

adLN ---adrp, Lo € P(ﬂmfN’afN).

Here or = #{0 <j < N;L; = A}, f=#{0 < j < N; L; = B}.
Definition 3.4. R(" is the set of all P € Q% such that for every d,c € R, Q € Q)

adpQ € Q(b+d71,a+cfl) ]

Ezample. A€ ROV B e Rm0),
Lemma 3.5. (1) If P; € Rti-%) (j = 1,2), then Py P, € R(1+b2.01+a2),
(2) If P € R®® then P* € R,
(3) If P; € R%%) (j = 1,2), then [Py, P ] € R(1tbz—laita—1),
Definition 3.6. Let P; € P®i%) by > by > --- — —00,a9 > a; > -+ — —oo. For
P e uP®Y we write P ~ Y22 P; if
N-1
P-Y pPeplbvaen)  N=0,1,....
§=0
Remark 3.7. If P; € Q%) (respectively R(%i%)), by > by > -+ — —00,a0 > a1 > -+ —
—o0, and if P ~ 3372 P}, then it follows easily that
N-1

P Z P; e Qbw-an) (respectively R(bN’aN)), N=01,....
j=0

Lemma 3.8. (1) If f € S(R), P € Q"% then

=

AP = 3 Sy PO (A) + Ia(f. AP,
=0 7

Pf(A) = j' f'7 (A)a‘dAP+RN(f7A7P)7
= 7



where Ly (f, A, P) = Rx(f, A, P*)* € pb—Na+A-N)
(2) If f € SM(R), then f(A) € ROA),
Lemma 3.9. (1) If f € S*(R), P € Q" then

N-1
fBIP = X < (adpP)f9)(B) + La(f. B.P).
j=0
N-1 (—l)j ) )
Jj=0 )

where Ly (f, B, P) = Rx(f, B, P*)* ¢ plbtim—N.a—N)
(2) If f € SMNR), then f(B) € RA™0),
Lemma 3.10. Let E = E* € R(0.0),

(1) (z = E)"t € L(S),z ¢ o(E); for t,s € R, K > 0, there exist C = C(t,s,K) > 0,\ =
A(t, s, K) > 0 such that

1z = B) Mgy < Cmz|7174, 2 ¢ o(E),|2| < K.

(2) If f € C°(R), P € Q9| then

N—-1
fE)P = %(adgmf( \(E) + Lx(f, B, P)
2 i
N1
p = 5 5V 6 gyadd
f(E) - j' f (E)a‘dEP+RN(f7E7P)7
j=0 F

where Ly (f, E,P) = Rx(f, E, P*)* ¢ pb—Na=N),
(3) If f € C*™ near o(E), then f(E) € R0,

4. Commutator estimates

Let X and H be two self-adjoint operators in a Hilbert space H satisfying (A1), (A2) with
“m:=1/v>1"and (A3) if A=X >1land B=H+1>1. Put A= (1+H)'/™
In this section, we assume the Mourre-type condition:

(A4) there exist R >> 1,6 > 0,Cs > 0 such that the following estimate holds for every
a € C®(R) with o' € C§°((R, >))

o X)[iH, [iH, X?]]a(X) > 20%a(X) A2 Do (X) — 2C5a(X) AP 3 a(X).

Define the operator E € R0 by

E = A=/ g X]AG-m/2,



Then it follows from (A1)-(A3) that
[iH,E] — %X*Al*m[zﬂ, [iH, X%+ X A" 1E? ¢ Q=272
The assumption (A4) is used only in the Key Lemma 4.1 through this relation.

To state our main results, we need several notations.

Let F(R) be the set of all f € C*®°(R) such that f' > 0, \/f,/f € C®°(R), suppf C
(R,00), and that f(t) =1 if ¢ is large enough. Let G(d1,d2) (0 < d1 < d2 < §) be the set of all
g € C*(R) such that ¢’ <0, \/g,v/—¢ € C®(R), suppg’ C (—d2,—d1), and that g(t) =1 if
t < —ds. For f,g € C(R), write f CC g if ¢ = 1 in a neighborhood of supp f.

For f,g € C(R), denote by Q" (f,g) the set of all P € Q®* such that there exist
P e Qi) b=by>by > = —00,a=ag>a; > — —00, fi»g; € S°(R), satisfying

o0
P~ P;fj(X)g;(E); supp f; C supp f, suppg; C suppg.
=0

This operator class is used to express error terms.

Put L = ((SZCf‘S(Sg)m (that is, a large constant depending only on m, d, Cs,d2). Define x(t) =
0(t<L),=1(t>L).

Now we are ready to state the key lemma which gives the principal parts of a series of
conjugate operators.

Key Lemma 4.1. Let ¢ € S*(R) (¢ > 0) such that ¢ > 0,¢’' > 0,/d € SY2(R), /& €
S@=1/2(R). Let f € F(R) and g € G(6y,02). Then the following commutator estimate holds
with R € QUb+m=2.0-2)(f ¢).

—X(H)[iH, | A2 (of)(X)2g(E)V? 2 ]x(H)
> Sy (H) [APTm=D2 (¢! 1) (X)2g(B)V? P x(H)  +x(H)Rx(H).

In application, we consider three cases:

(i) ¢(t) = t* with R € QUFm=20=2)(f, g) (a > 0);

(i) ¢(t) =1 — ¢t with R € QTm=2-2)(f g) (¢ > 0);

(i) ¢(t) = log t with R € Ny=oQUtm=25=2)(f, g).

To treat error terms, the following lemma is necessary.

Lemma 4.2. Let f,f,g,§ € S°%R) such that f CC f, g CC §. Then for every P €
Q1) (f,g), there exist C' > 0 and R = R* € Q(=09—) .= ﬁnon(_"v_m satisfying

Re P < C'|AY2X%2f(X)§(E)|? + R.

Using Lemmas 4.1 and 4.2, we are able to construct conjugate operators modulo sufficiently

lower order terms.



Proposition 4.3. Let a > 0,N € N,N >a,b € R. For j =0,1,..., N, define ¢, ; by
$aj(t) =177 (j < a);
¢ajt)=1—t"(j>aorj=a=0)with0<e<1—a+a);
¢a,j(t) =log t(j =a € N).
Let f; € F(R), gj € G(d1,02) (j =0,...,N,) such that fo CC fi CC--- CC fn, go CC g1 CC
-++ CC gn- Then there exist constants C; > 0 satisfying

—X(H) [iH, Poon | X(H) = x(H) [ AP D2 (8]0 o) (X)2g0(E)Y? PX(H)+x(H) Ry 0,n X(H).

Here Ry 4 v € Q(b+m_2_N’_2)(fN79N) and

N
Poan = 3 Ci [ A 2(g0; £)(X) 295 (B) 2 17 € QU9 (fn, gw)-
=0

According to Proposition 4.3, we arrive at obtaining a series of conjugate operators described
below.

Theorem 4.4. Let ¢ > 0,b € R,e > 0,K > 0. Let f; € F(R), g; € G(61,02) (] =
—1,0,...,[a]) such that f; CC fj—1, gj CC gj—1(j = 0,1,...,[a]). Then there exist Q; =
Q; € QUH(m=1)ja=j) (j =0,1,...,[a]) such that

Qo < C|AY2X92f_(X)Y2g_y(E)Y2 2+ R
Q; > | AbFHm=12 x(a=D)/2 . (X)1/2g,(E)/2 |2 (j=0.1,....[a])
—x(H) [iH,Q;] x(H) > x(H)Qj31x(H) — x(H)R;jx(H) (j =0,1,....[d]),

where
Qa+1 = | A(b+(m_1)([“]‘H))/zX(a_[a}_l)/zf[a] (X)l/zg[a] (E)'/2|? if ¢ is a non-integer;
Quy1 = |AbTM=D+1)/2 x(=1=e)/2 ¢ (x)1/2 (B2 if ¢ is an integer;

and R; € QUK72 R e Q-0
Lastly, we state our main theorem on regularizing effects.
Main Theorem 4.5. Let a > 0,b € R,e > 0,K > 0. Let f,f € F(R), g,§ € G(61,02)
such that f CC f, g CC g. Then the following regularizing estimate holds: for u € S,t > 0
[a]

. . o] ot .
S P ul? + Y [ | e a2y
i=0 j=0"0

< CIIAEX 2 F(X)V2G(E) P x(H)ul? + CH(L+ )| AUy (H)u |* + (Ru, )



Here R = R* € Q(=°°=%) and C > 0 are independent of u,t, and

P = A("”m’l)j)/zX(“’j)/zf(X)1/2 (B)Y2X(H) (j = 0......[a]
Pusr = ALH D02 X0l -012 ()12 (B) 2 (H) (if o ¢ Z4)
o = ACHOD@R0)2 (1012 ()12 ()2 (1) (if a € Z).

Proof. By virtue of Theorem 4.4, it is sufficient to observe the following. In gereral, suppuose
that R;,Q; € L(S) (1 =0,1,...,n+ 1) satisfy R; = R}, Q; =Q; (j =0,...,n+1) and

_[ZHaQ]]ZQ]+1_R]+17 j:0717"'7n
on S x S. Set u(t) = ey, v € S. Since
d
7 (@ou(t), u(t)) = ([1H, Qo] u(t), u(t)

it follows that
(Qou, ) > (Qoult), u(t)) + / (Q1 — Ry)u(r), u(r))dr.

By integration by parts, we obtain
[ @), utrir = @uutt)ute)) ~ [ (178, @] u(r),uir))dr
0 0
> UQuult)hu(®) + [ 7((Q2 = RoJu(r)u(r))ar

Repeating this argument, we obtain for £k =0,1,...,n
k t .k kot i
tJ T T
Qo) 2 32 5@t ) + | (Qusrutr) iy =3 [ 5 (Rysauto) (e
=0 : §j=0 :

5. Propagation of regularizing estimates

In this section, we explain how to deduce the microlocal smoothing effects for dispersive
evolution equations on manifolds with positive density, especially for Schrodinger evolution
equations on Riemannian manifolds, from the results in the previous section.

Let M be a C* manifold with C* positive density p, and put H = L*(M, p) = L?*(M). Let
H € ¥} (M) (m > 1) be a properly-supported formally self-adjoint operator with homogeneous
principal symbol o, (H) = h > 0 on T*M \ 0, and assume that

(HO) H|cge(nr) is essentially self-adjoint; and the Hamiltom vector field of h, Hj, is com-
plete.

Denote its self-adjoint extension by the same symbol H. Let ®; be the Hy-flow in 7% M \ 0,
where ¢ = h'/™. Put S*M = {z € T*M; h(z) = 1}.

10



The following proposition asserts that the smoothing property propagetes along the bichar-
acteristics in the forward direction.

Theorem 5.1. Assume (HO). Let b € Rk € Z,, K > 0,7 > 0. Let I" and U be open
subsets of S*M such that T' is compact in V := Up<i<7®:(U). Then for any compactly-
supported operators P; € \If((jﬂm_l)j)/z(M) (j =0,1,...,k + 1) with S*M Ness-supp P; C
I', there exist compactly-supported operators Q); € \Iilc)f(mfl)j (M), Rj,Rz- € \IJlC’Z_K(M) (j =
l,....k+1), and S € ¥ (M), with S*M N ess-suppQ; C U, S*M N ess-suppR; C V, S*M N
ess—suppR;- C V and S*M Ness-supp S C V, such that the following estimate holds:

k

. . t .
E {t]HPje”Hqu +/ T]||Pj+16”HU||2dT}
§=0 0

< (Su,u) + Xk: /Ot (Qj11 + Rjr1)e ™u e Hu)dr + Xk: tj(R;-efitHu, e tHy,)
j=0 Jj=0
for every ¢t > 0, u € C§°(M).

Hereafter assume H > 0 and set A = (1 + H)Y/™. Let X be a multiplication operator by a
function r € C*°(M, R) such that r > 1, lim,_,o r(z) = co. We shall assume that H, X satisfy
(H1)-(H2).

(H1) For every N € {0,1,...}, Lo, -+, Ly € {X, H}

ANﬁmﬁ‘Xaa‘dLN T adLlLOXa’ |C§°(M)

is extended to an operator in L(H) for every a,a' € R witha+a' = N —a. Here a = #{0 <
JSN;Lj=X} f=#{0<j<N;Lj=H}

(H2) There exist R >> 1,0 > 0,Cs > 0 such that the following estimate holds for every
a € C®(R) with o' € C§°((R, >))

o(X)[iH, [iH, X*])a(X) > 26%a(X)AX" Vo (X) — 2C50(X)A*" 3o (X)

on C§°(M) x C§°(M).

The assumption (H1) corresponds to (A1)-(A3), and (H2) to (A4). Thus, the corresponding
spaces S, S', H®% are well-defined. The assumtion (H2) implies the classical Mourre-type
condition:

(H2)’ HZ(r?) > 26 ifr > R.

The following lemma describes the “incoming” region that absorbs every backwardly non-
trapped bicharacteristics as t — —oo.

Lemma 5.2. Assume (H2)’. If an integral curve of Hy, , v € C*°(R,S*M), verifies that
{7(t);t < 0} is not relatively compact, then for every 0 < d; < § there exists 7" > 0 such that

r(y(0) 2 it & (Har)(y(t) < —6y for t < —T.

11



So, if the regularizing estimate holds in the region
{z = (2,§) € S"M; Hp(2) < =01, 7(x) > R},

then by virtue of the propagation of regularity in the forward direction, it is also valid at every
backwardly non-trapped point.

By Theorem 4.5, Lemma 5.2, and Theorem 5.1, we are able to obtain the microlocal smooth-
ing effect in the following form.

Theorem 5.3. Assume (HO0)-(H2). Let zg € S*M such that v := {Us(z0);¢ < 0} is
not relatively compact. Let b,0’ € R,b > b'; a > 0. Let f € F(R),g € G(01,02). For
uw e 8 = S§'(X,H), assume that AY/2u € H, AY2X2f(X)1/2g(E)Y/2u € H (for example,
Ab/2Xa/2y H), and that u is microlocally Hlbo/c2 at every point of v. Then there exist a
neighborhood of zg, U, in S*M such that the following assertion holds: for any compactly-
supported operators P; € gHm=1))/2 (M) (j =0,1,...,[a] + 1) with S*M Ness-supp P; C U,

cl

la] . . t .
Z { sup 7/ ||Pje " THy|? +/ 7']||Pj+16”HU||2dT} < oo fort>0.
0

Corollary 5.4. Assume (HO)-(H2). Let zp € S*M such that v := {®4(z0);¢ < 0} is not
relatively compact. If u € S’ = S§'(X, H) satisfies that A’X%u € H for every a > 0 with a fixed
b€ R, then zy ¢ WF(e~ ) for every t > 0.

Corollary 5.5. Assume (H0)-(H2). If there is no complete bicharacteristics of h in S*M
that is relatively compact, then e "% is continuous from H_;(M) to Hf (M) for every s #
0,t #0.

6. Application
We shall return to the three cases considered in the second half part of Section 1.

I. Let g = Z;{kzl gjk(z)dz? ® dr* be a C* Riemannian metric in R Assume (i), (iii) in
Section 1 and

(i)’ [0%gjr(2)] < Co(1 + |z))7*, s e R for all a € Z¢,1 < j, k < d;
Then H = L*(R%, puy), H = —A,, X = /1 + [z[? satisfy (H0)-(H2) with m = 1/v = 2.

I1. Under the same setting of Section 1, Assume that s > 1. Then H = L?(M,p,), H =
—A,, X = ¢'7% satisfy (H0)-(H2) with m = 1/v = 2. For s = 1, our method does not work.

III. Under the same setting of Section 1 assume that

1FB@)/f@) < Crt™, t>0(k=0,1,...); with d >0, tf/(¢)/f(t) >t >> 1).

12



Then H = L*(M,puy), H = —A,, X = r satisfy (H0)-(H2) with m = 1/v = 2. Here r €
C*(M,R) is a function satisfying r > 1 and x*r =t (¢t > 2).

This is applicable to the case that M = R%; g = |z|**|dz|? for |z| >> 1 (s > —1), or
g = e27l|dz|? for |z| >> 1 (a > 0).
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