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Velocity and Entropy of Motion in

Periodic Potentials

Andreas Knauf�

May ����

Abstract

This is a report on recent joint work with J� Asch� and with

T� Hudetz and F� Benatti�

We consider classical� quantum and semiclassical motion in peri�

odic potentials and prove various results on the distribution of asymp�

totic velocities�

The Kolmogorov�Sinai entropy and its quantum generalization� the

Connes�Narnhofer�Thirring entropy� of the single particle and of a gas

of noninteracting particles are related�

After the mathematical proof ����� ��� of Bloch�s Theorem for a large class
of periodic potentials the focus of interest shifted towards other subjects like
motion in quasiperiodic or random potentials	

However� the relation between the KdV equation and the one
dimensional
Schr�odinger operator with a periodic potential showed an unexpected rich

ness of the latter subject� the generalization to the multi
dimensional case
being a current subject of research	

Here we give a short survey on a complementary aspect� The dynamics
generated by that Schr�odinger operator

H� 
 ��
�

�
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and the corresponding Hamiltonian function	
This is mainly done by analyzing the �asymptotic� velocity of the motion�

and its dynamical entropy	

� Ballistic and Non�Ballistic Motion

In the paper ��� we consider the qualitative aspects of the distribution of
asymptotic velocity	

Our starting point is to provide a proof of a folk conjecture according to
which the quantum mechanical motion for ��� is ballistic	

Thus we consider potentials V � Rd � R which are periodic w	r	t	 a regular
lattice L � R

d

V �q � �� 
 V �q� �q � R
d � � � L��

�so that it descends to a function on the unit cell T �
 R
d�L�� and denote its

Fourier transform by FV 	
The symmetries of H� allow for a decomposition with respect to the group

of lattice translations� Let L� be the dual lattice with unit cell T� and denote
by

U � L��Rd� �
Z �

T�

L��T� dq�
dk

jT�j
the unitary operator de�ned by extension from Schwarz space of

U��k� q� �

X
��L

e�ik�q�����q � �� �� � S�Rd���

Our assumption on the regularity of the potential is�

d 
 �� V � Lp�T� with p � ��

d 
 �� V � L��T� and

d � �� F�V jT� � lp with p � �d� ����d� ��	

Under this assumption UHU�� 

R
�H�k� dk

jT�j with an analytic familyH�k� of

operators with compact resolvent	 So we may write H�k� 

P�

n��En�k�Pn�k�
where En�k� are the eigenvalues in ascending order� Pn�k� the eigenprojec

tions	
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Theorem � If � � L��Rd� meets

�D��D�� � �q�� q�� ���

then the asymptotic velocity of this wave function is given by

lim
t��

q�t��

t

 U��

�Z �

T�

�X
n��

�
��rkEn�k�Pn�k�

dk

jT�j

�
U��

and

lim
t��

��� q��t���

t�


Z �

T�

�X
n��

j���rkEn�k�j�kPn�k�U��k�k�L��T�
dk

jT�j � ��

See also the paper ��� by Gerard and Nier	
So the quantity which determines the motion of the particle is the semi�

classical asymptotic velocity� given by

�v�n�k� �


�
�
��rkE

�

n�k� gradient exists
� otherwise	

In order to understand the distribution of that quantity� we consider its
classical counterpart	

The classical motion in a L
periodic potential V on R
d is described by

Hamilton�s equations on phase space P �
 T �Rd for

H � P � R� H�p� q� 
 �
�
p� � V �q��

If V � C��Rd � R� �as we assume here�� the �ow �t � P � P exists uniquely
for all times t � R	

We will analyze its restrictions �t
E �
 �tj�E to the energy shells

�E �
 H���E��

Alternatively we study motion on the phase space �P �
 T �T over the
con�guration torus	 Using the phase space projection � � P � �P arising from
the projection 	 � Rd � T 
 R

d�L of con�guration spaces� we thus consider
the �ow ��t � �P � �P generated by the Hamiltonian function �H � �P � R�
�H �� 
 H� and its compact energy shells ��E �
 �H���E� with the restricted
�ows ��t

E �
 ��tj��E 	
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The Liouville measures �
 of the phase space regions �H����Vmin� E��� E �
R� are now �nite� a fact which enables us to use notions of ergodic theory	

Minimum Vmin� mean value Vmean and maximum Vmax of the potential are
relevant energy scales	

As a consequence of Birkho��s Ergodic Theorem for �

almost all �x	 � �P

�v���x	� �
 lim
T���

�

T

Z T

	
�p�t� �x	�dt

exist and are equal	 In this case we set �v �
 �v�� and otherwise �v �
 �� thus
de�ning the asymptotic velocity

�v � �P � R
d

which is a measurable phase space function	
We denote its lift to the original phase space P by the same symbol and

thus have

lim
t���

q�t� x	�

t

 �v�x	�



almost everywhere	
��t is called ballistic at �x � �P if �v��x� �
 � �observe that by the above

de�nition this implies existence and equality of �v��	
We are particularly interested in the energy dependence of asymptotic

velocity and thus introduce the energy�velocity map

A �
 � �H� �v� � �P � R
d�� � ���

A is measurable and generates an image measure � �
 �
A�� on R
d�� 	

� is invariant under �h� v� �� �h��v�� since the motion is reversible� and

j�v�x�j 	
q

��H�x�� Vmin�	
For regular values E of the energy one may consider the probability distri


bution of the asymptotic velocities �v w	r	t	 the normalized Liouville measure
�
E on the energy shell ��E	 By the above bound this is supported within a
ball of radius

p
E � Vmin	

Theorem � �� For d 
 � the motion is ballistic at x 
 �p� q� � P i�
E �
 H�x� � Vmax� with asymptotic velocity

�v�x� 

sign�p�

l��
R l
	���E � V �q����

�
�dq

�l � � being the period of L��
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	� For d � � and E � Vmax there exists a set BE � �E for which the
motion is ballistic� whose directions

f�v�x��k�v�x�k j x � BEg

are dense in Sd��� with moduli

p
��E � Vmax�p
E � Vmean

	 k�v�x�k 	
q

��E � Vmin�� �x � BE�� ���


� For d 
 � and V � C
�Rd � R� there exists a threshold Eth 
 Vmax above
which the �ows �t

E �E � Eth� are ballistic �
E�almost everywhere�

Eth is given by the following condition� For E � Eth there are two
geometrically di�erent minimal tori T

�
�� T

�
� � ��E �by 
geometrically

di�erent� we mean� not related by time reversal symmetry I��p� �q� �

���p� �q���

�� We assume here that V is �d times continuously di�erentiable� Then
for d � � there exist a threshold energy Eth 
 Vmax and for E � Eth

subsets �BE � ��E of measures

�
E� �BE� 
 ��
q
Eth�E

such that on �BE the motion is ballistic�

�� If the �ow ��t
E on the energy shell is ergodic w�r�t� �
E� then �vE 
 � with

probability one� However� if in addition E � Vmax� the trajectories are
unbounded with probability one�

�
E

��
�x	 � ��E

����� lim sup
T

�����
Z T

	
�p�t� �x	�dt

����� 
 �
��


 ��

We now treat motion in a planar crystal with attracting Coulombic forces	
We �x the locations of the nuclei within the crystal by selecting m 
 � points
s�� � � � � sm � D in the fundamental domain

D �
 fx��� � x��� j x�� x� � ��� ��g � R
�
q
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of the lattice L � R
�
q with basis ��� ��	 The nuclei attract the electron with

the charges Z�� � � � � Zm � �	 That is� we assume the potential of the form
V �q� � �Zi�jq � sij for q near si	 Now by the periodicity of the crystal the
potential is singular at the points of

S �
 fsi � � j i � f�� � � � � mg� � � Lg�
However� by linearization of the �ow near the collision orbits and addition of
cylinders R � S� �parametrizing energy and direction of the collision points�
one may regularize the motion� see ���	

One thus obtains a smooth extension �P� ��H� of the incomplete Hamil

tonian system� P being a four
dim	 manifold with Hamiltonian function
H � P � R and symplectic form �	 The smooth �ow �t � P � P gen

erated by H is complete� and one can proceed like in the former case	

It is known ��� that under mild additional conditions the �ow of energy
E 
 Eth in the plane is di�usive� and that its restriction to the con�guration
torus R

��L is ergodic	 In particular Them	 �	� holds true	
However� there is an exceptional set of fast orbits�

Theorem � If � ln�Eth � V � � �� then for all E 
 Eth the intersection of
the set �v���E� � R

� of asymptotic velocities for energy E with the disk of
radius

p
��E � Vmax�p
E � Vmean

is dense�

This statement can be thought of as a  very large deviation� result
It is known ��� that under the same conditions the Coulombic periodic

potentials generate a motion which is of Anosov type	
To the contrary we show

Theorem � If d 
 �� and V � C��Rd � R�� then there is no energy E for
which �t

E is an Anosov �ow�

A geometric version of that theorem is� Geodesic �ows on a torus �T� g� are
never Anosov	

As the example of d 
 � dimensions shows� this is not merely a conse

quence of the topological form of the energy shell �which is then a three
torus
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for E � Vmax� the simplest example of an Anosov �ow having phase space
T
��	

Motion of k particles on a d
dimensional con�guration space with periodic
boundary conditions and mutual forces of potential type can be described by
the motion of one particle on a k 
 d
dimensional torus	 Thus the theorem
implies that it will be very hard to show ergodicity of gases if the interparticle
forces are smooth	

The proof of the Theorem � is based on a somewhat converse statement
in �!�� which says for d � � that existence of a single energy surface which
is completely foliated by invariant Lagrangean tori implies constancy of the
potential	

Similar to ��� we introduce the energy�velocity map

A� � �P � � R
n�� with A��n� k� �
 �E�

n�k�� �v�n�k��

and the image measure �� �
 �
��A����	

Conjecture � For all L�periodic potentials V � C��Rd � R�

w � lim
��	

�� 
 �

�which means lim��	

R
Rd
f�x�d���x� 


R
Rd
f�x�d���x� for continuous func�

tions f � C	
	�Rd�� � R� of compact support��

We shall now consider for 
 � � intervals In �
 �E � n
� E � n
� and deduce
that the group velocities for energies in I 
 I� are included in a thickened
convex hull of the classical ones with energies in I�� provided � is small	

Theorem � Let the L�periodic potential V � C��Rd � R�� E � R� 
 � ��
Then � �	 � � � �	

�v�m�k� �
�
conv��v� �PI���

	
�

if E�

m�k� � I�

The semiclassical analog of the thickened energy shell �PI is

�P �

I �
 f�m� k� � �P � j E�

m�k� � Ig�
We equip them with the probability measures

�
I �

�


�
� �PI�
on �PI
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and �for � small�

�
�I �

�
�

�
�� �P �

I �
on �P �

I �

These induce the image probability measures �I �
 �
IH
�� and ��I �
 �
�I�E

����

on the space R
d of asymptotic velocities	

Theorem � Let S �
 conv�supp��I�� � R
d be the convex hull of the support

of �I� then the semiclassical measures concentrate inside S� For all 
 � �

lim
��	

��I�R
d � S�� 
 ��

Remark 	 In general S � C is much smaller than C� As an example for
ergodic motion one has by Thm� 	�� S 
 f�g� whereas by Thm� 	�	 C
contains a disk of radius

p
��E�Vmax�p
E�Vmean

�

Corollary 
 If the classical motion is non�ballistic with probability one on
an energy interval I ��I 
 �	�� then Conjecture � holds true�

For example� this is the case if the classical motion is ergodic	 Then the
group velocity is only a quantum �octuation vanishing in the semiclassical
limit	 This is also true in the case of Coulombic potentials �"�	

Theorem �� Let V � C��Rd � R� be a separable periodic potential� Then
Conjecture � holds true�

In fact� assuming V to be C�� we show that one has fast convergence to the
classical measure	

� Classical and Quantum Dynamical Entropy

In the �rst part of ��� we give a self
contained introduction into the notion of
CNT entropy	 This entropy� introduced by Connes� Narnhofer and Thirring
in ���� generalizes the Kolmogorov
Sinai
entropy of an automorphism of a
probabilility space	

Then we apply these notions to the case of motion in a periodic potential	
For lack of space we do not formulate here our technical assumptions and
precise results� but refer the interested reader to ���	
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One Particle �Classical
� The notion of measure theoretic entropy is not
directly applicable to the description of a classical particle in a periodic
potential� since Liouville measure is invariant under lattice translation
and thus in�nite	 However one may divide by the lattice L and thus
consider motion on the con�guration torus T 
 R

d�L� using Liouville
measure	

In that case the KS entropy is zero if the potential is separable� and
should be positive in the generic case	 If the potential is smooth� it is
of order ��

p
E as the energy E of the particle goes to in�nity �Prop	

�	� of ����	

The generalization� due to Bowen� of topological entropy to non�compact
phase spaces is directly applicable to the motion in the crystal� but
coincides with the topological entropy of the motion on the con�g

uration torus	 The topological entropy of smooth potentials has an
E�independent upper bound� and for 
 � freedoms there exist smooth
potentials with a similar E�independent lower bound �Prop	 �	� of ����	

For Coulombic periodic potentials the topological entropy is a smooth
increasing function asymptotic to c

p
E �Prop	 �	! of ����	

One Particle �Quantal
� The CNT entopy is unde�ned for the motion in
con�guration space and zero for motion on the con�guration torus	
This is one motivation to consider the noninteracting gas	

Classical Gas� Although second quantization �or Poisson construction� as
it is called in the case of classical dynamical systems� is a purely functo

rial construction� the consideration of a gas of non�interacting particles
sheds new light on the single�particle dynamics	

Classically the unbounded system is now described by a probability
measure	 As noted by Goldstein� the total entropy of an ideal gas is
in�nite	 This was a motivation for him to introduce space time entropy
which� as he showed� equals entropy density	 This is a �nite quantity
for the motion in a periodic potential� since it equals the entropy per
particle multiplied by the density of particles �Thm	 �	�� of ����	

However� if one considers only a bounded con�guration space region B�
then for large energies and smooth potentials the local entropy associ
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ated with that region is in�nite� since every incoming particle carries
an in�nite amount of information	

For energies below the delocalization threshold that entropy is �nite
�Thm	 �	�� of ����	

Above an energy threshold� the gas of classical particles in a Coulombic
periodic potential forms a space
time K 
system with strictly positive
entropy densities �Prop	 �	�� of ����	 Thus it has extremely good ergodic
properties	

Fermi Gas� Last we consider a noninteracting Fermi gas in R
d with a lattice


invariant quasi
free state	

We prove that for a shift by a lattice vector v the local CNT entropy
in region B is �nite and for large B asymptotically proportional to the
surface area of �B in the v direction times the speed jvj �Thm	 �	�� of
����	

The �niteness of local CNT entropy is a consequence of coarse�graining
of phase space with cells of volume ��	��d	 So each particle carries only
a �nite amount of information	

In a forthcoming paper we will apply these techniques to the motion of
the noninteracting quantum electron gas in a periodic potential	 This
needs phase space microlocalization� and we indicate in an appendix
the usefulness of local algebras of Wannier functions in this context	

The growth of the local CNT entropy with the surface area instead
with the volume is a clear sign of the fact that quantum chaos is less
chaotic than classical chaos	 For it is not the dynamics of the particles
in the bulk� but the information carried by the electron entering the
region� that leads to that growth of entropy	

In the case of the Coulombic potential the above
mentioned vanishing of
speed in the semiclassical limit has the curious consequence that� apart
from a  kinematical factor� ��	���d corresponding to coarse
graining
of phase space� the local CNT entropy associated with B decreases as
Planck�s constant goes to zero	 The physical reason is simply that less
particles enter B per unit time	
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