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1. Consider incompressible Euler equations

8_u + (u, V)u+ Vp = 0; (1)

ot
V.u=0. (2)

Here u(z,t) is the velocity field of the fluid; p(z,t) is the pressure. For
simplicity, we consider the flows on an n-dimensional torus: x € M = T" =
R"/Z";t € [0, T].

If p(x,t) € C§°(M x[0,T1]) is a scalar test-function, and v(z,t) € C§°(M x
[0, T])is a vector-function, such that V-v = 0, then multiplying both sides of
equations (1),(2) by v(z,t) and ¢(z,t) respectively and integrating by parts,
we obtain

-/ l(“’ %) + (0. Vv- w] duvdt = 0; 3)
_//wv@Mﬁ:0 (4)

The left hand sides of (1),(2) make sense for arbitrary vector field u(z,t) €
L*(M x [0,T]). This justifies the following

Definition 1. Vector field u(x,t) € L? is called a weak solution of the
Euler equations (1),(2), if u(x,t) satisfies relations (3),(4) for arbitrary test-
functions v(z,t), p(z,t).



The identities (3),(4) are quite general, they express the mass and mo-
mentum balance in the fluid. Therefore, when deriving the Euler equations
in the fluid mechanics, we obtain first the weak formulation (3),(4), and then,
assuming sufficient regularity of the field u(x, t), pass to the differential equa-
tions (1),(2).

The properties of generic, non-smooth solutions of (3),(4) are poorly un-
derstood. Mention here the result of P. Constantin, W. E and E. Titi [3],
and G. Eyink [4], that if n = 3, and u(x,t) is a Hélder function of x for every
t with the Holder exponent o > 1/3, then the kinetic energy

W= %|u(ac,t)|2d:c

is constant (this was an old conjecture of L. Onsager [5]). Note that such
Holder solutions of the Euler equations are by no means classical, and nothing
is known about their existence and (non)uniqueness under appropriate initial
conditions.

On the other hand, V. Scheffer [6] has constructed a strange weak so-
lution u(z,t) € L*(R?* x R), such that u(z,t) = 0 for all (z,t), satisfying
the inequality |z|? 4 |[¢]* > 1. This solution is an unbounded, almost every-
where discontinuous vector field, which breaks both uniqueness and energy
conservation. Moreover, the energy W(t) is non-monotonous in ¢, and even
unbounded.

Much simpler example of a weak solution u(x,t) on T? x R, which is
identically zero for |¢t| > 1, has been constructed in [9]. This is also a discon-
tinuous, unbounded L2-field.

2. The physical meaning of weak solutions of the Euler equations is not
quite clear. We may assume as a hypothesis, that the velocity field of a
slightly viscous and slightly compressible fluid tends to a weak solution of
the Euler equations, when viscosity and compressibility tend to zero (here we
admit arbitrary rheological model of fluid, whatever nonlinear and nonlocal it
is). This is probable because of a very general nature of the Euler equations,
which contain nothing but the mass and momentum balance. But the very
existence of some L2-velocity field, describing the turbulent motion at infinite
Reynolds number, remains still an unproved hypothesis.

If we want to justify our hypothesis, we have to keep in mind the following
fundamental property of the flows at high Reynolds numbers. Every flow
of viscous fluid dissipates energy; so, the kinetic energy, in the absence of



external forces, is always a decreasing function.

The rate of the energy dissipation depends on the viscosity. There is
a very well established experimental result, that for sufficiently small vis-
cosities, the rate of energy dissipation does not depend on viscosity and is
definitely positive.Thus, if our hypothesis is true, and the turbulent flow at
very high Reynolds numbers is described by a weak solution of the Euler
equations, then the kinetic energy of this weak solution should decrease.
(Thus, we have to reject the overmentioned weak solutions with bounded in
time supports as nonphysical.)

The natural question is, whether there exist weak solutions whose energy
monotonically decreases? This work gives an affirmative answer:

Theorem. Ifn = 3, then there exists a weak solution u(z,t) € L*(T? x
[0,T1]), such that its kinetic energy W (t) monotonically decreases.

We do not assert that this solution is already physically meaningful. The
"true” definition of weak solution should include relations (3),(4), and some
other requirements. Monotonicity of energy is one of them, but possibly not
the most fundamental.

3. The simplest mechanical system without explicit friction, but with
decaying energy, is the system of two particles, moving freely along the line,
which stick upon collision, and form one new particle. If my, my are the
masses, and vy, vy are the velocities of the particles before collision, then the
new particle will have the mass m = m; + ms, and the velocity v, such that
its momentum mv = mqv; + mavs. It is easy to see that its kinetic energy
mu?/2 is strictly less than myv12/2 + mavy?/2.

The idea of our construction is to organize a flow in such a manner,
that the fluid particles collide and stick; this sticking is just the sink of the
energy. These collisions should include essential part of the fluid particles;
each particle may meet and stick other ones many and even infinitely many
times.

It is clear that such flow should be sufficiently non-regular, for in the
smooth velocity fields different particles cannot meet each other; if the veloc-
ity field is not sufficiently irregular, then the rate of collisions is not enough
to absorb positive energy (this is the possible explanation of the results of
3], [4])

4. Our main tools are the Generalized Flow, introduced by Y. Brenier
[1]. Remind that in the "classical” fluid dynamics the fluid configurations
are identified with smooth, volume-preserving diffeomorphisms: all particles



are labeled by the points of M where they were at ¢ = 0, and every other
configuration of fluid particles is obtained from the initial one by a smooth
permutation, i.e. smooth mapping & : M — M. But such description of the
fluid motion is not appropriate for irregular flows.

The idea of Brenier is to decouple the fluid particles and the points of
the flow domain M. Brenier has proposed to introduce a separate space {2
of fluid particles. This is a measurable space with a probabilistic measure
pi(dw).

Generalized Flow (GF) is a measurable map x : Qx[0,7] — M, satisfying
the following two conditions:

(i) For every ¢(x,t) € C§°(M x [0,T1]),

/S)u(dw)/OT o(z(t,w), t)dt = /M /OT o(x, t)dxdt;
(i)
7= [ ) /(]T%|a'c(t,w)|2dt < .

The first condition may be called incompressibility, and the second one
expresses finiteness of the action (i.e. the mean energy).

Generalized Flows were introduced by Y. Brenier for solving the following
problem. Given two fluid configurations, i.e. smooth volume preserving
diffeomorphisms, &, and &;; find an incompressible flow &,0 <t < 1, which
connects & with & and minimizes the action J. In a good case, when the
solution of this problem exists, it is a classical solution of the Euler equations
(1),(2). But generally the solution does not exist (see [7]), and the minimum
of the action J is achieved for some Generalized Flow (see [1],[2]) for details).

GFs proved to be a powerful and flexible tool for different problems,
related to the geometry of the group of volume preserving diffeomorphisms
(see [8]). In the present work we see a new application of GFs. Note that
many of our constructions here are similar to the ones described in [8].

5. We start from introducing some classes of GFs.

Definition 1. Generalized Flow x(w,t) is called a GF with definite
velocity (GFDV), if there exists a vector field u(x,t), such that

(i) u € L*(M x [0,TY));

(ii)) V - uw = 0 in the weak sense;

(iii) For almost all (w,t),



(w, t) = u(z(w, t),t).

The field u(x,t) is called a field, associated with the GFDV z(w,t). It is
clear that this field is essentially unique.

The second important notion is Generalized Flow with Local Interaction
(GFLI).

Definition 2. GF z(w,t) is called a Generalized Flow with Local Inter-
action, if for every test-field v(z,t) € C§°, such that V -v =0,

[ wtao) /OT (i (w, 1), v(2(w, 1), 1))t = 0. (5)

The next is an important class of the GFLI.

Definition 3. GF z(w,t) is called a pressureless GF, if (5) is valid for
every test-field v(x,t) € C§°, without restriction V - v = 0.

Roughly speaking, this means that if we find the "sum” f(z,¢) of ac-
celerations of all particles, passing the point z at the time moment ¢, then
we obtain a potential field (in the case of GFLI), or zero (in the case of a
pressureless GFLI).

The field f cannot be defined so simply. But the weak definition (5)
makes sense, since z(w,t) € H' for almost all w; hence, v(z(w,t),t) € H',
while #(w,t) € H™!, and the integral (1.4) is defined.

Theorem 1. If a GF z(w,t) is both a GFLI and a GFDV, and u(z,t)
is an associated velocity field, then u(z,t) is a weak solution of the Euler
equations.

Weak solution u(z,t) is called a pressureless weak solution, if (3) is valid
for arbitrary test-field v(z,t) € C§°, without restriction V - v = 0. If u(z, )
is sufficiently regular, then it satisfies (1),(2) with p = 0; all such smooth so-
lutions are easy to describe. But, as we shall see, there exist many nontrivial
nonsmooth pressureless solutions.

Theorem 2. If the GF x(w,t) is both a pressureless GFLI and a GFDV,
and u(z,t) is the associated velocity field, then u(x,t) is a pressureless weak
solution of the Euler equations.

The next important class of GFs are Sticking GFs (SGFs). Their defini-
tion requires some preliminary constructions.



Let 3; be a family of measurable partitions of €2, 0 <t < T'; this means
that for every t € [0,T] there is defined a measurable space ¥;, and a mea-
surable mapping 7; : Q2 — ;. We identify elements ¢ € ¥; and the sets
7 1(0); just these sets are the elements of the partition ;.

Let v4(do) be a direct image of measure p in ;. For p-almost all o € 3,
there is defined a conditional measure x;,, i.e. a measure in {2, such that it
is concentrated on o, and for every p-integrable function ¥(w),

A@@mumzéﬁﬂwyéw@uww@.

Suppose that the family ¥; satisfies the following

Condition 1. (i) ¥; is a coarsening family; this means that if t; < t,
then for every o € 3, there exists some o' € ¥y, such that o C o';

(ii) The family 3, is continuous from the right:

Et - /\ Etl.

t'>t

Now we are able to define the Sticking Generalized Flow (SGF).

Definition 3. GF z(w,t) is called a SGF, associated with the family 3,
of partitions, satisfying Condition 1, if

(i) For every t € [0,T] and every o € %, if wy,ws € o, then z(wy,t) =
z(wa, t);

(ii) For every t € [0, T], and every o € %,

LﬂM@Mﬂmozéf@nnwu@.

This definition requires some comments. Condition (i) means that all
the particles, belonging to o € ¥;, have stucked and formed one particle
by the moment ¢ (we may identify this "large” particle with the class o).
The coarsening condition (Condition 1, (i)) implies that these particles keep
moving together for all # > ¢. This implies, in its turn, that the (right)
velocity 4(w,t) is the same for all w € o € ¥;. Hence, for almost all ¢, and
vi-almost all o € 3, the (true) velocity is defined and constant on o.

Part (ii) of Definition 3 says that the momentum of the composed particle
o is equal to the sum of momenta of "small” particles w, which constitute o.

We must distinguish between the trivial and non-trivial SGFs.



Definition 4. SGF z(w,t) is called trivial, if for every t, for v-almost
all 0 € ¥4, #(w,t) = const for x;,-almost all w € o.

Otherwise the SGF z(w,t)is called non-trivial.

Trivial SGFs are easy to describe. Every composite particle o consists of
small particles w, moving from the beginning with equal velocities; this means
that their trajectories coincide, and they stick at the moment ¢ only formally;
the sticking does not affect their motion. Since there is no interaction between
the particles, the trivial SGF is a free motion of noninteracting particles with
a constant density. If the SGF is not trivial, it is called a nontrivial SGF.

Theorem 3. Suppose that the following conditions are satisfied:

(i) z(w,t) is a nontrivial SGF;

(ii) z(w,t) is an L*-GF;

(iii) x(w, t) is a GFDV, with associated velocity field u(x,t).

Then

(i) u(x,t) is a weak solution of the Euler equations;

(ii) Moreover, u(x,t) is a pressureless weak solution;

(iii)Kinetic energy W (t) = % [, |u(z,t)|*dz is a truly decreasing function
oft (i.e., W'(t) <0, and W(T) < W(0)) .

The main result of this work is the following

Theorem 4. If n = 3, then there exists a GF x(w,t), which satisfies all
conditions of Theorem 4.

Thus, we obtain an example of a weak solution of the Euler equations
with decreasing energy.

6. We prove Theorem 4 by explicit construction; its idea is the following.
Consider first arbitrary smooth flow of incompressible fluid (call this fluid
the main phase) in M, whose velocity field ug(z,t) is not a solution of the
Euler equations. This means that it is necessary to apply some external force
fo(z,t) to the fluid, so that it moved in prescribed manner.

Suppose now, that in the same volume there is a finite number of other
fluids, having constant densities, and moving with constant and different
velocities (call these fluids controlling phases). This is a simple GF, called
multiflow. Now suppose that the particles of controlling phases are being
absorbed by the particles of the main phase; the rates of absorption are,
generally, some functions of (x,t), which we may define arbitrarily. This GF
may be called a multiflow with mass exchange. The absorbed particles add
their momentum to the momentum of the absorbing ones. This is equivalent
to the action of some force g(z,t), depending on the rates of absorption,
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and we may define these rates (which are in our hands) in such a way, that
g(xz,t) = f(x,t) for all (z,t). Thus, the main phase will move in a given
way without external forces; but the densities of the phases are not constant
any more, and the overall density becomes, generally, variable. Now we may
introduce a few new phases (call them compensating phases), having constant
velocities, but non-constant densities, and moving freely, without interaction
with previously defined phases, so that the overall density is sufficiently close
to constant.

Thus we obtain an SGF, which, however, is not a GFDV, and whose
density is only approximately constant. Next is the crucial step of our con-
struction. For every phase, we define a perturbation of its motion ( so that
changes of coordinates, velocities, and accelerations of all particles are arbi-
trarily small), such that this perturbation nearly separates all phases. This
means that at every point (z,t) outside some set in M x [0, T] of arbitrarily
small measure the densities of all phases but one become arbitrarily small.
This construction is technically the most difficult part of the work, and may
be done only if n = 3 (there is not enough freedom if n = 2).

But the GF just constructed is no more a SGF, because we have slightly,
but arbitrarily changed the trajectories of particles. In order to compensate
the new accelerations, we introduce new controlling phases, and define the
absorption rates by all the previously defined phases, so that this absorption
exactly compensates the extra accelerations. Then we introduce new com-
pensating phases, which move without interaction with all other phases, and
whose role is to make the overall density close to constant (much closer than
on the previous step).

Again, we have an SGF, which is not perfectly incompressible, and not
perfectly a GFDV. We construct a new perturbation of the motion of every
phase, which separates phases much better than it was on the previous step;
then compensate the small accelerations by absorption of particles of new
controlling phases, compensate the variations of density by new compensat-
ing phases, etc. It is possible to perform all the steps so that we obtain «
convergent process. This means that the sequence of GF's, regarded as ran-
dom processes, converges in a weak sense to some random process, which
satisfies all hypotheses of Theorem 1.2.

The weak solution we have constructed is still far from the real fluid flows.
Its only "realistic” feature is the decay of kinetic energy. But two other
features may also have some relation to the reality: the direct interaction of



particles with different velocities, without any cascade, and the absence of
the pressure. Possible role of these phenomena in the "true” weak solutions
is still unclear.
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