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1 Statement of the results.

The purpose of this exposé is to to present a new proof of Poisson formula for resonances. It
comes essentially from joint work with Laurent Guillopé [?] and the main point is that we avoid
the use of Lax-Phillips theory and in particular of the strong Huyghens principle. That was
necessary for extending the formula to the case of surfaces with infinite volume hyperbolic ends.
It was however the Lax-Phillips theory which provided the original motivation for the formula.

We start by recalling the abstract assumptions of “black box” scattering from [?]. Thus we
consider a complex Hilbert space with an orthogonal decomposition

H=Hp, ® L*(R"\ B(0,Ry)), n odd, (1.1)
and an operator

P . H— H, self-adjoint with a domain D C H
1\ B(0,Ry)D = H*(R" \ B(0, Ry))
1R”\B(07R0)P = _A|R"\B(O,RO)

The last condition can be relaxed to allow operators with coefficients which, with all their
derivatives, differ from those of —A super-exponentially, that is, by O(exp(—|z|'*€) for some
fixed € > 0. (see [?] or [?] for precise definitions). We also assume that

3k such that 1pg ) (P + i)~% is of trace class , (1.2)
and that our operator is semi-bounded
P>-C, C>0. (1.3)

As simple examples where all the conditions are satisfied we can take
Example 1. P =-A+V,V € C®(R"), n odd.
Example 2. P = Ay — 1/4, X = I'\H? is a finite volume, non-compact hyperbolic surface.
In this case n = 1 and Hp, is a more complicated Hilbert space — see [?] and references given
there.



Condition (?7) implies that
costVP — cost\/Kan\B(OVRO) e D'(R, L (H,H))
and we can define a distribution on R
u(t) = 2tr (cos tvVP — Lgn\ B(0,Ro) COS tﬂan\B(o,Ro)) . (1.4)

The simplest definition of resonances comes from the following theorem which in this level
of generality was established in [?]:

Theorem 1. The resolvent, R(\) = (P — X2)71 : H — D, Im\ > 0, A2 ¢ o(P), continues
meromorphically to C (when n is odd; to the logarithmic plane when n is even) as an operator

R(/\) : Hcomp — Dloca
with poles of finite rank.

The poles of R(\) are called resonances and the multiplicity is given by

k

k B —
ma(R) = (1 €O Y- 4, (o)« RIO) = 3 2505+ AolC). em:{é V2o
j=1

j=1
(1.5)

where Ag is holomorphic near A. For A\ # 0 this coincides with the more natural definition

my(R) = rank / R(C)CAC, N#0, 0 72c(0) =\ +ee.
T

Remark. The definition (?7) is different from the ones used in [?],[?],[?] and hopefully it is
now correct. Shmuel Agmon pointed out to me the need to multiply by two at A = 0 in a
private conversation but the necessity of it became apparent only after the comparison with
multiplicities in Theorem 5 below — see the proof of Theorem 2 at the end of Sect.3. In fact,

Theorem 5 would look nicer and more natural without the multiplication by two at A = 0.
The Poisson formula for resonances is given in

Theorem 2. Fort # 0, that is in the sense of D'(R\ {0}), we have

u(t) =Y my(R)e™ M (1.6)

AeC
where u is given by (?7), my(R) by (??) and n is odd.

For scattering by obstacles (that is for P = —A, H = L*(R?\ 0), D = H}(R?\ O)N H} (R? \
0)) and for sufficiently large times, this was obtained by Lax-Phillips [?] and by Bardos-Guillot-
Ralston [?]. Melrose [?],[?], extended that result to all non-zero times and as stated above the
theorem is due to Sjostrand-Zworski [?]. The observation that it can be extended to super-
exponentially decaying perturbations was made in [?].



The formula (??) is clearly equivalent to

Xa(A) =) XA+ mmu(R), x €CE(Ry), A€R.
nec

Recently, Sjostrand [?] obtained a local trace formula valid in all dimensions and for more general
operators. Specialized to the situation described above his theorem gives

Theorem 3. (Sjostrand) For u given by (?7) and x € C°(Ry) but in all dimensions

Xu(\) = D RO+ p)mu(R) +O(A®), AeR,
H2ENZQ

where @ ={z€C:0<a<Rez <b —c<Imz<0}.

For n odd this special consequence of [?] follows from (??) and from the polynomial bound
on the number of resonances!, [?], [?].

Despite its severe assumptions Theorem 2 is worth having as it allows the use of the behaviour
of u(t) near t = 0 and starting with [?] that has already had interesting applications, see
[21,[2].[21.[2).2),[2].

We conclude this section with some discussion of the question whether (??) could hold
through 0. The right hand side of (??) does not immediately make sense as a distribution on
R, that is, there is no canonical way of extending it through 0. In Example 1 with n = 1 and in
Example 2 (where n = 1 as well) we can use the principal value regularization:

pv. Y f()=Tim > f(N).

AeC IN<R

In Example 1 with n = 1 we have [?]

u(t) = p.v. Z m(R)e™ ™M + 4]chsupp V|8 (t) ,
AeC

and in Example 2, W. Miiller (see [?],[?]) showed that

u(t) = p.v. Z m(R)e ™M —log qdy (1) ,
AeC

where ¢ is the factor in the Blaschke product representation of the scattering matrix. Hence
something is happening at ¢ = 0 and it is related to the distribution of resonances.
Acknowledgments. I am very grateful to Tanya Christiansen, Laurent Guillopé and Richard
Melrose for their comments on the first version of this note.

'The required polynomial bound on the number of eigenvalues of the reference operator follows from (?7?), see
(??) and (??) below.



2 An application.

As an example of an application of Theorem 2 we present the following result obtained jointly
with Antonio S& Barreto, [?]:

Theorem 4. IfV € C(R";R) and n is odd then P = —A+V has infinitely many resonances.

As mentioned above the compact support condition on V' can be relaxed and V can also be
taken less regular. Previous results in this direction were obtained by Lax-Phillips [?], Menzala-
Schonbek [?], Melrose [?] and Bafnuelos-S& Barreto [?].

The proof of Theorem 4 is quite simple and can be outlined as follows. Suppose there were
no resonances. Then by Theorem 2 we would have

supp u C {0}. (2.1)

The now standard results on the behaviour of the wave trace at t = 0 (see [?],[?]) show that

n—1
2 ) [ee] )

u(t) ~ S d;(V)aS T Ew) + N (vl (2.2)
j=1 j:”_""l

where do(V) = o [ V2, o # 0. If (77) holds, that is, there are no resonances, then we only
have the first sum and an exact equality. When n = 3 then —3 + 4 > 0 so in that case we
immediately see that [ V2 =0 and hence V = 0 ([?]). Also, as observed in [?] existence of some
resonances implies that there must be infinitely many of them: in odd dimensions there is no
constant term in the expansion of the singularity at ¢ = 0 and if there were only finitely many
poles (?7?) would give

n—1
2
T . (n—1-2j) —
0= tgrori- u(t) — g 1 d;(V)o, (t) | = number of resonances .
]:

Hence in dimensions higher than three we would like to extract da(V') from (??). For that we
apply the well known “wave-to-heat” transform to (??) and obtain

n—1
2

tr(e P —e®)=t2) a;d;(V)H, >0, a;j #0. (2.3)
j=1

On the other hand the assumption that P has no eigenvalues and zero-resonances implies, by
essentially standard heat estimates, that

ltr (e7F — )| < Oyt 2t t>0, (2.4)

see [?] and reference given there. Hence da(V) = 0 which implies V' = 0. As was pointed out to
me by Werner Miiller the estimate (?7) can also be obtained using the Birman-Krein formula for
the heat operators (see Sect.3 below for the wave version) and the behaviour of the scattering
phase near 0.

When n = 3 the result can be extended to cover any super-exponentially decaying self-adjoint
elliptic perturbation of the Laplacian, [?]. For n = 5 and metric perturbations and for conformal
perturbations in higher dimensions the existence of resonances was shown in [?].



3 Proof of Theorem 2.

The new proof of Theorem 2 is based on a trace formula of the Birman-Krein type (already
well known in most interesting situations, see [?]) and an estimate on the determinant of the
scattering matrix in all of the complex plane.

To avoid inessential technical issues we now assume that

opp(P) N (0,00) =10, (3.1)

that is, that P has no embedded eigenvalues. The contribution of embedded eigenvalues can
either be completely separated (as in the case of scattering by compact obstacles with non-
connected exteriors) or removed by a generic perturbation (as in the case of finite volume
quotients). The continuity of both sides of (??) shows then that that identity holds in general
(see Sect.4 of [?] for a similar argument). A direct argument which would complicate the
statement of Theorem 5 below is also possible.

For A € R\ {0} the scattering matrix

S(\) : LES" Y — L2(s™Y

can be defined using the asymptotic behaviour of the generalized eigenfunctions of P which in
turn can be obtained from the asymptotic behaviour of the resolvent. Thus for A € R\ {0} let
E(\;w) € D, w € S L, be the unique solution? of

loc»

P—\X)E(\w) =0, E(\: _ M) | €N Flaw 22 3.2
( ) ( 7(")) — Y, ( 7w)|R”\B(O,R0) =e€ + | | 3 W, ) ( . )
x| "2

BN

where F € C®(Rx S" 1 xS 1 x]0, Ro_l)), that is, F' has an expansion in |2| ! with a bounded
leading term. We then define

A\ @ LA(S™Y — L2(S™Th, A¢(9) = SnilA(@,w)¢(w)dw, (3.3)

with the natural volume measure on S" ! and the kernel of A is obtained from the scattering
amplitude F:

n—1 imr

A(f,w) = cn/\nTilF(/\;w, —0,0), ¢, = (271-)*767(”*1) ]
Then the scattering matrix is
SN\ =1+ AN). (3.4)

A more natural but less explicit and perhaps somewhat mysterious definition of S(\) is given
as the intertwining operator between the incoming and outgoing generalized eigenfunctions:
S(A)E(—A;8) = E(\;e) where we consider E()\;e) as a function on S" ! with values in D2
One could also use the standard dynamic definition (see e.g. [?], Chapter 14) where S(\) comes

*Uniqueness follows from Rellich’s uniqueness theorem and (?7?).



from the spectral decomposition of the scattering operator along the generalized eigenspaces of
the free Laplacian with which it commutes or the general stationary definition (see [?] for a
formulation based on the structure at infinity).

The kernel of the operator A()\) is analytic in (#,w) and in particular A()) is a trace class
operator. Hence we can define

s(A) =det S(\), o(\) = i log det S(\) (3.5)

where o(\) is the scattering phase. Heuristically it measures the averaged phase shift of a wave
passing through the “black box” perturbation. The resonances close to the continuous spectrum
correspond to the peaks in its derivative and that roughly explains the physical origin of the
notion of resonance. In fact, the Poisson formula of Theorem 2 and its proof below below give
some rigorous meaning to that connection.

The first trace formula relates the wave group and the scattering phase, o(\):

Theorem 5. For P satisfying the assumptions of Sect.1 and (??) and for u(t) and o(\) defined
by (??) and (??) respectively we have o' € S'(R) and

u(t):;l—(;(t)—i—2 S ma(R) cos(tA) +mo(R), ¢ #0
Im A>0

This is motivated by classical results of Birman-Krein and can be proved using the Maaf}-
Selberg type relations which in Euclidean scattering appeared already in the work of Buslaev
(see [?] and [?]). By adding an explicit term Cr, D" *dy(t) to the left hand side we could make
this formula valid for all ¢ but that is not relevant to our discussion (this is more subtle in even
dimensions).

As an operator on L?(S" 1) the scattering matrix S(\) is unitary for A € R and it extends
to a meromorphic family of operators in C (when n is odd, and in the logarithmic plane if n
is even). The continuation still posesses the structure (??) with A(\) meromorphic with values
in smoothing (analytic) operators. The simplest way of defining the multiplicity of the poles of
S(A) is through s(\):

ma(S) =k, s(u)=\—p)Ff(n), f(A)#O0, fis holomorphic near 0. (3.6)
We then have
mx(S) = ma(R) — m_\(R), (3.7)

that is the multiplicities of the poles of S(A) and of R(\) essentially coincide. The relation (77)
can be proved either by the methods of Sect.2 of [?] or by establishing first the simpler case of
simple poles and then using the generic simplicity of resonances proved in [?] or the perturbation
methods of [7].

To estimate the number of resonances of P we follow [?],[?],[?] and introduce a reference
operator P*. Roughly speaking, we take R > Ry and compactify {z : |z;| < R,i =1,--- ,n} to
obtain a torus T%. Then P* is a self-adjoint operator on H* = Hp, @ L*(T% \ B(0, Ry)) given



as P on Hpg, and as the positive Laplacian on the torus on L*(T% \ B(0, Ry)) (see [?] for a more
precise description). Condition (?7?) implies that

BN 2 N eo(PY), N2 <r?} <Car™, n<m <2k, (3.8)

for any € > 0 and we take m to be the smallest real number for which this estimate holds. Of
course, in many situations we can simply take ¢ = 0 and for elliptic perturbations m = n, e = 0.
The consequent bound on the number of resonances is

> ma(R) < Cer™. (3.9)
A[<r

and we can from a Weierstrass product over the poles of R(\):

PO =] F (2 [m])m“(m  B(np) = (1— 2)exp <z T %p) . (3.10)

neC

which defines an entire function of order m, more precisely, |P(\)] < Cexp(C|A|""€). From
(??) and the meromorphy of s(\) we immediately get for n odd

_ P(=))
s(A) = 9N PO

(3.11)

where ¢ is an entire function. Theorem 2 follows from Theorem 5 and

Proposition 6. The entire function g given in (??) is a polynomial. That is there exists | such
that

gV < C+ CA

This is proved using the techniques developed for estimating the number of scattering poles
[?],[?].[?].[?].[?] and is the only component of the argument that has not been available in the last
25 years. The connection between Theorems 2 and 5 was already exploited before by Melrose
[?] to obtain scattering asymptotics and his argument was later used in [?],[?],[?].

In Sect.4 we give a complete argument in the case of P = —A+V, V € C*(R"), n odd and
indicate the method for the extension to the general case (which is already essentially treated
in Sect.3 of [?]).

To see how Proposition 6 implies Theorem 2 we write

(%)WH log 5(3) = (%)Wﬂg(x)

s mm () e (L) - () e ()

¢ecC
which for 2M > max{l, [m]} is equal to

2M)! 2M)!
ng(R) (()\ _E_ C)z)M-H - (A E OZ)M—H)

¢ecC




that is we obtain

(ri) mw=gr s (55) (ot ara)

CER

Denoting by F the Fourier transform on R we observe that for Im¢ < 0

£l (tzMe—ic\tl) (\) = i G%)ZM <(Aig) a (AiC)) ’

which with ¢ replaced by —( is also valid for Im { > 0. Hence we obtain

(%%)Wj—‘;(x): 3 mc(R)F <t2Me’iC‘t|) N = Y m(R)F (t2Mei<lf\) ).

Im (<0 Im (>0

On the other hand, by Theorem 5

(1) %) -

2Mut) = Y me (RN e — N m (R)PM e — £2Mm(R) |
Im{>0 Im{>0

and hence

t*My(t) = M Z me(R)e™M | in D'(R), (3.12)
¢eC

which implies (?7).

The knowledge of the order of the singularity of u(t) at ¢ = 0 and the proof of the Poisson
formula presented above give an improvement in the estimate of the order of the scattering
matrix which from (??) and from Proposition 6 can so far be estimated by max{l, m}:

Theorem 7. If m is the order of growth of eigenvalues of the reference operator P (see (77))
then the order of the determinant of the scattering matriz, s(\), as a meromorphic function is
m, that is we can take | = [m] in Proposition 6. In particular for any elliptic compactly supported
perturbation of —A in R", n, odd, the order of the determinant of the scattering matriz is n.

This means in particular that in (??) we can replace 2M by [m)].

4 Proof of Proposition 6.

We will now prove Proposition 6 in the case of P = —A+V, V € LY n odd, and then

comp?
indicate the way the argument can be adapted to the general case. By Hadamard’s factorization

3This observation is a direct consequence of some recent e-mail exchanges with Richard Melrose.



theorem (see for instance [?], 8.24) it is enough to show that there exists an entire function,
h(A), such that for some N

h(N)s(\)] < Ce“P (N < CeCPT
That will in turn follow from an estimate

sV < ceCM x| D)) (4.1)

mC(S)>O

where m is equal to the exponent in the bound on the number resonances (??7)) and € > 0 is
fixed. Once we have (??) we can for instance take P(\) and use the maximum principle.

To estimate s(A) we shall use the Weyl inequalities following the method introduced by
Melrose [?],[?] and then refined in [?],[?],[?]. For that we recall that if A is a trace class operator
with eigenvalues {\;(A)}32;, [A1(4) > -+ > [Ax(A)| = 0, then det(I + A) = [[52, (1 + A;(4)).
The characteristic values of A are defined as eigenvalues of |A| = (AA*)%, pr(A) > - >
pr(A) — 0. Then one form of Weyl’s inequality says that

|det(I + A)| < det(I + |A4]). (4.2)
Hence, using (?7)
sV < T+ p5(4) (4.3)
j=1

and to estimate j1;(A) we need a good representation for A. That is particularly simple in the
potential case (see for instance [?]):

AN (w,0) = Cp A" 2 / e MEDIYV () u_ (N, z,0)dz, u_(\,e,0) = (I — Ry(\)V) (N9,
(4.4)

where Rg()\) is the resolvent for P = —A, (A2 — A)Ry(\) = I, and Ry()\) is bounded on L? for
ImA > 0. If x € C°(R") is equal to one on supp V' then we check easily that

Xt (A, 0,0) = (I = xRo(WV) " (xe**?),
Thus (??) can be rewritten as
AN) = CoA"2EX (=\)V (I = Hy (V) TMEY (), (4.5)
where Hy (A) = xRo(A)V and
EX(A) : LA(R") — LAS"™Y), EX(A)(6,2) = x(2)e™ ™),

The factor (I —Hy (A\)) ! is now meromorphic and we will have to avoid its poles in our estimate.
We have (using j1j(AB) < si;(A)]|BI)

1i (AN) < [Cul A2 (B (=MD IV (I = Hy (A) THIEX (V)] - (4.6)



The estimate on y;(EX(—=\)) follows from Melrose’s method and was given in Proposition 2 of
[?] (with a slight improvement from [?] used here):

pi(EXQN) = (1 = Agn-1) (I = Aga-1)"EX (X))
< (= Dgn) M) = Agw ) EX V)| < 57T C% (k)N (47)

.
]n—l

1
CI\—-j7-T/C _
016 ) k 20

IN

+1.

To estimate ||(I — Hy(\)) || we use Theorem 5.1 of Chapter V of [?]*
(T = H () 2] < [det(T + Hy (A1) 2 det(I + [Hy()|"™+), (43)

where the power n + 1 makes the operator be of trace class ((n + 1)/2 would of course suffice
in this case). The second term can be optimally estimated as in [?] using arguments similar
to (??7). If we are not concerned with optimal bounds, as we do not have to be here, that is
quite easy. For optimal bounds, in this and in the general case, Vodev developed a method for
estimating determinants of this type, again based on (?7) — see [?] and [?]. Here we get

det(I + |Hy (\)["+1) < CeCM"

and using (??) we conclude that h(\) = det(I + Hy(\)"*1) is an entire function of order at
most n; let £ denote the set of its zeros. The minimum modulus theorem for entire functions
(see for instance [?], 8.71) now shows that for any € > 0 and any J > 0

1 ynte o
R = e Mg D0, (4.9)
‘ Cec
so that, going back to (77?)
_ 1 n—+te —n—
I = Hy )T < Ze A U D).
¢ CeL
Combining this and (??) in (??) we obtain
T —n—
pi(4) < CeITE X g | D¢ ™),
CeL

and consequently, by (??) and the maximum principle away from the poles of s:

xe |J D,

mc(S)>0

|2n71+5
9

|s(V)] < CeI?

which is (??) with N = 2n—1+¢€. Even with the use of the methods which give optimal bounds
on the number of scattering poles (that corresponds to the estimate on h(\)) this estimate is

“That gives an elegant argument; one can also obtain a similar estimate using a direct argument based on
Crammer’s rule.

10



highly inaccurate. However, as observed in Theorem 7 above, the use of the trace formula and
of the order of the singularity of u(t) at ¢ = 0 gives the correct order n.

In the general case we procceed similarly but we use a more general, but less intuitive,
representation of A:

A(N) = CR A" 2R (= M) (1 4+ K (M, X)) A, X]TE?2 (V) (4.10)

where K (A, \g) is the compact operator appearing in the proof of Theorem 1 given in [?],
¢; € CX(R™ \ B(0,Rp);[0,1]), i = 1,2, x € C*(R";]0,1]), x = 1 near B(0, Ry), are suitably
chosen cut-off functions. To estimate ||(I+ K (X, Xg)) || away from its poles we use the methods
of [?],[?].
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