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Poisson formul� for resonances�

Maciej Zworski

Department of Mathematics� University of Toronto

and

Centre de Math�ematiques� �Ecole Polytechnique

� Statement of the results�

The purpose of this expos�e is to to present a new proof of Poisson formula for resonances� It
comes essentially from joint work with Laurent Guillop�e ��� and the main point is that we avoid
the use of Lax�Phillips theory and in particular of the strong Huyghens principle� That was
necessary for extending the formula to the case of surfaces with in�nite volume hyperbolic ends�
It was however the Lax�Phillips theory which provided the original motivation for the formula�

We start by recalling the abstract assumptions of �black box	 scattering from ���� Thus we
consider a complex Hilbert space with an orthogonal decomposition

H 
 HR�
� L��Rn nB��� R�

 � n odd� ����


and an operator

P � H �� H � self�adjoint with a domain D � H
�RnnB���R��D 
 H��Rn n B��� R�



�RnnB���R��P 
 ��jRnnB���R��

The last condition can be relaxed to allow operators with coe�cients which� with all their
derivatives� di�er from those of �� super�exponentially� that is� by O�exp��jxj���
 for some
�xed � � �� �see ��� or ��� for precise de�nitions
� We also assume that

� k such that �B���R���P � i
�k is of trace class � ����


and that our operator is semi�bounded

P � �C � C � � � ����


As simple examples where all the conditions are satis�ed we can take
Example �� P 
 ��� V � V � C�c �Rn
� n odd�
Example �� P 
 �X � ���� X 
 �nH � is a �nite volume� non�compact hyperbolic surface�
In this case n 
 � and HR�

is a more complicated Hilbert space � see ��� and references given
there�

�



Condition ���
 implies that

cos t
p
P � cos t

p
��RnnB���R�� � D��R�L��H�H



and we can de�ne a distribution on R

u�t
 
 �tr �cos t
p
P � �RnnB���R�� cos t

p
��RnnB���R��
 � ����


The simplest de�nition of resonances comes from the following theorem which in this level
of generality was established in ����

Theorem �� The resolvent� R��
 
 �P � ��
�� � H � D� Im� � �� �� �� ��P 
� continues

meromorphically to C �when n is odd� to the logarithmic plane when n is even� as an operator

R��
 � Hcomp �� Dloc �

with poles of �nite rank�

The poles of R��
 are called resonances and the multiplicity is given by

m��R
 
 �� � ���

dim
kX

j��

Aj�Hcomp
 � R�	
 

kX

j��

Aj

�	 � �
j
�A��	
 � ���
 


�
� � 
 �
� � 	
 �

�

����


where A� is holomorphic near �� For � 	
 � this coincides with the more natural de�nition

m��R
 
 rank

Z
����

R�	
	d	 � � 	
 � � 
 
� �����

 
 �� �ei� �

Remark� The de�nition ���
 is di�erent from the ones used in ����������� and hopefully it is
now correct� Shmuel Agmon pointed out to me the need to multiply by two at � 
 � in a
private conversation but the necessity of it became apparent only after the comparison with
multiplicities in Theorem � below � see the proof of Theorem � at the end of Sect��� In fact�
Theorem � would look nicer and more natural without the multiplication by two at � 
 ��

The Poisson formula for resonances is given in

Theorem �� For t 	
 �� that is in the sense of D��R n f�g
� we have

u�t
 

X
��C

m��R
e�i�jtj � ����


where u is given by ���
� m��R
 by ���
 and n is odd�

For scattering by obstacles �that is for P 
 ��� H 
 L��R� nO
� D 
 H��R� nO
�H�
� �R

� n
O

 and for su�ciently large times� this was obtained by Lax�Phillips ��� and by Bardos�Guillot�
Ralston ���� Melrose �������� extended that result to all non�zero times and as stated above the
theorem is due to Sj�ostrand�Zworski ���� The observation that it can be extended to super�
exponentially decaying perturbations was made in ����

�



The formula ���
 is clearly equivalent to

c�u��
 
X
��C

����� 

m��R
 � � � C�c �R�
 � � � R �

Recently� Sj�ostrand ��� obtained a local trace formula valid in all dimensions and for more general
operators� Specialized to the situation described above his theorem gives

Theorem �� �Sj�ostrand� For u given by ���
 and � � C�c �R�
 but in all dimensions

c�u��
 
 X
������

����� 

m��R
 �O�j�j��
 � � � R �

where � 
 fz � C � � � a � Re z � b��c � Im z � �g�
For n odd this special consequence of ��� follows from ���
 and from the polynomial bound

on the number of resonances�� ���� ����
Despite its severe assumptions Theorem � is worth having as it allows the use of the behaviour

of u�t
 near t 
 � and starting with ��� that has already had interesting applications� see
������������������������

We conclude this section with some discussion of the question whether ���
 could hold
through �� The right hand side of ���
 does not immediately make sense as a distribution on
R� that is� there is no canonical way of extending it through �� In Example � with n 
 � and in
Example � �where n 
 � as well
 we can use the principal value regularization�

p�v�
X
��C

f��
 
 lim
R��

X
j�j�R

f��
 �

In Example � with n 
 � we have ���

u�t
 
 p�v�
X
��C

m��R
e�i�jtj � �jchsupp V j���t
 �

and in Example �� W� M�uller �see �������
 showed that

u�t
 
 p�v�
X
��C

m��R
e�i�jtj � log q���t
 �

where q is the factor in the Blaschke product representation of the scattering matrix� Hence
something is happening at t 
 � and it is related to the distribution of resonances�
Acknowledgments� I am very grateful to Tanya Christiansen� Laurent Guillop�e and Richard
Melrose for their comments on the �rst version of this note�

�The required polynomial bound on the number of eigenvalues of the reference operator follows from ����� see
���� and ���� below�

�



� An application�

As an example of an application of Theorem � we present the following result obtained jointly
with Ant�onio S�a Barreto� ����

Theorem 	� If V � C�c �Rn �R
 and n is odd then P 
 ���V has in�nitely many resonances�

As mentioned above the compact support condition on V can be relaxed and V can also be
taken less regular� Previous results in this direction were obtained by Lax�Phillips ���� Menzala�
Schonbek ���� Melrose ��� and Ba nuelos�S�a Barreto ����

The proof of Theorem � is quite simple and can be outlined as follows� Suppose there were
no resonances� Then by Theorem � we would have

supp u � f�g � ����


The now standard results on the behaviour of the wave trace at t 
 � �see �������
 show that

u�t
 

n��
�X

j��

dj�V 
�
�n����j�
� �t
 �

�X
j�n��

�

dj�V 
jtj�n��j � ����


where d��V 
 
 c�
R
V �� c� 	
 �� If ���
 holds� that is� there are no resonances� then we only

have the �rst sum and an exact equality� When n 
 � then �� � � � � so in that case we
immediately see that

R
V � 
 � and hence V 
 � ����
� Also� as observed in ��� existence of some

resonances implies that there must be in�nitely many of them� in odd dimensions there is no
constant term in the expansion of the singularity at t 
 � and if there were only �nitely many
poles ���
 would give

� 
 lim
t���

��u�t
� n��
�X

j��

dj�V 
�
�n����j�
� �t


�A 
 number of resonances �

Hence in dimensions higher than three we would like to extract d��V 
 from ���
� For that we
apply the well known �wave�to�heat	 transform to ���
 and obtain

tr �e�tP � et	
 
 t�
n
�

n��
�X

j��

�jdj�V 
tj � t � � � �j 	
 � � ����


On the other hand the assumption that P has no eigenvalues and zero�resonances implies� by
essentially standard heat estimates� that

jtr �e�tP � et	
j � CV t
�n

�
�� � t � � � ����


see ��� and reference given there� Hence d��V 
 
 � which implies V 
 �� As was pointed out to
me by Werner M�uller the estimate ���
 can also be obtained using the Birman�Krein formula for
the heat operators �see Sect�� below for the wave version
 and the behaviour of the scattering
phase near ��

When n 
 � the result can be extended to cover any super�exponentially decaying self�adjoint
elliptic perturbation of the Laplacian� ���� For n 
 � and metric perturbations and for conformal
perturbations in higher dimensions the existence of resonances was shown in ����

�



� Proof of Theorem ��

The new proof of Theorem � is based on a trace formula of the Birman�Krein type �already
well known in most interesting situations� see ���
 and an estimate on the determinant of the
scattering matrix in all of the complex plane�

To avoid inessential technical issues we now assume that

�pp�P 
 � ����
 
 � � ����


that is� that P has no embedded eigenvalues� The contribution of embedded eigenvalues can
either be completely separated �as in the case of scattering by compact obstacles with non�
connected exteriors
 or removed by a generic perturbation �as in the case of �nite volume
quotients
� The continuity of both sides of ���
 shows then that that identity holds in general
�see Sect�� of ��� for a similar argument
� A direct argument which would complicate the
statement of Theorem � below is also possible�

For � � R n f�g the scattering matrix

S��
 � L��Sn��
 �� L��Sn��


can be de�ned using the asymptotic behaviour of the generalized eigenfunctions of P which in
turn can be obtained from the asymptotic behaviour of the resolvent� Thus for � � R n f�g let
E����
 � D�

loc� � � Sn��� be the unique solution� of

�P � ��
E����
 
 � � E����
jRnnB���R�� 
 ei�hx��i �
ei�jxj

jxjn���
F

�
����

x

jxj �
�

jxj
�
� ����


where F � C��R�Sn���Sn��� ��� R��
� 

� that is� F has an expansion in jxj�� with a bounded

leading term� We then de�ne

A��
 � L��Sn��
 �� L��Sn��
 � A��

 


Z
Sn��

A�
� �
���
d� � ����


with the natural volume measure on Sn�� and the kernel of A is obtained from the scattering
amplitude F �

A�
� �
 
 cn�
n��
� F ������
� �
 � cn 
 ���
�

n��
� e

i�
�
�n��� �

Then the scattering matrix is

S��
 
 I �A��
 � ����


A more natural but less explicit and perhaps somewhat mysterious de�nition of S��
 is given
as the intertwining operator between the incoming and outgoing generalized eigenfunctions�
S��
E���� �
 
 E��� �
 where we consider E��� �
 as a function on Sn�� with values in D�

loc�
One could also use the standard dynamic de�nition �see e�g� ���� Chapter ��
 where S��
 comes

�Uniqueness follows from Rellich�s uniqueness theorem and �����

�



from the spectral decomposition of the scattering operator along the generalized eigenspaces of
the free Laplacian with which it commutes or the general stationary de�nition �see ��� for a
formulation based on the structure at in�nity
�

The kernel of the operator A��
 is analytic in �
� �
 and in particular A��
 is a trace class
operator� Hence we can de�ne

s��
 
 detS��
 � ���
 

i

��
log detS��
 � ����


where ���
 is the scattering phase� Heuristically it measures the averaged phase shift of a wave
passing through the �black box	 perturbation� The resonances close to the continuous spectrum
correspond to the peaks in its derivative and that roughly explains the physical origin of the
notion of resonance� In fact� the Poisson formula of Theorem � and its proof below below give
some rigorous meaning to that connection�

The �rst trace formula relates the wave group and the scattering phase� ���
�

Theorem 
� For P satisfying the assumptions of Sect�� and ���
 and for u�t
 and ���
 de�ned
by ���
 and ���
 respectively we have �� � S ��R
 and

u�t
 

cd�
d�

�t
 � �
X

Im�	�

m��R
 cos�t�
 �m��R
 � t 	
 �

This is motivated by classical results of Birman�Krein and can be proved using the Maa!�
Selberg type relations which in Euclidean scattering appeared already in the work of Buslaev
�see ��� and ���
� By adding an explicit term CR�

Dn��
t ���t
 to the left hand side we could make

this formula valid for all t but that is not relevant to our discussion �this is more subtle in even
dimensions
�

As an operator on L��Sn��
 the scattering matrix S��
 is unitary for � � R and it extends
to a meromorphic family of operators in C �when n is odd� and in the logarithmic plane if n
is even
� The continuation still posesses the structure ���
 with A��
 meromorphic with values
in smoothing �analytic
 operators� The simplest way of de�ning the multiplicity of the poles of
S��
 is through s��
�

m��S
 
 k � s�

 
 ��� 

�kf�

 � f��
 	
 � � f is holomorphic near � � ����


We then have

m��S
 
 m��R
�m���R
 � ���"


that is the multiplicities of the poles of S��
 and of R��
 essentially coincide� The relation ���

can be proved either by the methods of Sect�� of ��� or by establishing �rst the simpler case of
simple poles and then using the generic simplicity of resonances proved in ��� or the perturbation
methods of ����

To estimate the number of resonances of P we follow ����������� and introduce a reference
operator P 
� Roughly speaking� we take R � R� and compactify fx � jxij � R� i 
 �� � � � � ng to
obtain a torus TnR� Then P 
 is a self�adjoint operator on H
 
 HR�

� L��TnR n B��� R�

 given

�



as P on HR�
and as the positive Laplacian on the torus on L��TnR nB��� R�

 �see ��� for a more

precise description
� Condition ���
 implies that

�f� � �� � ��P 

 � �� � r�g � C�r
m�� � n � m � �k � ���#


for any � � � and we take m to be the smallest real number for which this estimate holds� Of
course� in many situations we can simply take � 
 � and for elliptic perturbations m 
 n� � 
 ��

The consequent bound on the number of resonances isX
j�j�r

m��R
 � C�r
m�� � ���$


and we can from a Weierstrass product over the poles of R��
�

P ��
 

Y
��C

E

�
�



� �m�

�m��R�

� E�z� p
 
 ��� z
 exp

�
z � � � �� zp

p

�
� �����


which de�nes an entire function of order m� more precisely� jP ��
j � C exp�Cj�jm��
� From
���
 and the meromorphy of s��
 we immediately get for n odd

s��
 
 eg���
P ���

P ��


� �����


where g is an entire function� Theorem � follows from Theorem � and

Proposition �� The entire function g given in ���
 is a polynomial� That is there exists l such
that

jg��
j � C � Cj�jl �
This is proved using the techniques developed for estimating the number of scattering poles

������������������� and is the only component of the argument that has not been available in the last
�� years� The connection between Theorems � and � was already exploited before by Melrose
��� to obtain scattering asymptotics and his argument was later used in ������������

In Sect�� we give a complete argument in the case of P 
 ��� V � V � C�c �Rn
� n odd and
indicate the method for the extension to the general case �which is already essentially treated
in Sect�� of ���
�

To see how Proposition � implies Theorem � we write�
d

d�

��M��

log s��
 


�
d

d�

��M��

g��


�
X
��C

m��R


��
d

d�

��M��

logE

�
��

	
� �m�

�
�
�
d

d�

��M��

logE

�
�

	
� �m�

�	

which for �M � maxfl� �m�g is equal toX
��C

m��R


�
��M
%

��� 	
�M��
� ��M
%

��� 	
�M��

�

"



that is we obtain�
�

i

d

d�

��M d�

d�
��
 


i

��

X
��R

m��R


�
�

i

d

d�

��M � �

��� 	

� �

��� 	


�
�

Denoting by F the Fourier transform on R we observe that for Im 	 � �

F��


t�Me�i�jtj

�
��
 


i

��

�
�

i

d

d�

��M � �

��� 	

� �

��� 	


�
�

which with 	 replaced by �	 is also valid for Im 	 � �� Hence we obtain�
�

i

d

d�

��M d�

d�
��
 


X
Im ���

m��R
F��


t�Me�i�jtj

�
��
�

X
Im �	�

m��R
F��


t�Mei�jtj

�
��
 �

On the other hand� by Theorem �

F
��

�

i

d

d�

��M d�

d�



�t
 


t�Mu�t
�
X

Im �	�

m��R
t�Me�i�jtj �
X

Im �	�

m��R
t�Mei�jtj � t�Mm��R
 �

and hence

t�Mu�t
 
 t�M
X
��C

m��R
e�i�jtj � in D��R
 � �����


which implies ���
�
The knowledge of the order of the singularity of u�t
 at t 
 � and the proof of the Poisson

formula presented above give an improvement in the estimate of the order of the scattering
matrix which from ���
 and from Proposition � can so far be estimated by maxfl�mg
�
Theorem �� If m is the order of growth of eigenvalues of the reference operator P 
 �see ���
�
then the order of the determinant of the scattering matrix� s��
� as a meromorphic function is

m� that is we can take l 
 �m� in Proposition 	� In particular for any elliptic compactly supported

perturbation of �� in R
n � n� odd� the order of the determinant of the scattering matrix is n�

This means in particular that in ���
 we can replace �M by �m��

� Proof of Proposition ��

We will now prove Proposition � in the case of P 
 �� � V � V � L�comp� n odd� and then
indicate the way the argument can be adapted to the general case� By Hadamard&s factorization

�This observation is a direct consequence of some recent e�mail exchanges with Richard Melrose�

#



theorem �see for instance ���� #���
 it is enough to show that there exists an entire function�
h��
� such that for some N

jh��
s��
j � CeCj�j
N

� jh��
j � CeCj�j
N

�

That will in turn follow from an estimate

js��
j � CeCj�j
N

� � ��
�

m��S�	�

D�	� h	i�m��
 ����


where m is equal to the exponent in the bound on the number resonances ���

 and � � � is
�xed� Once we have ���
 we can for instance take P ��
 and use the maximum principle�

To estimate s��
 we shall use the Weyl inequalities following the method introduced by
Melrose ������� and then re�ned in ������������ For that we recall that if A is a trace class operator
with eigenvalues f�j�A
g�j��� j���A
 � � � � � j�k�A
j � �� then det�I �A
 


Q�
j���� � �j�A

�

The characteristic values of A are de�ned as eigenvalues of jAj 
 �AA�

�

� � 
��A
 � � � � �

k�A
 � �� Then one form of Weyl&s inequality says that

jdet�I �A
j � det�I � jAj
 � ����


Hence� using ���


js��
j �
�Y
j��

�� � 
j�A

 ����


and to estimate 
j�A
 we need a good representation for A� That is particularly simple in the
potential case �see for instance ���
�

A��
��� 

 
 Cn�
n��

Z
e�i�hx���iV �x
u���� x� 

dx � u���� �� 

 
 �I �R���
V 
���ei�h	��i
 �

����


where R���
 is the resolvent for P 
 ��� ��� ��
R���
 
 I� and R���
 is bounded on L� for
Im� � �� If � � C�c �Rn
 is equal to one on supp V then we check easily that

�u���� �� 

 
 �I � �R���
V 
����ei�h	��i
 �

Thus ���
 can be rewritten as

A��
 
 Cn�
n��

E

���
V �I �HV ��



��t
E

��
 � ����


where HV ��
 
 �R���
V and

E

��
 � L��Rn
 �� L��Sn��
 � E


��
�
� x
 
 ��x
ei�hx��i �

The factor �I�HV ��


�� is now meromorphic and we will have to avoid its poles in our estimate�

We have �using 
j�AB
 � 
j�A
kBk


j�A��

 � jCnjj�jn��
j�E
���

kV �I �HV ��



��kkE
��
k � ����


$



The estimate on 
j�E

���

 follows from Melrose&s method and was given in Proposition � of

��� �with a slight improvement from ��� used here
�


j�E

��

 
 
j��I ��Sn��


�k�I ��Sn��

k
E

��



� 
j��I ��Sn��

�k
k�I ��Sn��


k
E

��
k � j�

�k
n��C�k��k
%eCj�j ���"


� C�e
Cj�j�j

�
n�� �C � k 


�
j

�

n��

�C

	
� � �

To estimate k�I �HV ��


��k we use Theorem ��� of Chapter V of ����

k�I �HV ��


��k � jdet�I �HV ��


n��
j��jdet�I � jHV ��
jn��
 � ���#


where the power n � � makes the operator be of trace class ��n � �
�� would of course su�ce
in this case
� The second term can be optimally estimated as in ��� using arguments similar
to ���
� If we are not concerned with optimal bounds� as we do not have to be here� that is
quite easy� For optimal bounds� in this and in the general case� Vodev developed a method for
estimating determinants of this type� again based on ���
 � see ��� and ���� Here we get

det�I � jHV ��
jn��
 � CeCj�j
n

�

and using ���
 we conclude that h��
 
 det�I � HV ��

n��
 is an entire function of order at

most n� let L denote the set of its zeros� The minimum modulus theorem for entire functions
�see for instance ���� #�"�
 now shows that for any � � � and any � � �

jh��
j � �

C�
e�j�j

n��

� � ��
�
��L

D�	� h	i�n��
 � ���$


so that� going back to ���


k�I �HV ��


��k � �

C�
ej�j

n��

� � ��
�
��L

D�	� h	i�n��
 �

Combining this and ���
 in ���
 we obtain


j�A
 � C�e
j�jn���j

�
n�� �C � ��

�
��L

D�	� h	i�n��
 �

and consequently� by ���
 and the maximum principle away from the poles of s�

js��
j � CeCj�j
�n����

� � ��
�

m��S�	�

D�	� h	i�m��
 �

which is ���
 with N 
 �n��� �� Even with the use of the methods which give optimal bounds
on the number of scattering poles �that corresponds to the estimate on h��

 this estimate is

�That gives an elegant argument� one can also obtain a similar estimate using a direct argument based on
Crammer�s rule�

��



highly inaccurate� However� as observed in Theorem " above� the use of the trace formula and
of the order of the singularity of u�t
 at t 
 � gives the correct order n�

In the general case we procceed similarly but we use a more general� but less intuitive�
representation of A�

A��
 
 Cn�
n��

E
�� ���
�I �K��� ��



����� ��tE�� ��
 � �����


where K��� ��
 is the compact operator appearing in the proof of Theorem � given in ����
�i � C�c �Rn n B��� R�
� ��� ��
� i 
 �� �� � � C�c �Rn � ��� ��
� � � � near B��� R�
� are suitably
chosen cut�o� functions� To estimate k�I�K��� ��



��k away from its poles we use the methods
of ��������
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