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On trace theorems for pseudo-differential operators,

Nicolas Lerner and Dimitri Yafaev,

University of Rennes.

1. Introduction

Our starting point will be the following diagram, where M is a C°° manifold, S a smooth hypersurface
of M and A a pseudo- differential operator on M of order m = -1 - 26  -1, r the trace operator on S.

Here the operator A~, the restriction of the operator A on S, is well defined as

and is a pseudo-differential operator on S of order m + 1 = -2b. The following simple formula gives the
expression of the principal symbol a~ of Ab in terms of the principal symbol a of A : when M is a Riemannian
manifold, for x E 5‘ and ~ E 

where v., is a unit conormal vector to S (we shall formulate below (1.3) using only the structure of
differentiable manifold on M, assuming that A sends densities to functions). We have used here the Weyl
quantization formula, such that the operator a’~, with Weyl symbol a is given by

Formula (1.3) was given by Birman and Yafaev [BY1], in the case above m  -l, in connection with

scattering theory for two-particle systems . As a matter of fact, one of the main objects of scattering
theory, the scattering matrix , appears as the diagonal value of an integral operator [Y1]. Suppose that
an unperturbed Hamiltonian Ho is realized as multiplication by the variable A in the space li = L2(A; N),
where A is an interval of R and N is an auxiliary Hilbert space. We consider an integral operator A given
by 

It It

Since the kernel k is a distribution, its restriction to the diagonal = v requires some specific assumption.
One has to justify the representation
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rvn

One of our motivation for the study of the singular cases m &#x3E; -1 is that, for multi-particle systems, the first
Born approximation of the scattering matrix is the trace of a pseudo-differential operator of critical order
-1. Naturally, diagram (1.1) does not make sense for 6 = 0 (m = -1). We should expect some restrictions
on the symbol of the operator A for a diagram analogous to (1.1) to hold. Following (1.5), we shall define
approximations r e (cf. [GK]) of the trace operator r and ask for the existence of the following limit

It turns out that an iff condition for the existence of (1.7) in the critical case m = -1 is the vanishing of the
principal symbol on the conormal bundle N* (S) of the hypersurface S. In fact, we have prior knowledge of
various examples ~‘Y2~ on the sphere S"-1 of lRn. For instance, let M = IR/B S = and

where F is a homogeneous function of degree 1. It is possible to see directly that A = a(x, Dx) has a
restriction on Sn’1 and that Ab is given , up to compact operators, by the multiplication by F(x) + F(-x).
Moreover, when m = 0, the previous condition should be supplemented by the vanishing of the subprincipal
symbol on N*(S). The study of the cases m &#x3E; 1 unravels new invariants for pseudo-differential operators.
These higher order invariants will materialize the obstructions to the restriction to a submanifold of some
Lagrangian distribution. They do not coincide with the classical higher order invariants linked to the Weyl
quantization (see the appendix of this paper and [He]), except for the first two, the principal and subprincipal
symbols. Our problem has also close links with the transmission property introduced by Boutet de Monvel,
and other studies of the Poisson operators (see e.g. [GH]). Last but not least, interesting links exist with the
second microlocalization ([B], [BL],[DL]).

2. Definitions and preliminary results

If M = R~, S is the hyperplane = 0} in diagram (1.1) , if the distribution kernel T(x’, xn, y’, yn) E
D’(~,’~-1 operator A is a continuous function of yn) valued in x 

(as in the case m  -1), then the kernel of the restriction Ae in (1.2) is T(x’, 0, y’, 0). This motivates the
following definition. 

’

Definition 2.1. Let E be an open set p &#x3E; 0 and

Let A be a continuous linear operator acting from the space of smooth compactly supported densities
101) to D’(V ). Its kernel is a distribution T(x’, xn, y’, Yn) E D’(V x v). We say that A can be

restricted to E if there exists Tb E D’(E x E) such that

When (2.2) is satisfied, we define Ab as the operator with kernel Tb.

In order to give a definition of the restriction for a manifold, we need the following lemma

Lemma 2.2. Let V be as in (2.1) and T E D’(V ) such that T can be restricted to E , with restriction
T b in the following sense :
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Proof. Let Ii be a compact subset of E and 0  po  p. Let N be the order of the distribution T on
I~’ x Po} = L. We have, using Taylor’s formula,

Let ~(x’, xn ) E supp + C L. For j &#x3E; 1, we examine the duality brackets when E - 0 ; we obtain
first that, from (2.3),

Moreover, setting 1J (note that supp 0, C L),

The proof of lemma 2.2 is complete.[]

Lemma 2.3. Let Tl c x (-p1, P1)), where El is an open set pi &#x3E; 0 such that (2.3) is
= Ti(xi) ® 1 . Let E2 be an open set and p2 &#x3E; 0. Let K12 be a

diffeomorphism such that

Then, with K* standing for the pull-back,

where i2 : E2 2013 1 is the diffeomorphism defined by the equality 

Proof. We note first that (2.6) implies that, with K21 = II:Ï21, = 

with a non-vanishing function e. be a C~ density. We have the following equalities for duality
brackets: 

, - , , ,, , , ,,, , ,  ,,, , , ,,, , ,n i . - v i n 11 v - i n II v v n n . - u i n II v - n 1 W v i

Now, we have, using Taylor’s formula,

Using lemma 2.2, one gets
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which implies (2.7), since, with obvious matrix notation, one has

The proof of lemma 2.3 is complete. 0
Lemma 2.3 ensures that the following definition is consistent.

Definition 2.4. Let M be a C°° manifold and S a smooth hypersurface of M. Let T E D’(M). We
shall say that T can be restricted to S, with restriction T~ E D’(S) if any point m E S has a neighborhood
U in M, such that there exists a diffeomorphism

so that the pullback can be restricted to E in the sense of lemma 2.2. The restriction TP is defined
as the unique distribution on S such that

where K’ is the diffeomorphism induced by ic between E and (S fl U), (~b)* its push-forward.

Definition 2.5. Let M be a C°° manifold and S a smooth hypersurface of M. Let A be a pseudo-
differentiaI operator acting from the space of smooth compactly supported densities Cr:(M, to Coo(M).
Its kernel is a distribution T(x, y) E D’(M x M). We say that A can be restricted to S when T can be
restricted to S x S in the sense of definition 2.4 (extended to a product manifold). We define in that case
Ab as the operator with kernel Tb, the restriction of T to S x S.

When S is the hyperplane txn - 0}, and A is a pseudo-differential operator on R" with symbol
a(x’, xn, ~’, ~,~ ), the existence of a restriction requires to look at the properties of the conormal distribution
(with respect to xn = yn )

It is clear that the singularities of a4 are getting worse as the order m of a increases. In general, a4 belongs
to no better space than the Besov space ~32~~-1/2. Property (2.2) amounts to check the following limit, in
the distribution sense (a4 is a distribution valued in a symbol class)

It is important to notice that this averaging procedure is more restrictive than the examination of the

operator Ar*. In fact, in this situation, r*u = u(x’) 0 6(x,,), so that when A is simply the multiplication
by xn one has = 0 for any k &#x3E; 1 but

and uyn) has no limit in D’ when ~, ~ -~ 0. This means that the two Poisson operators
(restriction of Ar* to ±x,, &#x3E; 0) could be zero without existence of the limit in (2.12). In this case, the
iterated limits lim [ lim a~] and lim[lim a4] are 0, but the double limit in (2.12) does not exist.
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We should say for a start that we shall only consider classical polyhomogeneous pseudo-differential
operators with symbols a E Sm = Sro(see definition 18.1.1 in [H]) and

We want also to describe geometrically the link between the symbol of an operator and of its restriction.
If U is an open set in Rn and A is a pseudo-differential operator of order m on U, sending densities to
functions (Au is a function whenever u is a density), the symbol a of the operator A appears as a density
with respect to the fiber variable. We write it as When S is the hyperplane = 01, and
m  -1, the expression of the symbol of Ab, say ab, is

In fact, this expression makes sense when a is a density and we shall write

so that is a density characterized by the identity

But the points (X’, 0; ~’, çn) are precisely those in T*(U) such that x = (x’, 0) E S , (~’, çn) is a cotangent
vector at x, that is a linear form on Tx(U) that can be restricted to Tx(S), which is a subspace of Tx(U). One
sees thus that (2.14) is a geometrical expression which leads us to the following more abstract description.

Let M be a smooth manifold and OM the density bundle on M . The cotangent bundle will be denoted
by T* (M). The topological dual of C~(M) is the space of distribution densities D’(M, OM)’ Let S be a
smooth hypersurface of M (smooth submanifold of codimension 1), and j : S --&#x3E; M the canonical injection.
Let r be the restriction operator

Let r* be the adjoint operator

defined by duality

We introduce

The conormal bundle of S will be denoted by

We consider the submersion II
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whose fibers are one-dimensional affine spaces as lines in the vector space Tx(M). A symbol a on T* (M)
will be a smooth section of the density bundle with respect to the second variable over T* (M). This means
that for each x E M , a(x) is a density on the vector space T~ (M) : a symbol a can then be represented as

Once we have a symbol a on T*(M), such that, for each x E S the density a(x) is in L1, we can associate to
it the following symbol ab on T*(S) . Let x E S and p E 

where is the restriction of II to T~(M). We shall write in this situation,

In the sequel of this paper, we shall denote by

the set of polyhomogeneous pseudo-differential operators of order m on the manifold M, acting on distribu-
tion-densities and transforming them into distributions. An operator A E Tm, with m  -1, always admits
a restriction on a hypersurface and A~ = rAr* . It is not difficult to formulate our results when the order of
our operator is below 1, since only classical invariants enter the game.

Theorem 2.6.
Let M be a C°° manifold and S a smooth hypersurface. Let A be a pseudo-differential operator in

Tm(M). If -1  m  0, a necessary and sufficient condition for A to admit a restriction on S is

If 0  m  l, a necessary and sufficient condition for A to admit a restriction on S is

where is the subprincipal symbol. Were these conditions to be satisfied, the operator Ab belongs to
with a principal symbol ab given by the absolutely converging integral (2.26)(or (1.3)) in which

a=am.

Moreover, if -1  m  0 and (2.28) is satisfied, Ab = limv rAvr*, where Av is an operator whose
symbol av E S-°° converges to the symbol This means that av converges in Coo and is
bounded in If 0  m  1 and (2.29) is fulfilled, the same result holds.
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One could derive from the appendix a stronger version of this theorem, using the refined principal symbol,
availaible for operators in W;hg(M, OP, 0(1) when p + o = 1. The proof of theorem 2.6 is simple and relies
only on classical invariance properties for pseudo-differential operators : the principal symbol is invariant
and the subprincipal symbol is invariant on the double characteristic set of the principal symbol. One can
then straighten the hypersurface S into the hyperplane = 0} in a chart coordinate, and study (2.11)
near the diagonal xn = Yn’ It is then a matter of routine to write the Taylor expansion of a(x’, 
points of N* (S) = I(x’, 0, 0, £n )) . When m  0, a zero-order expansion is enough to isolate the singularity,
whereas for 0  m  1 , a first order expansion is necessary, leading to condition (2.29). Although it is not
difficult to go on with this method for studying (2.11) when m &#x3E; 1, the invariance of the conditions obtained
is not immediate so we postpone it to the next section.

3. Operators of order larger than 1 and higher order invariants

The following elementary lemma is useful for the understanding of our problem.

Lemma 3.1 Let m be a real number. Let a(x, ~) be a polyhomogeneous symbol on (IRn-1 x x

(cf. (2.I3)). We note == the equality modulo continuous functions of (xn, Yn) valued in a
symbol class in the variables (x’, ~’’), r the gamma function. The distribution aa is defined in (2.I I).

Lfm&#x3E;2013lj.s not an integer,

is an in teger ,

Moreover, the existence of

equivalent to

Since the vector fields 8x’ and 8ç n are tangent to the conormal of the hyperplane E - = 0},
condition (3.3) amounts to require that

When m  -1, this condition is empty. When -1  m  0, (3.4) is (2.28) for the hyperplane, whereas for
0  m  1, it is (2.29) : note that, in these coordinates , if 1V*(E) C the subprincipal symbol on
N*(E) is even when one uses the ordinary quantization. In fact,
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since 0, 0, çn) and 0, 0, (n) are identically zero. One has to clarify the invariance of
property (3.4) whenever m &#x3E; 1.

The reader will find in the appendix (§5) a complete discussion of the pointwise higher order invariants.
We rely in this section on some of the calculations detailed in this appendix. We shall use the Weyl
quantization formula (1.4) and recall that one of the nice feature of this quantization is that the subprincipal
symbol appears simply as in the polyhomogeneous expansion of the Weyl symbol. Analogously, the
sub2principal symbol is am-2 and is invariantly defined on

This does not correspond to the next invariant we expect, since condition (3.4) suggests that an invariant
am-2,S linked to the operator A and to the Lagrangian N* (S) should exist on N*(S), provided that

More generally, we are going to construct inductively higher order invariants am-k, s defined on N*(S)
provided that

A key observation for this purpose is an invariance property (proposition 3.2 below) of symbols of pseudo-
differential operators with respect to diffeomorphisms leaving invariant the hyperplane = 0}.

Let M be a Coo manifold and S a smooth hypersurface of M. Let mo E S, U a chart-neighborhood of
rno in M. Let V~ -~ U, K2 : V2 - U be two chart coordinates (Vj open sets in such that for

some hyperplanes E1, E2,

Then, up to an affine transformation, ic21 o k1 leaves the hyperplane (yn = 0} invariant. Let A E wm(M)
(see (2.27)) so that

where U§§ stands for the pullback and Ux for the push-forward related to the dineomorphism tc. The symbols
and a~2~ of A1 and A2 in each of these charts have an expansion

with the following invariance property . Assume that

Then the same holds for the polyhomogeneous expansion of a~2~ on N* (E2) and we have

We identify a diffeomorphism /c : Y - X with the canonical homogeneous mapping from T * (Y ) to T*(X)
sending (y, q) to Pullback and push-forward of symbols are defined accordingly. From
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(3.11), we can define for any diffeomorphism K : V - U such that K(£ n V) = S fl U, where E is a

hyperplane

The operator B is a pseu do- differential operator whose symbol b N bm_~

We precise the previous claims in the following

Proposition 3.2 Let Vl, V2 be open sets in E1, E2 hyperplanes in R". Let ~21 : - V2 a C°°
dif!’eomorpLism such that K21(ElnV1) = Let Al E (see (2.27~~ with a polyhomogeneous Weyl
symbol I We set A2 = U1t21 Al U:21’ The operator A2 belongs to q,m(v2) with a polyhomogeneous
Weyl symbol §£;&#x3E; Let 0  jo  ko be non-negative integers such that

Then property (3.16) holds for a(l) on Moreover, on 

Proof. Note that property (3.11) is (3.16) with jo = ko = k. Using an affine change of coordinates, we
can assume El = E2 = x~ = 0 and that VI, V2 are neighborhoods of 0. Moreover, from the assumption

n vi) = E2 Q v2, we obtain, omitting the subscript on r~21, that for

Since K’(0) leaves E invariant, a linear change of coordinates allows us to assume that K’(0) = Id. Then, we
define

so that

Moreover, we set

The conormal bundle N* (E) is the set of points (x’, 0; 0, ~n) and if one sets a = a(2) such that (3.16) holds,
we see , following the tranformation law of the appendix ((5.6-11)), that the corresponding symbol b = a~l}
on T* (Vi ) at N* (E) (say at the point (o, o; o, r~n)) is such that, for a given j , 0  j  jo,
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We note that in the sum of (3.22) we have = j - ! , so that 1  j -1  jo, which implies that (3.16)
is satisfied for these I. Writing the Taylor expansion of Dram-l at (~, 0; 0, *1Jn), we obtain

so that , for a given p, an must be larger than p to get a non-zero term, and since 8a~, and are tangent
to N* (E), we must have also from (3.16)

which is a contradiction. Eventually , one gets = for all 0  j  jo. Moreover, when (3.16) is
satisfied for a, it is also satisfied for b : the Poisson brackets satisfy

so that , we get that for  ko - j , appears as the ( j + 1)th term in the polyhomogeneous
expansion of the symbol of the bracket of B with 1,31 linear forms so that, applying the transformation law
to this bracket, we get an expression of 8l3bm-j like the one in (3.22), but involving at most ko - j more
derivatives acting on each ayn-ji

In this sum I’  I = j -Ial  j  jo, so that (3.16) applies to these 1’. Writing Taylor expansion as in (3.23),
and using the same notations as in (3.24) we get

The proof of proposition 3.2 is complete.0
This proposition shows that the following definition does not depend on the choice of the diffeomorphism

K.

Definition 3.3. Let M be a C°° manifold and S a smooth hypersurface. Let A be a pseudo-differential
operator in wm(M), with Weyl symbol a - Let U be a chart coordinate such that K : V --; U is
a diffeomorphism (V open set Assume That there exists a hyperplane E such that r,(E n V) =
S n U. Assume that conditions (3.I1) are fulfilled for the polyhomogeneous symbol ~* (a) ~ with
some integer k on N*(E). We define 

-

We shall say that the polyhomogeneous symbol a vanishes at the order k + 1 on N* (S) if, for 0  I  k,

When (3.29) is satisfied, we will write symbolically
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Theorem 3.4. Let M be a C°° manifold and S a smooth hypersurface. Let A be a pseudo-differentiaI
operator in with Weyl symbol a - necessary and sufficient condition for A to admit

a restriction on S is 

Were these conditions to be satisfied, the operator Ab belongs to with a principal symbol a~ given
by the absolutely converging integral (2.26)(or (1.3)) in which a = am.

Moreover, if (3.31) is satisfied, Ab = iim, where Av is an operator whose symbol all E S-oo
converges to the symbol a of A in Sm. This means that av converges in C°° and is bounded in Sm.

This theorem is now a direct consequence of definition 2.5 and statement (3.3) in lemma 3.1, after
straightening the hypersurface S into a hyperplane. 0

We want to go on and compute these new invariants am-k,s in any coordinate system : if, in a chart
coordinate U the hypersurface is described by (x) = 0 , d 0, we can find a diffeomorphism K : V - U
so that V 0 IB, appears as the n-th coordinate : i K) (y) = y,. To carry out the computation, we can assume
that the equation of S is given by

so that we can consider the diffeomorphism

If we use the formulas and notations of the appendix, we have

so that

and

Since



II-12

that is

Using a tensor notation for derivatives with respect to ~’, x’, we get

4. Comments

Let u be a distribution on Q, open set of 1Rn and S a smooth submanifold of codimension d of Q . If

there exists s &#x3E; d/2 such that

the microlocal version of the Sobolev theorem says that the restriction of u to S makes sense and that

where j is the embedding of S into Q. It means that the pullback j*, defined for smooth functions, has a
unique extension to distributions satisfying (4.1). When we consider Lagrangian distributions

where ~ is a non-degenerate phase function and a is a symbol of order m, so that

we could ask the same question of restriction, expecting a more detailed analysis from the particular structure
of u. The regular cases above correspond to the microlocal Sobolev theorem, whereas the singular cases seem
to be related to the second wave-front set of the distribution with respect to the Lagrangian manifold L, as
remarked by Bony in this seminar.

Let E be a linear submanifold of = Rf, x R:;;d given by the equations = 0}, so that its
conormal set is the Lagrangian

The standard class of symbols SM is, using H6rmander ’s notations
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In a paper by Bony [B] (see also [BL]) the second microlocalization with respect to L is described as follows.
First of all, one introduces a metric g larger than the classical G on the open set  1 , ~~" ~ &#x3E; 1 + l~, 1: 1

The symbol class is defined as S(AM)..m, g), i.e. a(x, ~) E sM,m means

The metric g is slowly varying and satisfies g  g° since A &#x3E; 1, but fails to be temperate globally. However,
g is temperate uniformly on the unit balls of G, so that a modified quantization formula can be used to
associate operators to these symbols ([BL]). Let a be a symbol in SM C Sm,o. Writing the Taylor expansion
of a at L, one gets

so that Eventually, we obtain

The obstructions to the restriction of an operator with symbol a to the linear subspace = 0} will come
from the terms in SM, 0, ~M-2,2 seems plausible that a second microlocal
Sobolev theorem could be used to prove that the restriction exists for an operator with symbol 
It would be also interesting to compare our conditions to the conditions of Delort and Lebeau [DL] in an
analytic framework.

Our problem is also closely connected to transmission conditions introduced by Boutet de Monvel ([Bl],
[B2], th.18.2.15 in [H]). A pseudo-differential operator A on R" satisfies the transmission condition with
respect to M = ~x,~ &#x3E; 0} if it can be extended to a mapping from C°°(M) into itself. When the symbol a
of A has the polyhomogeneous expansion a N one constructs a symbol a given by

The transmission property is proved equivalent to the vanishing of infinite order of a - a on the interior
conormal bundle of 8M : this means that , for all a,,Q,

This is in fact a direct consequence of formulas (3.1-2) in lemma 3.1. One sees on (4.11) that this condition
is always satisfied for differential operators and that the orientation of the boundary is irrelevant when m is
an integer. Writing (3.2) for m = -1, one gets, modulo continuous functions,

The first transmission condition in (4.11), for a = {3 = 0, is devised to get rid of the logarithmic term,
whereas the signum term is harmless since it enjoys left and right continuity. Our averaging procedure,
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described in section 2, is more stringent since the function sign(é’xn - uyn ) has no limit in the distribution
sense when - and tend to zero. We thus require vanishing of a-i on the whole conormal bundle. The
same differences occur with theorem 18.2.17 in [H], studying the one-sided limit of Ar* , where r* is the dual
mapping of the restriction (f*(v)(x’, xn) = v(x’) 0 b(xn)).

Transmission conditions for the classes are studied in ~GH~, where a detailed analysis of the Poisson
operators is provided. We have seen in section 2, that these operators could be zero without inducing the
existence of the double limit in (2.12).

5. Appendix

The goal of this appendix is to give a simple derivation for higher order invariants for pseudo-differential
operators on a manifold. We use the Weyl quantization rule and set, in a chart coordinate X,

We assume that the operator A sends p densities to (1 densities, so that its Schwartz kernel J«x, x’) is a
(1 density with respect to the first variable and a ( 1- p) density with respect to the second variable. As a
matter of fact, the most interesting case for us will be p = = 0. Since we seek a local result, we shall
assume that the kernel K is compactly supported in X x X. Let n be a C°° diffeomorphism Y - X.
We have, following the rules of transformations of densities through the pullback Ux of densities on X to
densities on Y,

so that its Weyl symbol is

where

Moreover, we set

We get then, using the fact that s H t~s) is a diffeomorphism of neighborhoods of zero,

with
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We notice that, since Q is an even function of s and t an odd function of s, t H Q(s(t)) is even as well as
t On the other hand, J(t) is even when 1- p = u.

Whenever A is a classical pseudo-differential operator it is a consequence of theorems 18.1.17 and 18.5.10
in [H] that B is also a classical pseudo-differential operator. Formula (5.4) implies readily for a - am-k

with homogeneous of degree with respect to ~, that b - bm_k with 
-

where J(t) is given by (5.5) and

We obtain

where Dx, Dé) is a differential operator given by

where the differential operator is such that

This last expression follows from Faa de Bruno’s formula (see below in this appendix ) ; note that here, we
do not need an explicit expression for the coefficients. It is useful to notice that, since X is an even function
all the multi-indices al, ... aj should have an even length and in particular &#x3E; 2 in (5.11). As
a consequence, we get in the summation above 2~  ~ . Since the order of is less than 1,81 + 1,1 + j we
obtain 

-

which implies that the order of Pk-l is less than 3(k - I)/2. This implies that, in (5.8)
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We can check easily the standard facts on the principal and subprincipal symbols. Let us write down the
three first formulas coming from (5.8-11). We get, with v = ic-1,

% 

The first line of (5.13) gives the invariance of the principal symbol, the second line the invariance of the
subprincipal symbol on the double characteristic set of the principal symbol. Moreover, one should note
that when J is even, in particular when p = 1- u, the sum in the second line vanishes, so that we get a
refined principal symbol for a classical pseudo-differential operator A on a smooth manifold M such that
A E "pm (M ; OP, 01- P), using the notations of section 18.1 in [H] (that is A is a pseudo-differential operator
of order m on M sending p densities to (1- p) densities). This is a small variation on the theme of theorem
18.1.33 in [H] (see also the remark on page 161 of [H]). In particular, when p = 1, (J’ = 0, the symbol
a = am + is actually invariant as a density with respect to ~, which means that for each x E M a(x, ~)
is a density on the vector space T;(M). So a is defined as a smooth section of a density bundle over T* (M).
From the third line of (5.13), one gets that the sub2principal symbol am-2 is invariantly defined on the set

Note that this set is correctly defined from the identities in the first two lines of (5.13), namely that its
pullback through K is actually defined by the same equalities as in (5.14), b replacing a. Before embarking
upon the study of the general case, it may be useful to summarize the results on the first three invariants.

Theorem 5.1
Let M be a smooth manifold, and A E "pm (M; OP, 0(1), the set of polyhomogeneous pseudo-differential

operators of order m mapping p-densities to o-densities. In each chart coordinate, the operator A has a

Weyl symbol a - 2: am-j where am-j(x,ç) is homogeneous of degree rra - j in the ~ variable.
~&#x3E;o

a. The principal symbol am is invariantly defined as a (o, p) density on T*(M)Bo.
b. The subprincipal symbol am-l is invariantly defined as a (o, p) density on = 0, 1}.
c. The sub2principal symbol am_2 is invariantly defined as a (o, p) density on

’4(am) f1 E2(am-1 ) * = 0 , &#x3E; 3 , 
= 0 , &#x3E; 1}.

Moreover, when o + p = 1,
d. The refined principal symbol am + is invariantly defined as a (o, p) density on T* (M)BO.
e.Thesub 2principal symbol a,-2 is invariantly defined as a (u, p) density on

--_ &#x3E; 3 }.

The only point yet to be checked is the fifth one, which is a direct consequence of (5.13) and the fact
that , for o + p = 1, J is an even function (see (5.5)).o

We now move forward to the general case with the following statement.

Theorem 5.2
Let M be a smooth manifold, and A an operator satisfying the assumptions of Theorem 5.1. Let k &#x3E; 1

be an integer. The subprincipal symbol am-k is invariantly defined as a (c’,/9) density on the set
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Proof. From (5.8) and the remark in (5.9), it follows that on the set (5.15), using the notations above,
= Moreover, this set is correctly defined, namely, if a point (x,~) - (~(y),tr~~(y)-1~) satisfies

(5.15) then (y, r~) satisfies (5.15) for b : in fact from (5.8) and (5.12)

This implies readily that, for  3 2 ~ , 0  I  k,

if (5.15) is satisfied.The proof of theorem 5.2 is complete. 0
Note that, in the Weyl quantization,the expression of K*(am-k) involves derivatives of am.

Remark 5.3. Let us note also that, since the expression of bm _ k involves 2 derivatives of 
for I  k and am-l involves 2(1 - p) derivatives of p  I, the invariants of order k (bm_k) are linear
combination of 3(k2-l) + 2(I - p) - + 4 - 2p  2 k - p derivatives of am-po Eventually, one gets that in2 2 . 2 ( P g
the standard quantization,the expression of involves 2k derivatives of am.

The last part of this appendix is devoted to the formula known as Faa de Bruno’s* , dealing with the
iterated chain rule. We write here all the coefficients explicitly. Although the derivation of this formula is
elementary, it is not easy to find a precise reference in the recent literature for the exact expression of the
coefficients.

Theorem 5.4

Let k &#x3E; 1 be an integer and U, V, W open sets in Banach spaces. Let a and b be k times differentiable
fonctions b : U --~ V and a : V --~ W. Then the k- multilinear symmetric mapping (a o b)~~~ is given by
(IN* = N 1~0}~

To prove theorem 5.4, it is convenient to write the Taylor expansion of a and Fourier inversion formula to
express powers of b. It is also easy to derive the following

Corollary 5.5 Let a and b be functions satisfying the assumptions of theorem 5.4 so that U C 
Welt and a is a multi-index E JNm. Then ( using the standard notation for a multi-index

,Q E = and E 11~11 , ~y! = ~yl! ...~I!~ we get

* One could find a version of theorem 5.4 on pages 69-70 of the thesis of 
" Chevalier Frangois FAA DE BRUNO, Capitaine

honoraire d’lltat-Major dans 1’armee Sarde". This thesis was defended in 1856, in the Facult6 des Sciences de Paris in front of the

following jury : Cauchy (chair) , Lame and Delaunay.
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