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Abstract

We try to answer the following question, crucial in digital image processing : Is image
smoothing possible 7 We give an essentially negative answer based on the physics of
image generation and consequent invariance requirements which we prove not to be possi-
bly matched by any local smoothing operation. We temper this negative result by showing
that local image smoothing is possible provided singular points of the image have been
previously detected and preserved. We define the associated degenerate partial differen-
tial equation and sketch the proof of its mathematical validity. Our analysis uses the
phenomenological theory of image perception of Gaetano Kanisza, whose mathematical
translation yields an algorithm for the detection of the discontinuity points of digital
images.

1 Introduction

Images, in a continuous model, are functions u(z) defined on a domain Q of the
plane, generally a rectangle. Let us consider, without much loss of generality, grey
level images, that is is, images where u(z) is a real number between (say) 0 and
255 denoting the “grey level” or brightness. In practice, images are digitized, which
means that values of u(x) are given only in a discrete grid of a rectangle. It is, how-
ever, very convenient to discuss the geometry of images in the continuous framework
of functional analysis. This passage to a continuous model is valid provided if it is
shown that algorithms defined in the continuous model can be made effective on
their digitized trace.
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We shall in this conference sketch the process of image formation and deduce
which kind of geometric structure images are then expected to have. We shall be
particularly interested in the singularities of the image which are inherent to the
formation process. We shall then discuss whether smoothing procedures which have
been proposed in the past in order to smooth the image (and thereafter compute
derivatives of the smoothed image) are compatible or not with the image formation
process. In short : can a smoothing process be performed, which does not destroy
what it ought to detect, the image structure 7 We shall see that the answer is
close to negative, and show that in fact singularities in the image must be detected
previously to any smoothing procedure. An image smoothing operator, in a very
restrictive way, can then be defined and we shall explain how.

It would be very useful to compute derivatives of any order on an image u(z).
The datum being at first sight discontinuous everywhere, this looks desesperate if
some notion of scale is not introduced. The scale parameter, which we denote by ¢,
measures the degree of smoothing we allow in an image. Scale ¢t = 0 corresponds to
the actual image, and we denote by u(t, ) the image smoothed at scale ¢t. Let us,
without criticism for the first review, list the smoothing processes proposed so far.
In all of these processes, described by parabolic P.D.E.’s, we set u(0,z) = u(x), the

initial datum. In the forthcoming formulas, Au = g—i% + g%‘ denotes the Laplacian of
u(t, z,y) with respect to the space variables (z,y), Du = (2%, $%) its spatial gradient
and curv(u) = dz’v(l—%’ﬁ) the curvature of the level line, where |Du] is the euclidean

norm of Du and div = % + a%. The main smoothing equations we have in mind are

e The heat equation [Wi] :

ou
g——AU

e The mean curvature motion (Osher-Sethian equation [OS))

du
ot

= |Du|curv(u)

e The A.M.S.S. model ([AGLM1], [ST1))
ou

Bt

Other diffusion equations have been proposed for image smoothing, but the ones
listed here have more invariance or conservation properties and are enough to launch

= | Du|curv(u)3.
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the discussion. It is proven that the heat equation is the only linear, isotropic
image smoothing model, and the A.M.S.S. model is the only contrast invariant,
affine invariant image smoothing model. The Osher-Sethian equation is somehow
an intermediate case, being both quasilinear and constrast invariant.

The heat equation performs beautifully as for the initial mentionned aim, the
computation of derivatives of any order in an image. Now, it is not contrast invari-
ant. Constrast invariance means that the smoothing operator T; : u — u(t) = Tu
commutes with contrast changes g. Any nondecreasing real function g is an admis-
sible contrast change and the observed values u(z) are in practice defined up to an
unknown contrast change. The third considered model has been proposed as the
most invariant smoothing model in [AGLM1], [ST1]. We refer to [AM1] for a very
synthetical proof of its uniqueness. There is, however, a significant objection to the
second and third models : in order to make sense mathematically, they request that
the initial image be continuous ! We shall see in the next section that this is a not
a realistic requirement for images. If we remove this requirement, we can still draw
the same conclusions as in [AGLM], but only locally, at points where the image is
not discontinuous, which we call singular points. This will become clear from the
discussion below.

Our plan is as follows. In Section 2, we show how the image formation pro-
cess entails generation of singularities and leads to invariance requirements for the
image operators. In Section 3, we deduce which are the largest invariant objects (or
“atoms”) in an image which can be taken as initial data for smoothing operations
: we prove that they consist in pieces of level lines of the image joining singular
points. Section 4 is devoted to the effective computation of “atoms” and singular
points of the image and to first experiments. In Section 5 we finally join our aim,
which is to propose a P.D.E. model with the right boundary conditions at image
singular points. We prove experimentally that the visual aspect of images is not
altered by such a structure preserving smoothing process. An experiment shows
how, thanks to the smoothing thus defined, we can transform an image into a to-
pographic map revealing the structure of the image and its essential singularities.
This conference text presents some of the arguments, experiments and proofs which
are extensively developed in an article to appear ([CCM]). The axiomatic theory of
image smoothing which we use is the object of a book to appear (|[GM]).
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2 How images are generated : occlusion and trans-
parency as basic operations

In this section, we make two concrete assumptions about the kind of image in
consideration. We first assume that those images are obtained by a photographic
device, that is, a camera sensible to visible spectrum. We restrain the study to the
case of grey level images. Second, we assume that the photographs thus taken come
from a natural, human or animal, environment and therefore roughly correspond to
common retinian images. This may seem a very vague assertion, but we shall give
it a precise sense in the following.

2.1 Occlusion as a basic operation on images

Natural, human visual world is made of objects of many sizes and heights which
are spread out on the ground. Since the observer or the camera are assumed to be
put close to the ground level, it is assumed that those objects tend to occlude each
other. As pointed out by the phenomenologist Kanizsa [Ka], we generally see only
parts of the objects in front of us because they occlude each other. Let us formalize
this by assuming that objects have been added one by one to a scene. Given an
object A in front of the camera, we call A the region of the image onto which it is
projected by the camera. We call uy the part of the image thus generated, which
is defined in A. Assuming now that the object A is added in a real scene R of the
world whose image was v, we observe a new image which depends upon which part
of A is in front of objects of R, and which part in back. Assuming that A occludes
objects of R and is occluded by no object of R, we get a new image up,; defined by

Up,4 = Ua in A and
upoi=vin R*\ A. (1)

Of course, we do not take into account in this basic model the fact that objects

in R may intercept light falling on A, and conversely. In other terms, we have
omitted the shadowing effects, which will now be considered.
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Figure B. T-junctions and occlusions : the lefthand figure, composed of two regions A ani
B is interpreted as the superposition of two objects A' and B' which are represented on
the right by their contours. The completion thus effectuated by a low level vision
process consists in extending beyond the T-junctions a and b the boundary of the object
B', which apparently "stops" when it meets the object A'. This interruption is
interpreted as an occlusion.

2.2 Transparency (or shadowing) as a second basic opera-
tion on images

Let us assume that the light source is a point in euclidean space, and that an object
A is interposed between a scene R whose image is v and the light source. We call S
the shadow spot of A and S the region it occupies in the image plane. The resulting
image u is defined by

. =i 2
up g, =0 in IR*\ S and

upg,=9g(v)inS. (2)

Here, g denotes a contrast change function due to the shadowing, which is assumed
to be uniform in 3. Clearly, we must have g(s) < s, because the brightness decreases
inside a shadow, but we do not know in general how g looks. The only assumption
for introducing g is that points with equal grey level s before shadowing get a new,
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but the same, grey level g(s) after shadowing. Of course, this model is not true on
the boundary of the shadow, which can be blurry because of diffraction effects or
because the light source is not really reducible to a point. Another problem is that g
in fact depends upon the kind of physical surface which is shadowed so that it may
well be different on each one of the shadowed objects. This is no real restriction,
since this only means that the shadow spot S must be divided into as many regions
as shadowed objects in the scene ; we only need to iterate the application of the
preceding model accordingly. A variant of the shadowing effect which has been dis-
cussed in perception psychology is transparency. In the transparency phenomenon,
a transparent homogeneous object S (in glass for instance) is interposed between
part of the scene and the observer. Since S intercepts part of the light sent by the
scene, we still get a relation like (2), so that transparency and shadowing simply
are equivalent from the image processing viewpoint. If transparency (or shadowing)
occurs uniformly on the whole scene, Relations (2) reduces to

Ug = g(v),

which means that the grey-level scale of the image is altered by a nondecreasing
contrast change function g.

2.3 Requirements for image analysis operators

Of course, we do not know a priori, when we look at an image, what are the physical
objects which have left a visual trace in it. We know, however, that the operations
having led to the actual image are given by formulas (1)-(2). Thus, any processing
of the image should avoid to destroy the image structure resulting from (1)-(2) :
this structure traduces the information about shadows, facets and occlusions which
are clues to the physical organization of the scene in space. The identity and shape
of objects must be recovered from the image by means which should be stable with
respect to these operations. As a basic and important example, let us recall how
the Mathematical Morphology school has insisted on the fact that image analysis
operations must be invariant with respect to any contrast change g. In the following,
we shall say that an operation T on an image u is morphological if

for any nondecreasing contrast change g.
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3 Consequences of image formation : basic ob-
jects of image analysis

We call basic objects a class of mathematical objects, simpler to handle than the
whole image, but into which any image can be decomposed and from which it can
be reconstructed. The classical examples of image decompositions are

e Additive decompositions into simple waves : Basic objects of Fourier analysis are
cosine and sine functions, basic objects of Wavelet analysis are wavelets or wavelet
packets, basic objects of Gabor analysis are windowed (gaussian modulated) sines
and cosines. In all of these cases the decomposition is an additive one, not adapted
to the structure of images, except perhaps for restoration processes in presence of ad-
ditive noise. Indeed, operations leading to the construction of real world images are
strongly nonlinear and the simplest of them, the constrast change, does not preserve
additive decompositions. If u = u; +ug, then it is not true that g(u) = g(u1) + g(u2)
if the constrast change g is nonlinear.

e Next, we have the representation of the image by a segmentation, that is, a decom-
position of the image into homogeneous regions separated by boundaries, or ”edges”.
The criterion for the creation of edges or boundaries is the strength of constrast on
the edges, along with the homogeneity of regions. Both of these criteria are simply
not invariant with respect to contrast changes. Indeed Vg(u) = ¢’(u)Vu so that we
can alter the value of the gradient by simply changing the constrast.

e Finally, we can decompose, as proposed by the Mathematical Morphology school,
an image into its binary images (or level sets) obtained by thresholding. We set
X u(z) = white if u(z) > X\ and X u(x) = black otherwise. The white set is then
called level set of u. It is easily seen that, under fairly general conditions, an image
can be reconstructed from its level sets by the formula

u(z) = sup{ A, u(z) > A} = sup{\,z € X u}.

The decomposition therefore is nonlinear, and reduces the image to a family of plane
sets (X)). In addition, if we assume that the level sets are Cacciopoli subsets of
IR?, that is sets whose boundary has finite length, then a classical theorem asserts
that its boundary is a union of closed Jordan curves (see [MS], Chapter 6). In the
discrete framework, this theorem is obvious and we can associate with each level set
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a finite set of Jordan curves which define its boundary. Conversely, the level set is
uniquely defined from those Jordan curves. We shall call them level curves of the
image. Are level sets and level curves the sought for basic objects of image process-
ing? In some sense they are better than all above discussed ”basic objects” because
they are invariant under contrast changes. To be more precise, if we transform an
image u into gou, where g is an increasing continuous function (understood as a
contrast change), then it is easily seen that the set of level sets of gou is equal to
the set of level sets of u.

However, level sets are drastically altered by occlusion or shadowing. Let us discuss
this point. One can see in Figure 4 an elementary example of image generated by
occlusion. A grey disk is partly occluded by a darker square (a). In (b) we display
a perspective view of the image graph. In (c) and (d) we see two of the four distinct
level sets of the image, the other ones being the empty set and the whole plane. It
is easily seen that none of the level sets (c¢) and (d) corresponds to physical objects
in the image. Indeed, one of them results from their union and the other one from
their set difference. The same thing is true for the level lines (e) and (f) : they
appear as the result of some ”cut and paste” process applied to the level lines of
the original objects. It is nontheless true, because of the invariance with respect
to constrast changes, that the basic objects of image processing must be somehow
parts of the level lines. This leads us to what will be our proposition.

e Our proposition : Basic objects are all junctions of level lines, (particularly :

T-junctions, T-junctions, X-junctions, Y-junctions) and parts of level lines joining
them.
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(a) N

(b)
(c) @
; (f)
(e)

(g)

figure 4: Image, level sets, level lines
and T-junctions.

The terms contained in this proposition will be explicited one by one, starting with
T-junctions. We again refer to Figure 4 for a first simple (but, in fact, general)
example. The level lines (e) and (f) represent two level lines at two different levels
and in (g) we have superposed them in order to put in evidence how they are

XXI-9



organized with respect to each other. We have displayed one of them as a thin line,
the other one as a bold line and the common part in grey. The T-junctions can
be defined in such an ideal case as the points where two level lines corresponding
to two different levels meet and remain together. Let us start with some simple
phenomenology of junctions.

Figure 5 : The two kinds of T-junctions
depending on the ordering of grey levels

3.1 T-junctions

As shown in Figure 5, there are two possibilities which depend upon the order of
grey levels around the T-junction. In the first case, the T-junction appears as two
joint level lines taking at the junction two opposite directions. In the second case,
one of the level lines is locally straight and the other one has two branches, one of
which coincides with the first level line. Thus a T-junction at a point z can be (a
little bit naively) described in the following way.

e Two level lines meet at point z.

e The half level lines (or branches) starting from z are thus four in number ; two
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coincide and two take opposite directions. (The branches which coincide belong to
different level lines. The branches which take opposite directions may also belong
to the same level line or not).

3.2 Transparencies and X-junctions

The next case of singularity is caused by the transparency phenomenon and we shall
call it X-junctions. In the transparency phenomenon, we have assumed that inside
a spot S, an original image v is changed into u = g(v), where g is a contrast change.
We keep u = v outside the spot S. As a consequence, a level line with level A outside
S becomes a level line with level g(\) inside the spot, so that the level lines inside
S are continuations of level lines outside S. Fuchs showed that this results in the
continuation perceptual phenomenon : we tend to see the visible edges of v crossing
the boundary of S [F]. Of course, this illusion is based on the continuity of direction.
In the same way, of course, the boundary of S is seen as crossing the level lines of
v. In fact, level lines cannot cross and the behaviour of level lines is analyzed in
Figure 9. In the transparency phenomenon, the apparent crossing, which we shall
call X-junction, consists in the meeting at a point x of two level lines. These level
lines locally create four angular regions. Without loss of generality, we can assume
that the angular regions have grey levels 1, 2, 3 and 4. Indeed, the grey levels need
not be constant inside each region, but we know that the ranges of the four angular
regions are ordered. This is an obvious consequence of the fact that each pair of
regions is separated by a level line. Then we see that three cases may occur, which
are shown in Figure 9.
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X-junctions

114 112 112
312 31 4 4 13
<2 §>3 <2 <2
Le---- 2 =2.5 e =2.5  p— - =2.5
>3 >3E
checkerboard shadbwing transparency

Figure 9. The three kinds of X-junctions. We first display (above) three

kinds of visual experiments which lead respectively to checkerboard,
shadowing and transparency sensations. The second and third rows focus on
the resulting X-junctions and the local grey level values. The last row shows
the resulting configuration of level lines. By "=2.5", we denote the level lines
separating the regions 1 and 2 from 3 and 4.

e First case : ”checkerboard”. The higher grey levels 3 and 4 are in two diago-
nally opposite regions and the lower grey levels 1 and 2 in the other two opposite
regions. (The perfect checkerboard case corresponds to 3=4 and 1=2, but we dis-
play a more general case with the same structure for level lines). The checkerboard
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singularity does not seem to correspond to many physical phenomena, but is non-
theless frequent in the human world, probably for the designer’s pleasure of showing
a parodoxal, physically impossible, visual situation. In this case, we can see how an
intermediate level line forms a cross.

e Second case : "shadowing”. The lower regions 1 and 2 are adjacent and so are the
regions 3 and 4. In addition, 1 is adjacent to 3 and 2 to 4. Somehow, this situation
is the most stable and least paradoxical of all, since it can be interpreted as the
crossing of a shadow line with an edge. It is worth noticing that in this case the
level line which separates the sets {z,u(z) > 2} and {z,u(z) < 3} can be inter-
preted indifferently as the shadow line or the edge line. The other (shadow or edge)
line has no existence as a level line, but is obtained by concatenating two branches
of two distinct level lines. The level lines bounding the sets w > 1 and v > 3 only
meet at point z and form the ”X-junction” which we shall trace in experiments on
real images.

e Third case : "transparency”’. The regions 1 and 2 with lower grey-level and
the higher grey-level regions 3 and 4 are again adjacent, but the pairs of extreme
regions also are adjacent : 1 to 4 and 2 to 3. The transparent material is adding
its own color, which is assumed here to be light grey, so that white becomes light
grey and black becomes dark grey. The interpretation is not twofold in this case :
the original edge (horizontal in the figure) must be the level line bounding the set
u > 2. The shadow line (vertical in the figure), is built with two branches of distinct
level lines.

3.3 Discussion of the decomposition into basic objects

Let us summarize our proposition for basic objects, or “atoms” of image processing.
It consists in arguing about the invariance of the image analysis with respect to the
accidents of the image generation.

Argument 1 (Invariance Argument)
e Since the image formation may include an unknown and non recoverable con-

trast change : We reduce the image to its parts invariant with respect to contrast
changes, that 1is, the level lines.
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e Since, every time we observe two level lines (or more) joining at a point, this
can be the result of an occlusion or of a shadowing, we must break the level lines at
this point : indeed, the branches of level lines arriving at a junction are likely to be
parts of different visual objects (real objects or shadows). As a consequence, every
junction is a possible cue to occlusion or shadowing.

A remarkable point about Argument 1 is that it needs absolutely no assumption
about the physical objects, but only on the ”final” part of image generation by con-
trast changes, occlusions and shadowing. The conclusion of Argument 1 coincides
with what is stated by phenomenology [Ka, 1, 2]. Indeed, Gaetano Kanizsa proved
the main structuring role of T and X-junctions in our interpretation of images. Of
course, he does not give indications on how these junctions should be detected, but
Argument 1 shows that there is a canonical way to do the detection.

4 Computation of basic objects in a digital image

4.1 Algorithm computing basic objects

In this section, we discuss how the atoms discussed above can be detected in dig-
ital images and we present experimental results. The above description of T- and
X-junctions is based on the assumptions that

e Level sets and level lines can be computed.

e The meeting of two level lines with different levels can be detected.

In a digital image, the level sets are computed by simple thresholding. A level
set {u(z) > A} can be immediately displayed in white on black background. In the
actual technology, A = 0,1, ..., 255, so that we can associate with an image 255 level
sets. The Jordan curves limiting the level sets are easily computed by a straight-
forward algorithm : they are chains of vertical and horizontal segments limiting the
pixels. In the numerical experiments, these chains are represented as chains of pixels
by simply inserting” boundary pixels” between the actual image pixels. In order to
get a correct visual representation of level lines, we therefore apply a zoom with
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factor 2.

We define ”junctions” in general as every point of the image plane where two level
lines (with different levels) meet. The meeting of two level lines can be considered
as physically meaningful if and only if the level lines diverge significantly from each
other. In order to distinguish between the true junctions and the ones due to quan-
tization effects, we decide to take into account T-junctions if and only if

e the area of the occulting object is large enough,

e the apparent area of the occulted object is large enough and

e the area of background is large enough too.

This threshold on area must be of course as low as possible, because there is a risk
to loose T-junctions between small objects. Small size significant objects appear
very often in natural images : they may simply be objects seen at a large distance.
In any case, the area threshold only depends on the quantization parameters of the
digital image and tends ideally to zero when the accuracy of the image tends to
infinite. The algorithm for the elimination of dubious junctions is as follows.

Junction Detection Algorithm

e Fix an area threshold n (in practice, n = 40 pixels seems sufficient to elimi-
nate junctions due to quantization effects.)

e Fix a grey level threshold b (in practice : b = 2 is sufficient to avoid grey level
quantization effects).

e At every point x where two level lines meet : define \g < g the minimum
and maximum value of u in the four neighboring pixels of z.

e We denote by L, the connected component of z in the set {y,u(y) < A} and
by M, the connected component of z in the set {y,u(y) > p}. Find the smallest
A > Ao such that the area of L) is larger than n. Call this value A;. Find the largest
iy A1 < i < o, such that the area of M, is larger than n. We call this value p;.

e If \; and u; have been found, if u; — Ay > 2b, and if the set {y, u1 — b > u(y) >

A1+b} has a connected component containing x with area larger than n, then retain
x as a valid junction.

XXI-15



4.2 Experiments

The experiments have been made on WorkStation SUN IPC, with the image pro-
cessing environment MegaWave II, whose author is Jacques Froment.

e Experiment 1 : The boolean structure of occlusion retrieved by level set
analysis in two successive images of a sequence. The eight images uq, ..., ug
of the experiment are displayed from left to right and from top to bottom. The
images u; and uy are grey-level images and the other ones are binary images (black
and white) which display level sets and logical operations effectuated on them. The
coding convention is black = 0 = false, white = 255 = true, so that we identify
level sets with binary images and union with maz, intersection with min and set
difference with ”—". We first see el caminante (a walking researcher, photographed
by Paco Perales) in two successive positions u; and uy. Then el caminante with-
out skirting-board : wuz = {z,u;(z) > 10} and el caminante with skirting-board
ug = {z,u1(x) > 70}. Next, us = us — us, that is, the skirting-board without the
walking man, ug = {z, us(z) > 70}, El caminante with skirting-board in Position 2.
Finally u; = max(us, ug) : the resulting black parts display the part of the skirting-
board occluded in Position 1 plus the part of the ground which remains occluded
by the feet of the caminante in both images. In ug = min(ur,us), we display the
reconstruction of the whole skirting-board by adding the occluded part in Position
1 deduced from Position 2.

e Experiment 2 : detection of T-junctions as meeting points of level lines.
The original grey-level image is u;. In uy; we see El caminante with skirting-board :
uy > 60 and ug is El caminante without skirting-board. We display in u4 the level
lines of uy in white and the level lines of uz in black with their common parts in
dark grey. Candidates to T-junctions generated by the main occlusions can be seen.
They are characterized as meeting points of a black, a white and a grey line. In us,
we see all T-junctions detected from those two level sets, after a filtering of spurious
T-junctions has been made, with area threshold n = 80.
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u? us

Experiment 1.
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us

u4

Experiment 2.
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5 Image filtering preserving Kanizsa singularities

5.1 Image and level curve smoothing models

In this section, we push a little further the exploration of invariant image or level
lines filtering methods which have been recently proposed in [AGLM1] and [ST1].
According to the axiomatic presentation of image iterative smoothing (or ” pyramidal
filtering”, or ”scale space”) proposed in [AGLM1], all iterative filtering methods,
depending on a scale parameter ¢, can be modelized by a diffusive partial differential
equation of the kind

0
-é%(t, z,y) = F(D*u(t, z,y), Du(t, z,y), z,9,t), u(0,2,y) = uo(,y),
where ug(z,y) is the initial image, u(t,z,y) is the image filtered at scale t and
Du, D?u denote the first and second derivatives with respect to (z,y). (We set
Du(z,y) = (g—:(w,y),%(x,y)) = (ug,uy)(z,y) and in the same way, we define
D?u(z,y) as the symmetric matrix of second partial derivatives ugg, Uy, Uyz, Uyy
of u with respect to z and y.)

The most invariant ”scale space” proposed in [AGLM1], is the Affine Morpholog-
ical Scale Space, that is, an equation of the preceding kind which is invariant with

respect to contrast changes of the image and affine transforms of the image plane,

(AMSS) 24 Dul(ecurv(u)}, w(0,2,9) = wo(a,)

where ) )
Uy (Uy)? — 2Ugy Uy Uy + Uy (Uy)

(u2 +u2)?

curv(u)(z,y) = (z,9)

is the curvature of the level line passing by (z,y). The interpretation of the AMSS
model is given in [AGLM1] and corresponds to the following evolution equation for
curves, proposed independently in [ST1] and which we call (ASS) (Affine Scale Space
of curves)

(ASS) %—f(t,s)=(cum(0(t,s)))%ﬁ(t,s), C(0,s) = Co(s),

where C(0, s) is an initial curve embedded in the plane and parameterized by s,
7i(t, s) is the normal unit vector at C(t,s) and curv(C(t,s)) the curvature of the
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curve at C(t, s). The relation between (AMSS) and (ASS) is formally the following :
(AMSS) moves all level lines of u(t, z,y) as if each one were moving by (ASS). At
the mathematical level, however, existence and uniqueness results are not at the
same stage. (AMSS) has been proved to have a unique solution in the viscosity sense
when the initial image is continuous. (ASS) is proved so far to have a unique smooth
solution when the initial curve is convex. The main drawback of the classification
proposed in [AGLM1] is the (necessary) assumption that the initial image uo(x) is
continuous with respect to x. Without this assumption, the (AMSS) model and the
related morphological models loose mathematical consistency. This drawback can
be avoided by using the Osher-Sethian [OS] method : If we wish to apply (AMSS)
to (e.g.) a binary and therefore discontinuous image 1x, we substitute to llx the
signed distance function uy to X, which is Lipschitz and has X as zero level set :
X = {z,uo(z) < 0}. We apply to ug the (AMSS) model and define the evolution
of X as the zero level set of u(t). Evans and Spruck [ES] have shown that such
an evolution does not depend upon the chosen distance function and coincides with
(ASS) when the evolution of the boundary of X is well defined and smooth. In other
terms, we can use (AMSS) either for moving continuous functions, or for moving a
single set, or a single Jordan curve, by moving its distance function. In order to deal
with general discontinuous functions, we deduce that the (AMSS) evolution will be
well defined only if we can reduce it to the joint motion of single level curves.

5.2 A Kanizsa model for image evolution

Here, we refer to our discussion on the basic objects of Image Analysis, in Section
3. According to this discussion, the decomposition of ug into its level lines followed
by a further independent analysis of each is not correct : indeed, level lines interact
at all image singularities (T-, X-junctions,... ) and we have argued that atoms of
the image must be the pieces of level lines joining junctions and not the level lines
themselves. In other terms, a correct atomic decomposition of the image implies a
previous segmentation of the level lines. After this segmentation only, the smoothing
described by (AMSS) or (ASS) can be applied. This means that we are allowed
to move the level lines (for smoothing, or multiscale analysis purposes) but with
internal boundary conditions : the level lines being during their motion constrained
to pass by their endpoints, the junctions. The image model which arises from the
preceding discussion is following.
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Definition 1 (Kanizsa image model)
We call image a function u(z) whose level lines have all a finite length and meet
only on a closed set without interior Z, which we call the set of junctions of u.

When the junction set is finite (which is the case for digital images), we set
Z = {z,29,...,2n}. According to the preceding discussion, the correct adaptation
of the (AMSS) model to images having junctions is

Algorithm 1 : Junctions-preserving, affine invariant and contrast invari-
ant smoothing

e Compute the junctions z1, 29, ..., 2, (by the Junction Detection algorithm, which
is affine invariant).

e Move each piece of level curve C' by the (ASS) model. If the curve has end-
points, they remain fixed and the (ASS) evolution is not allowed to let the curve
cross other junctions. This yields C(t).

e Reconstruct a smoothed image u(t, z,y) which has the curves C(¢) as level lines
and the z; as junctions. This reconstruction is possible because the (ASS) model
preserves the inclusion of curves (see [AM])

Let us give a variant of the preceding algorithm which permits a progressive
removal of junctions (according to their scale).
Algorithm 2 : progressive removal of junctions
For every t, starting from ¢ = 0:

e Compute the junctions 2y, 23, ..., z, (by an affine invariant algorithm).

e Move each piece of level curve C by the (ASS) model, as specified in Algorithm
1. This yields C(¢).

e Remove at scale t all junctions which do not meet anymore the requirements
of the Junction Detection Algorithm with respect to the new level curves C(t).

e Reconstruct a smoothed image u(t,z,y) which has the curves C(t) as level lines
and the remaining z; as junctions.
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In the next subsubsection, we shall discuss how to implement Algorithm 1, Al-
gorithm 2 being a variant including in its loop the Junction Detection Algorithm.

5.2.1 Mathematical and numerical discussion of Algorithms 1, 2

Both algorithms (1 and 2) are well defined provided the (ASS) model is mathemati-
cally correctly posed ; this point is, however, still not completely solved. In addition,
the independent processing of all pieces of level lines looks computationally heavy.
So we prefer to consider a variant of (AMSS) implementing Algorithms 1 and 2. We
consider the characteristic function 1z(z,y) = 0 if (z,y) € Z and Lz(z,y) = 1 if
(z,y) ¢ Z of the junctions and apply to the original image the equation

(AMSS1) % — 12(z, y)| Du(curv(@))}, u(0,z) = uo(z).
We conjecture that such an equation makes sense, and has a unique viscosity so-
lution (in the sense defined in [CIL]) preserving the singularities and moving each
piece of level line by the (ASS) model. In addition, we conjecture that the pieces
of level lines joining junctions keep the same endpoints by such a process. We shall
discuss in the next section in which way well-posedness can be proved for (AMSS1).

Let us now consider a well-posed approximation of (AMSS1). We replace 1z by
a function 1z, which is smooth (e.g. C*) and satisfies

lz.(z,y) =1

if the distance of (z,y) to Z is larger than ¢ and

]]-Z,E(xv y) =0

if the distance of (z,y) to Z is smaller than § and 0 < 1z, < 1 everywhere. This
function simply is a smooth approximation of the characteristic function of Z, 1z,
for which we can directly apply known existence and uniqueness theorems. The
considered model therefore is

ou

(AMSS.) 5 = 1z.(z,y)|Du|(curv(u))s.
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and it is an equation of the kind

ou
—é-{(t,a:,y) = F(DQu(t,m,y),Du(t,a:,y),:r, y), u(0,z,y) =up(z,y),

where F' is continuous with respect to all variables, nondecreasing with respect to
its first argument and satisfying the condition

(3) VxeR? F(0,0,z)=0,

and some additional continuity conditions for F which are easily checked in our
case. Then, as it is proved in [GGIS], (AMSS.) has a unique solution in the vis-
cosity sense. Therefore, it also satisfies a local comparison principle. Indeed, by
Theorem 4.2 in [GGIS], we have a comparison principle between sub- and superso-
lutions of (AMSS;). Moreover, because of (3), constant functions are solutions of
(AMSS.), and, as in [CGG] Theorem 4.5, by using [CGG] Proposition 2.3 and the
comparison principle mentioned before, one can construct by the Perron method a
(unique) viscosity solution for (AMSS;). In this argument, we have assumed that
the image is defined in all of JR%. This does not matter, since we can impose without
loss of consistency in our model that all points on the boundary of our image are T-
junctions. Then the image can be extended by 0 to the whole plane. Another point
to make clear in the application of the above theorems is following : the existence
and uniqueness results apply only if the initial datum wug is continuous, which is not
our case. So we can argue in the following way. Let us call Z. the e-neighborhood
of Z. We know that outside Z: the function ug is continuous. We can, by Tietze
Theorem, extend ug inside Z< as a continuous function, which we call %5. Then the
existence and uniqueness theorems mentioned above apply. It only remains to prove
that the solution thus obtained does not depend upon the choice of the extension
iip. Indeed, it is easily seen that inside Z¢ solutions of (AMSS,) with continuous
initial data does not move. We deduce, as an easy consequence of the comparison
principle, that all continuous extensions of ug inside Z¢ yield the same solution out-
side.

The interpretation of (AMSS,) is essentially the same as for (AM SS1) : the level
lines of v with endpoints on Z are constrained to keep the same endpoints and
the only difference with respect to AMSS1 is an alteration of their speed in an e-
neighborhood of Z. Of course, it is more than likely that the solution of (AMSS;)
converges to the (to be proved) solution of (AM SS1), which is the right model. We
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conjecture that this convergence is true and we can give hints in the next subsection
about existence for (AMSS1) which also suggest in which sense this convergence
can be true. Returning to (AM SS.), we would like to make clear that it is in fact the
right model for what we can numerically implement. Any numerical implementation
of (AMSS1) is done on a grid and derivatives of u at a pixel (z,y) computed with
the neighbooring pixels. We refer to [AM] where a very easy and most invariant
such numerical scheme (due to Luis Alvarez and Frederic Guichard) is proposed for
(AMSS). The only alteration which we do for this scheme is following : If (z,v)
is a vertex of the grid belonging to Z, we simply fix in the scheme the four pixels
surrounding (z,y). In other terms, we call u™ the successive discretized values of u™
and write the Alvarez-Guichard scheme for (AM SS;) in the form

W (z,y) = u(z,y) + AtF(D*u"(z,y), Du"(z,y), (z,v)),

where of course (z,y) are discrete values and At a small enough time (or scale)
increment. Then the new scheme, associated with (AM SS,) simply is

u"(z,y) = u(z,y) + AtF(D*u"(z,y), Du(z,y), (z,9))
if (z,y) are the coordinates of a pixel not touching a T' — junction, and
w2, y) = u"(z,9)

otherwise. This slight change in the scheme has dramatic consequences in the evo-
lution of the image in scale space, as we shall see in the numerical experiments.

5.3 Experiments in junction-preserving image filtering

e Experiment 3 (two pages). Image filtering preserving Kanizsa singular-
ities on a real image. First page, ul : the original image El caminante, already
analysed in Experiments 1 and 2. Image u2 : junctions of level lines found by the
Junction detection algorithm. Image u3 : (AMSS) analysis of ul at scale ¢t = 12.
Second page of Experiment 3, Image u4 : ul smoothed by Algorithm 1 (that is, the
same P.D.E. as (AMSS), but with all junctions detected in u2 fixed). Image u5 :
all level lines of u3. The structure of the image is lost because junctions are blurred
out. Image u6 : level lines of u4, that is, level lines are smoothed but their endpoints
on junctions are fixed. The structure of the image is fully preserved (as was already
apparent in u4) and the occlusion structure made readable by this topographic map.
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Experiment 3.
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5.4 Direct existence proof for the junction preserving smooth-
ing.
We wish to sketch a possible proof for a model related to (AMSS1), but not affine

invariant, the Osher-Sethian classical mean curvature. If we do the same adaptation
to image analysis as the one yielding (AMSS1), we obtain the equation

(AMSS1) % = 1z(z,y)|Dul(curv(n)), u(0,z) = uo(z).
The corresponding curve evolution model is the so called intrinsic heat equation
t
(IHE1) 8Cét’ s) = curv(C)7i(t,s), C(t,0) = 20,C(t,1) = 2,

where 2p,2; denote the fixed endpoints of the curve C(t). Equation (IHE1) has
existence, uniqueness and regularity results which are proved in [Gr| in the case of
an embedded curve without endpoints. In order to generalize Grayson’s result to
the case where the tips of the curve are fixed, one may proceed as follows. Assuming
that the initial curve Cy(s) is parameterized by a parameter s ranging from 0 to 1,
we embed Cj into a periodic curve by setting

C(s)=C(0)—C(-s) if —1<s<0

and then by embedding C into a 2-periodic curve. If, by this process, C has re-
mained a simple curve (a curve without self-intersection), then we can apply the
main theorem in [Gr] and assert that C(t,s) is uniquely defined, independent of
the initial parameterization, and analytic for every t > 0. In addition, because of
the uniqueness of the evolution, C’(t, s) is equal to the curve obtained by evolving
Co(—s). Thus C is invariant by the symmetry z — —z in JR?, so that z, belongs
to C for every t. In the same way, 2 belongs to C and we define the solution
of (IHE1) as the part of C' joining z and 2;. In the case where Cy does present
self-intersections, we conjecture that the Grayson proof applies anyway, since the
self-intersections happen between parts of the curve belonging to different periods
and cannot create singularities. It is therefore very likely that these self-intersections
disappear after a while and the curve tends to a straight line joining 2y and z; as
t — oco. We do the same conjecture for the equation

oC

- = (curv(C)37(t,s),  C(t,0) =20, C(t,1) = 21,

(ASS1)
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with the difference that the convergence to the straight line should take a finite time.
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