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References.

This is the first of a series of articles analyzing high frequency solutions of of hyperbolic partial
differential equations over time scales beyond those for which the geometric optics approximation
is valid. Here and in [DR 2], we treat problems for which approximate solutions with infinitely
small residual can be constructed. Key hypotheses are that there is one fundamental linear phase,
the nonlinearities are odd, and the spectrum of the profiles or envelopes are contained in the odd
integers. In [JMR 6,7] problems not satisfying these hypotheses are discussed.

§1. The origin of Schr6dinger type approximations.
The standard approach to the Maxwell Equations when applied to laser propagation is to make
approximations which lead to equations of Schr6dinger type. This simple fact raises at least the
following three questions.
o How is it that models with finite speed lead to approximations with infinite speed?
o Why is it that the classic model of nondispersive wave propagation, the Maxwell Equations in
vacuum, are approximated by the classic model of dispersive wave propagation?
o How come these approximations are not common within the subject of partial differential

equations where such high frequency problems are treated?
Note that any high order implicit difference approximation is dispersive and has infinite speed.
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cooperation program under grants number NSF-DMS-9203413, OD-G-N0014-92-J-124,s, and NSF-INT-9314095 respectively.

This project was also supported by the GdR POAN.
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In addition to curiosity about such questions there are physical problems where the appropriate
approximations are at present not clear. Among these we mention, Raman and Brillouin scattering
by lasers, continuum generation, and optical parametric oscillators.
Our goal is to clarify the nature and range of validity of the approximations leading to Schr6dinger
like equations. The present paper addresses the simplest mathematical situations leading to such
approximations.
The basic fact is that for solutions of constant coefficient problems with linear phase and wavelength
of order ~, the behavior for times t N 1/ e have an asymptotic expansion involving a slow time T = Et
and for which the evolution is described by a Schr6dinger type equation. The equation arises in
an approximation in which there are three distinct scales, the wavelength E and two longer scales
1 and 11E.
This is most clear in simple explicitly solvable models. Consider the initial value problem for u(t, y)
with x :_ (t, y) E 

The partial Fourier Transform of the solution is given by

Take initial data oscillating with wavelength of order E and linear phase equal to Yl ~~,

Then

and the solution is the sum of two terms

Initial data with ut 4 0 lead to similar expressions with an additional complication of a factor
The contributions from q near 0, is because of the rapid decay of factors analogous

to f( 17 - 
We analyse the other being entirely analogous. For ease of reading the subscript plus is omitted.
Introduce ( := q - to find

Expanding the exponent to first order in - yields

Define
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to find

Estimating as for ( 1.15~ in the sequel yields

The amplitude B satisfies the simple transport equation

The error estimates (1.9) and (1.10) show that the approximation is useful as long as t = 
(1.9) is the standard approximation of geometric optics.
This approximation has the following geometric interpretation. One has a superposition plane
waves with 1J - (l/e,O,...,0) + 0(1). Replacing W by (1/~,0,...,0) and lwl ] by lie
yields the approximation (1.10). The wave vectors make an angle of order,-- with el so they remain
close for times small compared with For longer times the fact that the rays are not parallel is
important. The wave begins to spread out. Parallel rays is a reasona,ble approximation for times
t = o( 1 Ie) .
The analysis just performed can be carried out without fundamental change for initial oscillations
with nonlinear phase 9(y) and for variable coefficient operators (see [L],[R]).
The approximation (1.9) cannot remain valid for large time. The approximate solution consists of
waves rigidly moving with velocities The amplitudes are constant along the rays =

cs’. However for E fixed and time tending to infinity the solution of the initial value problem
decays like ~-~d-1)/2. In fact for large time the solution resembles an outgoing spherical wave

Thus eventually the collumnation of the solution degrades and the wave
spreads over regions which grow linearly in time. These waves spread beyond the regions reached
bv the rays. The penetration of waves into regions not reached by the rays of geometric optics
is called d2ffraction. Finding approximations for times beyond the validity of geometric optics
amounts to studying the onset of diffractive effects.
To study times and distances of order lie, insert the second order Taylor expansion

into the integral (1.6) to find that

Introduce the slow variable T :- Et and

Then
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uniformly on ~1+d. In fact,
1

and therefore

which is a quantitative version of (1.14).
The profile B satisfies a pair of partial differential equations.

The first is the transport equation of geometric optics and the second is the Schr6dinger equation
which we were looking for. These together with the initial condition

suffice to uniquely determine B. The first equation in (1.14) is solved by writing

in which case A(T, ~1~2?’’’ ? yd) is determined from the Schr6dinger equation

The variable ~1 enters only as a parameter.
For t = 0(1~~) one has T ~ 0, and setting T = 0 in (1.14) recovers the approximation of geometric
optics. Thus (1.14) matches the asymptotics for t = and those for t = 

A typical solution of (1.18) has spatial width which grows linearly in T. Thus the width of our
solution uê grows linearly in set which is consistent with the geometric observation that the wave
vectors comprising u make an angle O(E) with e1.
In contrast to the case of the geometric optics expansion, the last results do not extend to nonlinear
phases. Note that the rays associated to nonlinear phases diverge linearly in time and the geometric
optics approximation decays correspondingly. The formulas valid for times of order 1, remain valid
for large times. The approximations of Schr6dinger type describe the interaction over long periods
of times of parallel rays. In the same way, one does not find such Schr6dinger approximations for
linear phases when the geometric approximations are not governed by transport equations. The
classic example is conical refraction.
The approximation (1.15) clearly presents three scales; the wavelength ~, the lengths of order 1
on which f varies, and, the lengths of order 11E traveled by the wave on the time scales of the
variations of B with respect to the slow time T.

Summary. The Schrodinger approximations are intimately related to linear phases for which then
rays are parallel. They provide diffractive corrections for tilnes t N 1/ E to solutions of wavelength
~ vvhich are adequately described by geometric optics for times t N 1.
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These key features, parallel rays and three scales are commonly satisfied by laser beams. The beam
is comprised of virtually parallel rays. A typical example with three scales would have wavelength
N lO-6m, the width of the beam - lO-3m, and the propagation distance N 1m.
For nonlinear phases the long time behavior is different. With suitable convexity hypotheses one
the wave fronts, nonlinear transport equations along rays yield nonlinear geometric optics optics
approximations valid gloablly in time (see [Go]).

2. Formulating the ansatz.
We study solutions of semilinear symmetric hyperbolic systems with constant coefficients and

nonlinearity which is or order J near u = 0. The quasilinear case is discussed in §6.

Symmetric hyperbolicity hypothesis. Suppose that

is a, constant coefficient symmetric hyperbolic system of order one with timelike variabie t := xo, i
that is, the coefficients A~ are N x N hermitian symmetric matrices with Ao strictly positive.

The fact that the lower term appers with a factor [ is crucial. In §2.1 this is discussed in terms
of interaction times. A remark in §3.3 shows that the construction of approximate solutions can
fail if one has Lo instead of ELO. In §5, the factor E is crucial in the proof of the approximation
theorem if Lo has a negative eigenvalue.
The nonlinear differential differential equation to solve is

where u-’ is a family of ~N valued functions.

Order J hypothesis. The nonlinear function F is smooth on a neighborhood of 0 E and

the nonlinear terms are of order J &#x3E; 2 in the sense that

The Taylor expansion at the origin is then

where (D is a homogeneous polynomial of degree J in u, u.

§2.1. Time of nonlinear interaction.
The amplitude of nonlinear waves in crucially important. Our solutions have amplitude u’ - 
where the exponent p &#x3E; 0 is chosen that the nonlinear term F(u) = affects the principal
term in the asymptotic expansion for times of order The time of nonlinear interaction is

comparable to the times for the onset of diffractive effects.
The time of nonlinear interaction is estimated as follows. Denote by S(t) the propagator for the
linear operator L’. Then in L2(lRd),  Ceê/tl. The Duhamel representation

suggests that the contribution of the nonlinear term at time t is of order For the onset of

diffraction, t N 1/6 so the accumulated effect is expected to be For this to be comparable
to the size of the solution we chose p so that pJ - 1 = p.
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Definition. For nonlinearities satisfying the the order J hypothesis, the standard normalization
is to choose p so that

A similar estimate shows that the contribution of the ELO is no larger than CEt so the natural

interaction time is no shorter than t N In particular this term does not influence the principal
term in the linear geometric optics description of the solution for t N 1. As a result the leading
term in linear geometric optics is a pure translation.

~~2.2. Harmonics and rectification.

Introduce a general linear phase ~.x = Tt + y.y with # = (T, r~) E 1R1+d. The oscillating factor is
then The remarks of the previous section suggest replacing B by 

Nonlinearity will normally create harmonics with m E Z. The waves with these phases
will then interact with each other. With this in mind, the leading term in (1.15) is replaced by

periodic in 8.

A special role is played by the harmonic with m = 0 which is nonoscillatory. Such a term occurs
from a J-linear interaction of harmonics with

If the oscillatory waves propagate with speed v, then one expects such rectification to produce
source terms of the form f (y - vt). This is expected to create a term like L-1 ( f (y - vt)) which
in general is a wave dispersing in all direction of space. For times t N lie which interest us, such
wa,ve will be small compared to the waves which propagate nearly sharply in the direction v. This
suggests the following facts proved in [JMR 6],

~ The rectified waves are correctors to the principal term in the asymptotics.
~ The rectified waves are not described by expressions analogous to the principal term.

In the analysis which follows these rectification effects are not present. Then, correctors to all
orders can be constructed having the same form as the principal term. The rectification is avoided
hy assuming that the nonlinear function F is odd, and that the profiles B in the asymptotic
expansion are periodic functions of 0 whose spectrum is contained in the odd integers Zodd. · Note
that for J and m~ odd the sum on the left hand side of (2.5) is odd and therefore never equal to
zero. More generally, if had odd spectrum and F is odd, then has odd spectrum.

Oddness hypothesis. The Taylor expansion of .F at u = 0 contains only monomials of odd
degree.

This hypothesis is satisfied if and only if the even part F(u) + F(-~c) vanishes to infinite order
a,t u = 0. In particular it is satisfied for odd functions F. Note that quadratic nonlinearities are
excluded by the oddness hypothesis.
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The leading term in the ansatz is Bvhere p from (2.4) is fractional for J &#x3E; 3. The terms in

the Taylor expansion of F generate terms in EnP. These consideration suggest the ansatz

where the smooth profiles aj are periodic in 0 and satisfy

From the example in §1, we expect the leading profile ao to satisfy a homogeneous transport
equation Otao + v.0yao = 0 with respect to x and to be as rapidly decreasing in .X, x as this
permits. In order for to be small compared to the preceding cjaj term for times t N 1/[
it is necessary that as E -~ 0 . Our profiles satisfy the stronger condition
that for all a

§3. Equations for the profiles.
The goal is to find uê as in the ansatz (2.6)-(2.8) which is an approximate solution of (2.2). Compute

where

Then (2.6) and (2.8) imply that

The Taylor expansion of F at 0, yields

with

Note that in computing (3.4) the order J hypothesis guarantees that the leading contribution of
the nonlinear is this term. More generally, aj contributes terms which are no larger than

to the nonlinear term. Thus for j &#x3E; 0, cj is determined by  j}.
Adding the expressions for L~u~ and shows that

The strategy is to choose the profiles c~~ so that the profiles rj of the residual are identically equal
to zero. 

’
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Setting rj = 0 for j = 0, 1, 2 yields the equations

Note that since j assumes fractional values, these are not the three leading terms in (3.5). However,
they are the terms which lead to the determination of ao .
With the convention that aj = 0 whenever j  0 the equation rj = 0 reads

§3.1. Analysis of equation 3.6.

Expand in a Fourier series

Then

In order for there to be nontrivial solutions of (3.6) one must have

Equivalently /? must belong to the characteristic variety of L. There are two naturally defined
matrices which play a central role in the sequel.

Definition. For (3 E R1+d let be the linear projection on the I;ernel of along the range
Denote by Q(~) the partial inverse defined by

Symmetric hyperbolicity implies that both and are hermitian symmetric. In particular
7r(¡3) is an orthogonal projector. With this notation, equation (3.6) is equivalent to

This asserts that the principal profile is polarized along the kernel of L1 ~~3 ).
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33.2. Analysis of equation 3.7.

Equation (3.7) involves both ao and Multiplying by annihilates so eliminates the

ai term to give

A vector W E CN vanishes if and only if

Thus the information in (3.7) complementary to (3.13) is obtained by multiplying (3.13) by 
This yields 

-

Equations (3.12) and (3.13) are the fundamental equations of linear geometric optics (see [R]). As
such they determine the dynamics of with respect to the time t. The following hypothesis
guarantees that the linear geometric optics is simple. It excludes for example f3 along the optic
axis of conical refraction.

Simple characteristic variety hypothesis. Q = (.r.,!1) and there are neighborhoods W of!1 in
I~~ (resp. 0 of ¡3 in 9~1+d~ so that for each 17 E w there is exactly one point (7(y), 17) E 0 n char .~1.

Proposition 3.1. If the simple characteristic variety hypothesis is satisfied then the functions,
T(r~), ~r(T(~), r~) and are real analytic on c~. In addition

Proof. Since

the solutions T are the eigenvalues of the hermitian matrix

Choose r &#x3E; 0 so that for q near y there is exactly one eigenvalue in the disk of center 7 and

radius r. Then the real analyticity of Jr(q) follows from the contour integral representation

The analyticity of T and Q then follow from the formulas
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Differentiate the identity

with respect to yj to find

Multiplying by 1]) eliminates the first term to give

Using this for the summands on the right hand side of the identity

yields (3.15). The proof is complete. I

Definitions. If belongs to the characteristic variety and satislies the simplicity assumption,
define the transport operator V and group velocity v by

Also define ,(r,!1) E Hom (ker L1(T, !1)) by

The dependence of and., will often be omitted when there is little risk of confusion.
Since V is scalar and 7rAo is an invertible map from the image of 7r to itself, it follows that (3.13)
is equivalent to

§3.3. Analysis of equation 3.8.
The information in (3.8) is split in two by multiplying by Q(~) and by which yield

and

Equation (3.19) determines a part of a2 in terms of earlier profiles. To interpret (3.20), write
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and use (3.15) and (3.18) for the first summand and (3.14) for the second terms to find

The scalar operator commutes with all the linear operators in (3.21) and therefore (3.12) and
the last equation of §3.2 imply that it annihilates the left hand side of (;3.20). Using Proposition
il.I this shows that 0 . Since Il (t~~) is scalar it commutes with 7 Ao 7r
which is an invertible linear map on the range of 7r. It follows that 0. This together
with the condition (2.8) that a, is bounded implies that

Thus the last equation in §3.2 together with (3.21) yield the following pair of equations for ao =

This is analogous to (1.16).

Remark. If were not a simple transport operator, for example in the case of conical
refraction, it would not necessarily annihilate or 7r Ll Q L, A similar difficulty arises
if one studies Ll + Lo instead of L, + In that case one finds (V + 7)~0 = 0 and it is not

necessarily true that V + 7 annihilates -1~(ao). I

.Just as the operator 7r L, 7r is a scalar transport operator when the simple characteristic variety
hypothesis is satisfied, the next result shows that the operator 7r Ll Q L, 7r appearing in (3.23) is a
scalar second order operator.

Proposition 3.2. If the simple characteristic variety hypothesis is satisfied then

Proof. Differentiating (3.16) with respect to 1Jk yields

Differentiate ) with respect to qk to find
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Multiplying on the left by 7r yields

The adjoint of this identity reads

Multiply (3.25) on the left and the right by 1]) and use the last two identities to eliminate
the 07r terms to find

Multiplying by and summing over j, k yields

In this identity use the sum of the two expressions

to show that

The proposition follows. I

When (3.24) is used in the second equation in (3.23), the last two terms in (3.24) annihilate ao
thanks to the first equation in (3.23). Let R denote the real homogeneous scalar second order
differential operator 

-

The equations satisfied by ao are then
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The equations for the higher profiles are derived in similar fashion. is determined by
setting Q times the the case j - 1 of (3.9) equal to zero to find

In all cases the right hand side is is a function of the profiles {ak : ~  j -1~ and their derivatives.
A special case is those j  1 for which one finds (I - = 0.

The dynamics for 7r aj is determined by setting times the case j of (3.9) equal to zero to find

Simplifying using (3.15), (3.18), and (3.30) yields

By induction one shows that V(0x ) annihilates the left hand side of this equation. Then exactly as
in the derivation of (3.22) one finds V(8x) = 0 . The expression (3.28) for the complementary
projection then shows by induction that

For j &#x3E; 0 the term cj is a function of the profiles ak with k  j. Then using (3.24) equation (3.30)
takes the form

Theorem 3.3. If u’ is given by (2.6)-(2.8) then in order that L( 8)uE: + F(uO) - 0 in C° it is
stifficient that the principal profile ao satisfies (3.I2) and (3.28), and that the profiles a~ with j &#x3E; 0

satisfy the equations (3.29), (3.3I~, and (3.32).

;4. Solvability of the profile equations.
The first equation in (3.28) holds if and only if

The second equation in (3.28) then holds if and only if

In the linear case with the spectrum of o equal to the single point 1, the operator 10, 1 is simply
multiplication by and the principal part of (4.2) is a scalar Schr6dinger type operator whose
second order part, R(Oy), is determined by the the second order Taylor polynomial T at 17. The

..4oRa¡1 term is antisymmetric thanks to the factor 
Equation (3.31) suggests writing



XVII-14

in which case (3.32) takes the form

Similarly (3.19) becomes

The idea is to construct smooth aj rapidly decreasing in Y, y,

Theorem 4.1. Suppose that for aII j E pN, initial data gj E X ~d X T) are given satisfying
7rgj = gj and spec gj C lodd. Then there is a T* and a unique ao satisfying (4.6), (3.12),
(r3.28), and = go . If T*  oo then

For j &#x3E; 0 there are unique a~ satisfying (4.6), ~4.5~, and (4.4~ where ~’* is that from a~.

Proof. Denote by z := (Y, y) E R 2d with ( := TI) E R2d the dual variable. The partial Fourier
transform of a(T, Y, 0) is a function of (T, (, n) = (T, 3, q, n) .
Define the positive definite matrix .~ := x Ao Jr + (I - 7r), and a := Ea . Then equation (4.2) is
equivalent to 

~-

where acting on functions with mean zero in 0, P is the Fourier multiplier with symbol

Extend the operator to all functions by setting the symbol equal to zero for n = 0. Then P
annihilates functions which are independent of 0. The key to the analysis is that the matrices P
satisfy

Definition. For s E N, F’ denotes the Hilbert space of functions f (z, 8) E x T) such that

The space T~ is the subset of TS consisting of functions whose spectrum is contained in Zodd , and
which satisfy the polarization 7r f = f .

A simple commutation argument shows that

The solutions of (4.2) are constructed by Picard iteration. The key facts are that the associated
linear evolutions are bounded on rs and that I" is mapped to itself by smooth functions.
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Lemma 4.2. i. Linear estimate. For each s E (, there is a constants C(.s) so that with C1 froln
/ , , B

ii. Gagliardo-Nirenberg Inequalities. If u E Lco(1R2d) n rs then for any v E witl1

o  Ivl I  8, ~ N, 8::;,e)V u E L2s/lvl and "vitl1 a constant independent of u

iii. Schauder’s Lemma. If G is a smooth function such that = 0, s &#x3E; {2d + 1)~2, and
II E Ts, tl2en E rs. If in additiou G is odd and satisfies 7ï G = G’ , then Gy maps r~ to itself.
iv. Moser Inequality. For all M &#x3E; 0, there is a, constant such that ifu,w E rs
sa,tisfy

Proof of Lemma. i. The first inequality in (4.10) implies that

To treat the polynomial weights it suffices to estimate

Expand using Leibniz’ rule. When the derivatives all fall on the f factor estimate by 
When two derivatives fall on P, the second derivative of P is bounded and one estimates by

The derivatives of order higher than 2 of P vanish. The terms with one
derivative on P have the form

Using (4.10), this is no larger than

and the proof of i. is complete.
ii. Introduce q :- 28/r and q~ := 2sl(r ± 1). Denote by Z one of the operators z.. or 8/åzj. The
desired inequality (4.13) is then a consquence of the interpolation inequalities

When Z is one of the partial derivative operators, this is a standard C;agliardo-Nirenberg estimates
and is proved by integrating the identity
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and applying Holder’s inequality to the last term with

vVhen Z is multiplication by the coordinate zj, Holder’s inequality applied to the integral of

yields

which is (4.18) for that operator.
(iii) and (iv). Assertion (iii) follows from (4.14) for v, = 0, so it suffices to prove (4.14). Taylor’
Theorem implies that G(u + w) - G(w) = H(u, w~w with smooth H. For IfJl  s, Leibniz’ rule

expresses  z 0g (G(u + w) - G(w)~ as a finite sum of terms of the form

By hypothesis,

Then, (4.19) and (4.20) show that to prove (4.16) it suffices to show that

We first prove that m  0. If there is at least one factor then the sum on * in (4.21)
compensates the positive term s. If there are no such factors then s’ = s and the sum on k

compensates the s.

The interpolation inequalities (4.13) yields

Holder’s inequality then yields (4.22). 1

Using the results of the Lemma, standard Picard iteration constructs for each s &#x3E; (2d + 1)/2 a
unique solution u E C(~0, T*(s)~ ; Fs) with

In fact, inequality (4.14) with w = 0 shows that JIG(u)llr., . This estimate
shows that so long as the L°° norm of u stays bounded, the rs norm can grow at most exponentially,
and therefore cannot explode in finite time. This proves (4.7) and at the same time shows that the
time of explosion T* is independent of s &#x3E; 2d + 1.

It follows that the unique solution belongs to C(~0, T*~ ; rs) for all s. Using the differential equation
to express time derivatives in terms of spatial derivatives, it follows that E C([O, ~’*~ ; F’) for
all s. This is equivalent to the desired regularity (4.7). The construction of ao is complete.
The construction of the higher profiles requires only the solution of linear equations using (4.12). 1
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§5. Convergence toward exact solutions.
Given aj satisfying (4.6), Borel’s theorem constructs

with spec a C Zodd . The N in (5.1) means that for all T e]0, T*[, a E N2cl+2 and nz e N

The profile a is defined by

When aj, or equivalently aj , are solutions of the appropriate profile equations, approximate solu-
tions u6 are defined by

The profile equations are computed exactly so that in this case

In particular, for any c  satisfies the hypotheses of the following stability theorem which
then implies that for Cauchy data very close to those of uê the exact solution of the initial value
problem exists for 0  ~  cj E and is very close to u’. The theorem is a variant of the stability
theorem of Gues, [Gl]. The modifications are to assume L~° control of the approximate solution to
simplify the demonstration, and that the time scale is longer corresponding to smaller amplitudes.
These ideas were first introduced in [D].

Approximation Theorem 5.1 Suppose the derivatives of order less than or equal to J
van lsh at the origin, that p = ll(J - 1), and with c &#x3E; 0

has s0 derivatives which are the sense that for all a E R~~ ,

Suppose in addition that utS is an infinitely accurate approximate solution in the sense that

that is for anLy a and M

Define v’ E to be the maximal solution of the initial value problem

then there is an Eo &#x3E; 0 so that for E  Eo, T*(~~ &#x3E; clE and
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Remarks. In this result, the oddness hypothesis is not needed. The result and the proof are valid
for operators of the form L6 = L1 (a) + with

The positive part of can be polynomially large. The c in the zero order term of (2.1) is

needed for the construction of the approximate solution. I

Proof. Step 1. Taylor’s Theorem absorbs the cp’s. Define w’, WE, and V’ by

Then the equation for v~ holds if and only if the perturbation w’ satisfies an equation

The strategy is to show that this problem has a solution 0 on 0  t  c/s.
Taylor’s Theorem expresses F(u + w) - F(w) = H(u, w) w where the smooth function H has
derivatives of order less that or equal to J - 2 vanishing at the (0,0). Therefore

where Gy is a smooth function. Equation (5.14) then reads

Cancelling the EP factors yields

where the key is the factor E in front of the G W term. Roughly one expects growth like e’t with
sources which yields WE = for times up to clE.
Step 2. s0 estimates for WE. Introduce the norms, each equivalent to the norm in I" by

This norm is a scaling of that in rs in the sense that if g(y) := then

This scaling property immediately implies the Sobolev and Moser inequalities

In the same way, the the propagation estimate for L’
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follows from the 1. Inequality (5.19) = 1 can be proved directly by the standard
energy method applied to or by using the Fourier Transform as in the proof of (4.12).
(-’hoose 0 so that 1/2. Since ue is bounded in L, it follows that so
long as

one has

Applying inequality 5.19 ) to WE and using (5.15) and (5.21) yields for all n E N and s &#x3E; d~2

Cironwall’s inequality yields

Step 3. Endgame. First choose s &#x3E; d~2 and n &#x3E; d/2. Then with the constants Cs from (5.18),
C’(s, n) from (5.23) and c from (5.7), choose E1 so that

Then ( ~5.23) together with (5.18) show that for as long as Wê exists in 0  t  clE, one has
1/2.

The first consequence of this conclusion is that for E  Eo, the maximale solution of the initial value

problem (5.15) defining TIVê exists for 0  t  and satisfies (5.20) throughout that interval.
Since z?y is expressed in terms of Wy it follows that vE exists on this interval.
Once this is known it follows that inequality (5.23) is valid for all .s, n and 0  t  This

implies in that for all a and m, there is a C(a, m) so that for all E  Eo

Thus to prove (5.13) it suffices to prove estimates analogous to (5.24) for time derivatives of w~.
These follow from (5.24) by using the differential equation (5.14) to express time derivatives in
terms of spatial derivatives. I

16. The quasilinear case.
A few ideas are needed to extend the analysis to the case of quasilinear equations

For simplicity of reading, the ELO term from (2.1) will be omitted in this section. The system (6.1)
is assumed to be symmetric hyperbolic in the sense that the coefficients .-~~ are smooth hermitian
symmetric valued functions of ~c, and, for each u, is positive definite.
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6.1. Order of nonlinearity and amplitudes.
Suppose that the quasilinear terms are of order 2  K E N in the sense that

Then A,(u) - A,(0) is of order Ii - 1 and so its product with is of order Ii.

If the solutions have amplitude of order with derivatives of order then the size of the

quasilinear terms is EP-1. Accumulating for time T one obtains rc~~) Setting
this equal to the order of magnitude of the solutions, EP, yields the following estimate for the time
of quasilinear interaction 

-tI

The standard normalization for diffractive nonlinear geometric optics is obtained by taking the
time of interaction to be of order that is

To insure that the the semilinear term does not have a time of interaction shorter than E- ,
supposes that F is of order J satisfying (2-4), that is

Since Ii will be assumed odd, (6.4) determines an integer J.
It is possible to consider quasilinear problems for which the left hand sides in (6.4) are smaller
than the right hand sides. In such cases, the quasilinear terms do not affect the leading term in
the approximation (see [DR 2]).

6.2. Profile equations.
Oddness hypothesis. In addition to the oddness hypothesis from §2, assume that Il is odd
and that the Taylor expansion of A,(u) - A,(0) = 0 contains only monomials of odd order.

With the normalizations of section 6.1, the ansatz (2.6)-(2.8) is then appropriate. The degree I( -1
Taylor polynomial of Au) - is denoted A,, so for c N 0,

Expanding L(u~, â)ue + F( ue) as in 33, and setting the terms of order EP-’, EP and EP+’ equal to
zero yields the equations 

-- , - -, - /.-.. - ’B.

Equation (6.5) requires that /3 belong to the characteristic variety of the linearized operator L(0, 9).
Construct the associated projector r(3) and partial inverse Q(f3). Equations (6.5) and (6.6) are
then equivalent to (3.12), (3.13), and (3.14).
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Assume that the characteristic variety of L(O, 8) satisfies the simplicity assumption at /3. Propo-
sition 3.1 then shows that (3.13) is a transport equation.
Setting 7r((3) times (d.7) equal to zero yields the analogue of (3.21),

The key change is the appearance of the quasilinear terms on the left. They are
qualitatively of the form 0g u. The analysis which leads to (3.22) and therefore the elimination
of the right hand side is exactly as before. The analysis of Proposition 3.2 applies to L(O, ä) and
one finds the quasilinear equations for the principal profile ao,

0 , 7r Ao ao + 7r Ao R(Oy)Oo 1 ao + 7r L Ooao + 7r ~(cco ) = 0 . (6.9)
The analogous equations for the correctors aj with j E pN B 0 are linear. The solvability of (6.9)
is proved as in §4 with a little more work because of the quasilinear term. The L~° norm in the
explosion criterion (4.8) is correspondingly replaced by the Lipshitz norm.

~6.3. Convergence.
The proof of convergence uses the following quasilinear approximation theorem.

Approximation Theorem 6.1. Suppose that ~6.2~ and (6.4~ are satisfied, that p is defined bv
(6.3), and that and u’, hê and g’ satisfy 5. 5.8), and (5-12). Suppose that it’ is an infinitelv
accurate approximate solution in the sense that

Define v’ E to be the maximal solution of the initial value problem

Tllen tfiere is an Eo &#x3E; 0 so that for E  so, T*(e) &#x3E; c/e and

Outline of Proof. Define v’, w’ and WE as in the proof of Theorem 5.1, except that the value
of p is now given by (6.3). Taylor’s Theorem yields the analogue of equation ( 5.15),

The key observation is that so long as

the derivatives of the coefficients are 0(s). Then the natural growth rates are which

means that one has stability estimates for times as long as That is, for 8 + 1’1 there is a

constant C(s so that so long as 0  t  c/s and (6.14) holds one has
,

The endgame is as in Theorem 5.1.
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