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0. Introduction

The results of this work can be considered as a generalisation of the previous works
of V. Buslaev and the author (BP1,2~ that were denoted to the nonlinear scattering of
the states close to a soliton.

Under some general conditions on the function F the nonlinear Schr6dinger equation

admits a class of bounded solutions w(x, a(t)) which parameters a = o-(t) E Jae.4 depend
explicitly on time t. In [BPI,2] we considered the Cauchy problem for equation (1)
with the initial data

xo being sufficiently small in suitable sense. It was proved that if the spectrum of
the linearization of equation (1) on the soliton w (., ao(t)) has the simplest structure in
some natural sense, the asymptotic behavior of 1/J as t - oo is given by the formula
(in L2-norme) :

here a+(0) is close to ~o (o), éo = -,)~,2, f+ E L2 (R) and is sufficiently small.
In this work the following situation will be considered. Assume that one has a set

of solitons (t)), j = 1,..., lV, their initial velocities vo3 being ordered in the
same way as the initial coordinates :

Moreover, assume that the initial coordinates are sufficiently well separated. Consider
the Cauchy problem for equation (1) with the initial data

where xo is sufficiently small. If all the linearizations constructed independently from
the solitons o-oj) satisfy the spectral conditions used in the case of one soliton, one
expects that as t - +oo

AT
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being close to and f + E L2 (R) being small.

In this note we prove formula (2) in the case of large relative velocities voj - 

1. Preliminary facts and formulation of the result.

1.1. Solitons consider the nonlinear Schr6dinger equation (1). Assume that

i) F is a smooth (E C°°) real-valued function obeying to the estimate

ii) point ~ = 0 is a root of F :

The further assumptions about F will be given in terms of the function

It is assumed that

iii) for a from some interval, a E A C R+, the function cp H 0152) has a positive
root and the smallest positive root cpo = po(a) is simple : 0152) =I 0.

Under assumptions ii) - iii) there exists an unique even positive solution of the

equation

vanishing at infinity :

The functions 1

will be called soliton sates.

If Q = o(t) is a solution of the Hamilton system

the function w(x, a(t)) is a solution of equation (1) called solitary wave, or simpler,
soliton.
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2.1. Linearization on the soliton.

Consider the linearization of equation (1) on the soliton ~(~cr(~)) :

Instead of x introduce the function f :

It satisfies the equation

(]"2, ~3 are the standart Pauli matrices :

Consider L(a) as a linear operator in CC2) defined on the domain where Lo (a) is
selfadjoint. The continuous spectrum of L(a) lies on two half-axis (-00, -Eo], [Eo, 00),
E~ _ ~ . L(a) can have also finite and finite dimensional discrete spectrum on real
axis and on imaginary one. The point E = 0 is always a point of the discrete spectrum.
One can indicate two eigenfunctions

and two adjoint functions
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They satisfy the relations

Generically the equation L(~)~ _ do not have solutions bounded at infinity.
If, nevertheless, they exist, the points ±Eo are called resonances.

1.3 Description of the problem.
To simplity the computations we will discuss only the case of two solitons. Consider

the Cauchy problem for equation (1) with the initial data

Let V02, bol &#x3E; Without lost of generality one can suppose that vol = -vo2 =
bol = -bo2 = bo, vo &#x3E; 0, bo &#x3E; 0. Our goal is to describe the asymptotic behavior of

the solution V) as t --~ 
Assume that the following conditions hold

Tl ) the norm

is sufficiently small. ’

Here B(x) is the standard Heviside function.

T2 ) n = vo is sufficiently small 1

T3) vo is sufficiently large 1

T4) E = 0 is the only point of the discrete spectrum of 2 = 1, 2, and the
dimention of the corresponding root subspace is equal four.

T5) The points are not resonances.

T6) The function F is a polynomial 2 and p &#x3E; 4.

1 sufficiently small (large) "assumes the constants that depend only on ao,, i = 1, 2.
2This assumption is not essential, and is made only to simplity the computations.
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Then there exist i = 1, 2 and f+ E Loo such that

a s t - 

Here is the trajectory of the system (1.1) with the initial data a+1(0) =
assumes the L2-norm. Moreover is sufficiently close to aoi and f + is

sufficiently small.
It is worth mentioning that for a sufficiently close to ao- the operator L(a) also

satisfies the conditions T2 ), T3 ) .

1.4. The plan of the work.
The main idea will repeat the main idea of [BP 1,2], but there will appear some

technique modifications. Following [BP1,21 we introduce some new coordinates for the
description of the solution with initial data (1.2). The new coordinates possess the

important property : for all the time t they admit only small deviations from their
initial values. We consider this coordinates in Section 2. We conclude this section

by a system of equation for the new coordinates. In section 4 we prove that the new
coordinates indeed admit only the small deviations. For this purpose we use a method
of majorants. In 5 we derive asymptotic formula (1.3). Section 3 contains a list of

some auxiliary estimates which are used in 4.

The list of publications related to the problem is essentially the same as in 
so we again refer our reader to this work.

2. Separation of the motions

2.1. Orthogonality conditions.
Write the solution 1jJ of the Cauchy problem ( 1 ), (1.2) as the sum

Here ai (t) - ((3i(t), Wi (t), bi(t), vi(t)) is an arbitrary trajectory in the set of admissible
values of the parameters, it is not a solution of (l.l) in general.
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The decomposition (2.1) can be fixed by the conditions of orthogonality :

where g = ( x J = w , , and (.,.) is the inner produnct in L2(lR - 2 ). Wex X 
remark that 

- -

Thus the conditions (2.2) can be written in the form

Geometrically these conditions mean that that for each t the function belongs to
the subspace of the continuous spectrum of 

2.2. Differential equations.
Write down the system for ai and X in more explicit form. Let us pass from to a

new system of parametres (y, wi c, v) :

In term of the new variables (l.l) takes the form

Below o-i will also denote the vector Wi Ci, vi) -
We rewrite (1) as an equation for x :

where
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The nonlinearity N1 is given by the following expression

Substitute the expression for gt from (2.4) into the derivative of the orthogonality
conditions :

Here

One can obtain the explicit expression for the matrix A :

Under assumption T4), 0 (see [BP 1]).
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On principe system (2.7) can be solved with respect to the derivatives and, jointly
with equation (2.4), constitues the complete system for ~, x :

Equation (2.8) is not a complete equivalent of conditions (2.2) = (2.3). To get the
equivalence one has to add to (2.8) conditions (2.2) = (2.3) at the time-moment t = 0 :

Generally these conditions are not satified by the given decomposition (1.2) of the
initial data 00. But if Xo is sufficiently small and the solitons are sufficiently well
separated it is possible to reconstruct decomposition (1.2) in order to satisfy (2.10)
(see [BPI]). So one can assume that (1.2) obeys to (2.10).

2.3. Equations on the finite interval.
Following [BPI] we consider equations equations (2.8.9) on some finite interval [0, tl~

and later investigate the limite t1 -~ oo. On the interval [0, t1] one can pick out the
leading term of (2.9) in the form

where ~1(t) _ (911 (t), y2(t)) is the solution of (1.1) with the initial data 61 (tl) = 
Rewrite full equation (2.9) in order to get the operator as the main term of

the right side :

3. Preliminary estimates.

We give here without proof a list of estimates for the solution of nonlinear equation
(1) and of linear equation (2.11). These estimates for the nonlinear evolution can be
found in [GV1,2]. The estimates of the linear evolution are enough transparent and
can be proved by means of simple (but unfortunately not short) computations.
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Let the initial data 1/Jo, see (1.2) belongs to H1, H’ being the standard Sobolev-
space. Then the Cauchy problem has an unique solution (-, t) E HI) which
satisfies the conservation laws

Moreover, if ~~(1 + Ixl)1Poll2  oo then the solution 1P also has the finite, but growing in
time, similar norm and

Consider the linear equation

where ai(t) = ((3i(t), úJi(t), bi (t), vj) satisfies the system (I - 1) -
If T3 ) holds (with v = &#x3E; 0 instead of vo ) one can construct eight solution

Pij(X, t), 2 = 1, 2, j = l, ~ ~ ~ , 4, of (3.3) with the following asymptotic behavior as

Here 11 . llx assumes the following norm

Let N(t) be the subspace generated by t). Introduce the projection operators

The existence of P is guaranteed by the assumption T4) and estimates (3.4).
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Let U(t, T, 0152) be the evolution operator corresponding to (3.3), then the following
estimates are true :

constants c depend only on 0152i, b(o), v and are bounded on a finite vicinity of the point
0152i = b(0) _ +oo, v = +oo.

4. Estimates of the majorants.
4.1. Estimates of the solitons parameters.

Introduce a natural system of norms for the components of the solution ~.

These norms generate the system of majorants



XIII-11

Finally, set MIj == 
From the definition of Mo (t) one has

These estimates and relation (2.7) lead more or less directly to the inequality

Here is a function of Mo, ... , ,M2, which are bounded on some finite vicinity of
the point Mj = 0 and, may be acquire infinite value +oo out some larger vicinity. It

depends only on = 1, 2 and it is possible to give an explicit expression for it, but,
in fact this expression is useless for our aims.

4.2. Estimates of the dispersive part of x.
Write the solution X of (2.12) as the sum x = h + k of the projections on the

subspaces corresponding to the "continuous" and the "discrete spectra" of

Using (2.12) one can write down the following integral representation for h :

Here is the propagator corresponding to and ko = 
In order to estimate the integral term of (4.2) one represent D as the sum

D2 being the remainder.
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The direct computations show

In order to estimate D3 one has to take into account conservation laws (3.1-2).
As result one can prove that D3 admits the following estimates

where N is N-norrn of Xo ~

Using equation (4.2) and combining estimates (4.3-4), (4.5) one can get finally

Just here it is important to assume p &#x3E; 4.

4.3. Closing of the estimates.
Here we will obtain the estimates for &#x26; and it will close the system of the inequalities

for the majorants.
The 8-dimentional component k can be expressed in term of X as follows

Since
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and

a system for the coefficients ki3 arises, having the form

It is clear that the main term in (4.7) is given by the system

u

Owing to the orthogonality conditions (2.2) one can rewrite fo as follows

which leads to the estimate

It is simple to check that the = admits the

following estimate

Now we can combine estimates (4.6, 8-9) for all the components of X :
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Introduce new scales :

Then inequalities (4.1,10) takes the form

So one has obtained a closed set of the inequalities for the majorants and can try to
solve it. It is clear that if N and n are sufhciently small, then Mj, j = 0,... , 2 can
belongs either a small vicinity of the point kj = 0 or some domain which distance from
(0,0,0) is limited from below uniformly with respect to N and n. Since all the norms
I~~ are continuous in t, and for tl = 0 are sufhciently small, only the first possibility
can be realised. It means that the functions Mo, MIl, MI2 admit the following estimates
(uniformly in tl E 1~.. ) ~ 

- ~

being a bounded function defined for small (n, N).

5. Scattering.
Estimate (4.11) for Mfa shows that

which implies that all variables Wi, ci, vi, i = 1, 2, have limits 7,,,,i vc)oi as

t - +oo. So one can introduce the limiting trajectories 

It is clear that

in the space Loo.
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In order to study the asymptotical behavior of X one can use the following integral
representation

here and N1 are given by the formulas (2.5-6)
From (4.3-5, 4.11-12) it follows that

in the space L2 n L1, which allows us to represent x in the following form

It is clear that

Combining this with (5.2.1) one gets finally

where R admits the estimates
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