@article{SEDP_1995-1996____A11_0, author = {Petkov, V.}, title = {Sur la conjecture de {Lax} et {Phillips} pour un nombre fini d'obstacles strictement convexes}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:11}, pages = {1--13}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1995-1996}, zbl = {0884.35084}, language = {fr}, url = {http://www.numdam.org/item/SEDP_1995-1996____A11_0/} }
TY - JOUR AU - Petkov, V. TI - Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:11 PY - 1995-1996 SP - 1 EP - 13 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SEDP_1995-1996____A11_0/ LA - fr ID - SEDP_1995-1996____A11_0 ER -
%0 Journal Article %A Petkov, V. %T Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:11 %D 1995-1996 %P 1-13 %I Ecole Polytechnique, Centre de Mathématiques %U http://www.numdam.org/item/SEDP_1995-1996____A11_0/ %G fr %F SEDP_1995-1996____A11_0
Petkov, V. Sur la conjecture de Lax et Phillips pour un nombre fini d'obstacles strictement convexes. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1995-1996), Exposé no. 11, 13 p. http://www.numdam.org/item/SEDP_1995-1996____A11_0/
[BGR] La relation de Poisson pour l'équation des ondes dans un ouvert non-borné, Commun. Partial Diff. Equations 7 (1982), 905-958. | MR | Zbl
, , ,[BL] Lalley's theorem on periodic orbits of hyperbolic flows, Preprint, Ecole Polytechnique, 1996. | Zbl
and ,[Be] Leçons sur les progrés récents de la théorie des séries de Dirichlet, Paris, Gauthier-Villards, 1933. | Zbl
,[Bu] Controle de l'équation des plaques en présence d'obstacles strictement convexes, Suppl. Bull. Soc. Math. France, Mémoire n° 55, 121 (1993), . | Numdam | Zbl
,[F1] Distribution near real axis of the scattering poles generated by a non-hyperbolic ray, Ann. Inst. H. Poincaré (Physique théorique), 60 (1994), 291-302. | Numdam | MR | Zbl
,[F2] Lower bounds on the number of scattering poles under lines parallel to the real axis, Commun. Partial Diff. Equations, 20 (1995), 729-740. | MR | Zbl
,[G] Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bull. de S.M.F., Mémoire n° 31, 116 (1988). | Numdam | MR | Zbl
,[GM] The Poisson summation formula for manifolds with boundary, Adv. in Math. 32 (1979), 128-148. | MR | Zbl
and ,[H] Meromorphic extensions of the zeta function for Axiom A flows, Ergod. Th. & Dynam. Sys., 10 (1990), 347-360. | MR | Zbl
,[I1] Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math. 19 (1982), 459-509. | MR | Zbl
,[I2] Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math. 22 (1985), 657-689. | MR | Zbl
,[I3] Decay of solutions of the wave equation in the exterior of several strictly convex bodies, Ann. Inst. Fourier 38 (1988), 113-146. | Numdam | MR | Zbl
,[I4] On the existence of the poles of the scattering matrix for several convex obstacles, Proc. Japan Acad., Ser. A, 64 (1988), 69-102. | Zbl
,[I5] On the distribution of poles of the scattering matrix for several convex bodies, pp. 210-225 in Lecture Notes in Mathematics, vol. 1450, Springer, Berlin, 1990. | MR | Zbl
,[I6] Singular perturbation of symbolic flows and poles of the zeta function, Osaka J. Math. 27 (1990), 281-300 and 29 (1992), 161-174. | MR | Zbl
,[I7] On Zeta function and scattering poles for several convex bodies, Exposé II, Journées Equtions aux Dérivées Partielles, Saint-Jean-de-Monts, Juin 1994. | Numdam | MR | Zbl
,[LP] Scattering Theory, New York, Academic Press 1967. | MR | Zbl
and ,[M1] Polynomial bound on number of scattering poles, J. Funct. Anal., 53 (1983), 29-40. | MR | Zbl
,[M2] Polynomial bound on the distribution of poles in scattering by an obstacle, Journées Equations aux Dérivées Partielles, Saint-Jean-de-Monts, 1984. | Numdam | Zbl
,[MS] Singularities in boundary value problems, I, II. Comm. Pure Appl. Math. 31 (1978), 593-617 and 35 (1982), 129-168. | Zbl
and ,[PP] Zeta functions and periodic orbits structure of hyperbolic dynamics, Astérique, 187-188, Soc. Math. de France, 1990. | Numdam | MR | Zbl
and ,[PS1] Periods of multiple reflecting geodesics and inverse spectal results, Amer. J. Math. 109 (1987), 617-668. | MR | Zbl
and ,[PS2] Geometry of Reflecting Rays and Inverse Spectral Problems, Chichester, John Wiley & Sons 1992. | MR | Zbl
and ,[PV] Upper bound on the number of the scattering poles and the Lax-Phillips conjecture, Asymptotic Analysis 7 (1993), 97-104. | MR | Zbl
and ,[Po] Meromorphic extensions of generalized zeta functions, Invent. Math. 85 (1986), 147-164. | MR | Zbl
,[SjZ1] Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. | MR | Zbl
and ,[SjZ2] Lower bounds on the number of scattering poles, Commun. Partial Diff. Equations 18 (1993), 847-857. | MR | Zbl
and ,[Ste] Stability of the resonances under smooth perturbations of the boundary, Asymptotic Analysis, 9 (1994), 291-296. | MR | Zbl
,[St1] Poisson relation for the scattering kernel and inverse scattering by obstacles, Séminaire EDP, Exposé V, Ecole Polytechnique, 1994-1995. | Numdam | MR | Zbl
,[St2] Exponential instability for a class of dispersing billiards, Preprint, Mathematics Department, University of Western Australia, 1995. | MR | Zbl
,[St3] Generalized Hamiltonian flow and rigidity of the scattering length spectrum, Preprint, Mathematics Department, University of Western Australia, 1996.
,[Va] Asymptotic Methods of Mathematical Physics, Gordon and Breach Sci. Publ. New York, 1988. | Zbl
,[Vo1] Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 (1992), 205-216. | MR | Zbl
,