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Poisson Relation for the Scattering Kernel
and Inverse Scattering by Obstacles
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1 Introduction

Let K be a compact subset of Rn, n &#x3E; 3, n odd, with C°° boundary aK such that

is connected. Such a set K is called an obstacle in R~.
Consider the Dirichlet problem:

The corresponding scattering operator S can be represented as a unitary operator

commuting with the translations

The linear continuou.s map

has a Schwartz kernel

*Research supported by Australian Research Council Grant 412/092
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which is called the scattering kernel. For fixed u) and 0, s is a distribution on R, s(t, úJ, 8) E
D’(R). .

Since the singularities of the scattering kernel are observable quantities, it is natural to ask
the following

Problem 1. What geometrical information can be obtained about the obstacle K if one knows
the singularities of the distribution for (almost) all (w, 0) E x 

As R. Melrose has kindly informed me recently, in general the singularities of the scattering
kernel are not enough to completely recover the obstacle. An example (see Figure 1) which
shows this had been given by M. Lifshits and T. Shiota (unpublished; see Lecture 5 in [M3]).

Figure 1

In this example all scattering rays in the exterior of K incoming from infinity and outgoing to
infinity after finitely many reflections from 8K, do not enter these parts of QK that are close
to ri and r2 (see [M3] for more details). Therefore, if one slightly changes 8K near r~ and r2
only, the new obstacle L obtained in this way will have the same scattering rays and SK (t, 8, ú.J)
and sL (t, 8, w) will have the same singularities.

However, as we will see below, for some rather large classes of obstacles K the singularities
of the scattering kernel provide enough information to completely recover K.

It follows from results of Majda [Ma] and Lax and Phillips [LP2] that for each obstacle
K the convex hull of K can be recovered if one knows max sing supp sK(t, (), ú.J) for a dense
set of (w, 0)’s in sn-l x sn-l. Consequently, an obstacle K is completely determined by
the singularities of the scattering kernel, provided one knows in advance that K is convex.
Moreover, one can distinguish between convex and strictly convex obstacles by the same data
(see [So] and [Y]).

It turns out that for fixed ú), 8 E sn-l the singularities of SK (t, B, w) are related to the
so called (w, 8)-rays in QK which are (generalized) geodesics on the manifold with boundary
QK incoming from infinity with direction u) and outgoing to infinity with direction 0 (see
Sect. 2 for the precise definition). The generalized geodesics on a manifold M with boundary
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were introduced by Melrose and Sj8strand [MS] as natural projections on M of the integral
curves (bicharacteristics) of the generalized Hamiltonian flow on T*(M) generated by a smooth
(Hamiltonian) function - the principal symbol of a certain differential operator on M. Using
the work of Melrose and Sj6strand [MS] and some techniques from Guillemin and Melrose
[GM], Majda and Taylor [MaT], Melrose [Ml] and Taylor [T], Petkov [P] established that,
under certain assumptions about K, we have

where is the set of all in QK and T¡ is the so called sojourn time (time
delay) of 7 (see Sect. 2). In analogy with the well-known Poisson relation for the Laplacian on
Riemannian manifolds, the relation (1) is called the Poisson relation for the scattering kernel.
In the general case a proof of (1) can be found in Chapter 8 of [PS1].

The behavior of the generalized Hamiltonian flow is rather complicated. In fact, as an
example of M. Taylor [T] suggests (see also Sect. 24 in [H]), in general this is not a flow

in the usual sense of dynamical systems, since there might exist two different integral curves
issued from one and the same point of the phase space. In the case of scattering the following
restriction on the obstacle K guarantees ([MS]) that the generalized Hamiltonian flow on
T* (QK x R) is well-defined: for each (x, ~) E T * (8K) if the curvature of aK at x vanishes of
infinite order in direction 6, then aK is convex at x in direction 6. Denote by K the class of
obstacles K that have this property.

Theorem 1. For each obstacle K E 1C there exists a subset R of full Lebesgue measure in
sn-l X sn-l such that

In the special case when K is a finite disjoint union of convex bodies this statement was
proved in [PS2].

Next, we are going to describe a class of obstacles that we call strongly accessible. Though
this class is not stable with respect to arbitrary C2 perturbations, it contains some non-trivial
open sets of obstacles in the C2 topology of Whitney.

For x E 8K denote by NK(x) the unit normal to 8K at x pointing into QK. The obstacle
K will be called regular if the set of regular points of N~ is dense in 8K. For E R1t let

l (~, ~) _ ~x + t~ : t ~&#x3E; 01, ~x + t~ : t E R}. The convexe hull of .K will be denoted by
conv(K).

Definition. A regular obstacle K E 1C will be called strongly accessible if there exist an open
subset of 9K and an open subset V of the sphere bundle S(aK) of 8K such that the
following conditions are satisfied:

SAI: 8K = 8Kl’°) U âK(t), where akkl) = prl (V), prl : S(0K) - 8K being the natural
projection on the first factor.
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SA2: For each x E 9K(’) we have = 0.

SA3: For each connected component K’ of K either 8K’ C or the set 9K’
is connected and contains extremal points of K.

SA4: = fx} for all (z, g) E V.
SA5: For every x E aK the segment conv(K) does not contain focal points

of the Gauss map NK.

One can check that many familiar obstacles are strongly accessible. For example if a
regular obstacle K is connected and satisfies SA2 and SA5 with 9K(") = 8K, it is clearly
strongly accessible (see Figure 2a). Also every obstacle K which is a finite disjoint union of
convex bodies in R’~ is strongly accessible provided it satisfies the condition (H) introduced
by M.Ikawa: the convex hull of the union of any two convex components of K has no common
points with any other convex component of K.

Figure 2. Some strongly accessible obstacles!

It turns out that within the class JC the strongly accessible obstacles K can be completely
recovered if one knows the scattering length spectrum of 5~~.

Theorem 2. Let K be strongly accessible and L E /C. Assume that there exists a subset R of
full Lebesgue measure in sn-l X sn-l such that

It should be stressed that, according to the above theorem, one can not only recover K
among the strongly accessible obstacles but also in the (large) class of obstacles lC.

1 Pictures made by Maple



V-5

It is quite reasonable to expect that the above statement remains true under weaker as-
sumptions about K.

As a consequence of Theorems 1 and 2 one gets that if K is strongly accessible, L E JC and
there exists a subset 7Z of full Lebesgue measure in sn-l x sn-l such that

holds for all (cJ, 0) E R, then K = L.
The proof of Theorem 2 is purely geometrical. Form the relation (2), we derive that

aK = 8L using some special kind of (cv, 0)-rays in QK and OL.
In connection with Theorem 2 it is interesting to consider the following

Problem 2. Let K E K be an obstacle and let 7Z be a subset of full Lebesgue measure of
S’-’ x sn-l. Consider the map

Eventually shrinking the domain 7Z of F, we may assume that the set F(úJ, 0) is finite for all
(w, 0) E R. Suppose we are given the map F, i.e. we know the set R and for each B) E ~Z
we know the finite set F(w, 0). Assuming we know in advance that the obstacle K is strongly
accessible, can we then reconstruct K from F ?

It seems that the answer to the above question should be affirmative. As another conse-
quence of Theorem 1, one can show the following.

Proposition 1. Let K E JC, Uo be an open ball containing K and C be the boundary sphere
o f Uo . For almost all the generalized geodesic 7(x, w) in QK issued f rom x in
direction w leaves Uo (and goes to infinity) af ter finitely many reflections at 9K.

The detailed proofs of Theorems 1, 2 and Proposition 1 can be found in [St2]. In Sect. 3
below the idea of the proof of Theorem 1 is presented.

2 Scattering Rays
Let K be an obstacle in R~‘ and Q = QK the corresponding exterior domain with smooth
boundary Let

be the cosphere bundle of Q and

be the generalized gEOdesic flow (R.Melrose, J.Sj6strand 
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A curve ’1 in Q of the form

is called a generalized geodesic in f2. Here

is the natural projection. 
in Q if Let w, 8 E Sl-1. A generalized geodesic 1’(t) in Q is called an if there exist

a  b such that = w for t  a and = 0 for t &#x3E; b. If 7 has no gliding (geodesic)
segments on aSt, it is called a reflecting (w, 0) -ray. If moreover q has no segments tangent to

aK, then q will be called ordinary.
Fix an open ball Uo containing K and let po be its radius. Given a vector ~ E denote

by Z~ the tangent plane to Uo such that K is contained in the half-space H~ determined by
Z~ and having ~ as an inner normal.

The sojourn time of q is defined by Ty = T~ 2013 2po, where T~ is the length of this part of 7
which is contained in H~, n H-o (Guillemin [G]).

Figure 3 3

Let, be an ordinary reflecting (w, 0)-ray and be its successive (transversal)
reflection points. Then (cf. [G])

Let u7 be the orthogonal projection of xl on the hyperplane Z~. Consider a small open
neighbourhood W = Wy of u,~ in ZW. For u E W there are unique 0(u) E sn-l and points
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xl(u), ... , xk(u) E 8K which are the successive reflection points of a reflecting in

Q passing through u. Thus, one gets a smooth map

The ray y is called non-degenerate if 0.

Finally denote by the set of all (w, 8) -rays in Q.

3 Idea of the proof of Theorem 1

Let K E K be an obstacle in R n and Q = QK. According to some of the results mentioned in
Sect. 1 and to those in [PS2], it follows that to prove Theorem 1 it is sufficient to establish

the following

Lemma 1. For almost all (w, 0) E x there do not exist (w, 0) -rays in f2 containing
non-trivial gliding segments on aQ.

Since this statement is of a local nature, it is enough to consider (w, 0) close to a fixed
(wo, Oo) E x sn-l for which there exists an (wo, (0)-ray 1’0 in Q containing a non-trivial
gliding ray on Fix 1’0 with this property and take a ball Uo containing the obstacle K as
in Sect. 2. Set Z = = Let I be one of the gliding segments of 1’0 (by assumption
there is at least one such segment). Fix an arbitrary interior point xo of I and a hyperplane
Z" in R’~ passing through xo and transversal to I at xe (see Figure 4).

Figure 4

Denote by uo the first intersection point of ~o with Z and by vo the last intersection point of
,0 with Z’. Locally, near (uo, wo), we can identify S* (Z) with Z x Given (u, g) E S* (Z)
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close to (uo, ú)o), consider the generalized geodesic g) in [2 issued from (u, g) and denote
by P (u, 6) = (v, 77) the (unique) point on -y(u, 6) such that v is its last intersection point with
Z’. In this way we get a local map

which is also a local homeomorphism (cf. [MS]). Unfortunately 7~ is not smooth and it is not
even clear whether it is H61der continuous (see [Stl]) for a partial result in this direction).

Fix u) E sn-l close to wo and consider the Lagrangian submanifold

Denote by T the set of all (u, ç) E S* (Z) such that the generalized geodesic 7(u, ç) contains
a non-trivial gliding segment on 8Q intersecting transversally the hyperplane Z". Our aim is
to prove that the set of those 0 E sn-l for which there exists (u, ) E T with P(u, W) = (*, 0)
has Lebesgue measure zero in sn-l. That is, we want to show that has Lebesgue
measure zero in sn-l, where pr2 : S* (Z’) ~ sn-l is the natural projection on the second
factor. This follows easily from the following lemma and Sard’s theorem.

Lemma 2. There exists a countable f amily of smooth (n - 2) -dimenszonal (isotropic)
submanifolds of S*(Z’) such that P(T) C 

Define the local rnaps

in the same way as we defined P : S*(Z) ---7 S*(Z’). Then P = P" o P’. Denote by M the set
of glancing points of S* (Z"). Then M is a symplectic submanifold of S* (Z") with dimension
2n - 4. Clearly

To explain the idea of the proof of Lemma 2 we will proceed for a moment as if the maps
P’, P" were smooth and symplectic. Then

would be a Lagrangian submanifold of S*(Z"). Though the intersection might have
singularities and so it would not be a submanifold, it could be shown that locally 
for some Lagrangian submanifold ,C" of M. Consequently, ~"(,C") would be an isotropic
submanifold of S* (Z’) with dimension n - 2. Moreover

which would prove the statement.

However, as we mentioned above, the map P (and P’ and ~" as well) is not smooth.

Actually, we only want some information about the set ~(~), so the above argument can be
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still applied if one can change P outside T and get a smooth and symplectic map near T. It

is even enough to find a representation of ~’ as a countable union

such that on each set coincides with a smooth symplectic map Pa defined (locally) on
S*(Z). It turns out that such a representation of T exists. In what follows we briefly describe
the construction of the sets 

Let a be a symbol of the type

where m = m(a) &#x3E; 1, ~i &#x3E; 3, li 2: 3, qi &#x3E; 0 are integers. For such an a denote by Sa the

set of those p = (u, f) E S* (Z) such that the part of the ray 7(u,~) between the hyperplanes
Z and Z’ contains e.Kactly m gliding segments 6j = (i = 1, ... , m) with the following
properties:

(i) for every i = 1,..., m, the ray is tangent to 8K at z2 (resp. at y2) of order
exactly ki (resp. li);

(ii) has exactly qo transversal reflections from 8 K between u and xi, qm transversal
reflections between ym and Z’ and qi transversal reflections between yi and for eacl

i =1,...,m- 1.
It follows from a result in [MS] that (3) holds, where a runs over the (countable) set of all

symbols of type (4). Given a and Sa, one changes slightly the generalized geodesic
flow near ,( Uo, ~o) and defines the local smooth and symplectic map P a in such a way that it
coincides with P on Sa. In the same way one gets P£ and P"a. The detailed constructions are
however rather lengthy and technical and cannot be presented here.

References

[G] V. Guillemin, Sojourn time and asymptotic properties of the scattering matrix, Publ. RIMS
Kyoto Univ. 12 (1977), 69-88.

[GM] V. Guillemin and R. Melrose, The Poisson sumation formula for manifolds with bound-
ary, Adv. in Math. 32 (1979), 204-232.

[H] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. III, Berlin,
Springer, 1985.

[LP1] P. Lax and R. Phillips, Scattering Theory, Academic Press, New York, 1967.

[LP2] P. Lax and R. Phillips, The scattering of sound waves by an obstacle, Comm. Pure Appl.
Math. 30 (1977), 195-233.

[Ma] A. Majda, A representation formula for the scattering operator and the inverse problem
for arbitrary bodies, Comm. Pure Appl. Math. 30 (1977), 165-194.



V-10

[MaT] A. Majda and M. Taylor, Inverse scattering problems for transparant obstacles, electro-
magnetic waves and hyperbolic systems, Commun. Partial Diff. Equations 2 (1977), 395-438.

[M1] R. Melrose, Microlocal parametrices for diffractive boundary value problems, Duke Math.
J. 42 (1975), 605-635.

[M2] R.Melrose, Equivalence of glancing hypersurfaces, Invent. Math. 37, 165-191 (1976)

[M3] R.Melrose, Geometric Scattering Theory, Lectures at Stanford University, M.I.T. 1994.

[MS] R. Melrose and J. Sjöstrand, Singularities in boundary value problems. I, II. Comm. Pure
Appl. Math. 31 (1978), 593-617; 35 (1982),129-168.

[P] V. Petkov, High frequency asymptotics of the scattering amplitude for non-convex bodies.
Commun. Partial Diff. Equations 5 (1980), 293-329.

[PS1] V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems,
John Wiley &#x26; Sons, Chichester, 1992.

[PS2] V. Petkov and L. Stoyanov, Sojourn times of trapping rays and the behaviour of the
modified resolvent of the Laplacian, Ann. Inst. Henri Poincare (Physique Theorique), to
appear.

[So] H. Soga, Singularities of the scattering kernel for convex obstacles, J. Math. Kyoto Univ.
22 (1983), 729-765.

[St1] L. Stoyanov, Regularity properties of the generalized Hamiltonian flow, Seminaire EDP,
Ecole Polytechnique, Exposé , 1992-1993.

[St2] L. Stoyanov, Generalized Hamiltonian flow and Poisson relation for the scattering kernel,
Preprint, Maths. Dept., University of Western Australia 1994.

[T] M. Taylor, Grazing rays and reflection of singularities to wave equations, Commun. Pure
Appl. Math. 29 (1978), 1-38.

[Y] K. Yamamoto, Characterization of a convex obstacle by singularities of the scattering ker-
nel, J. Diff. Equations 64 (1986), 283-293.

e-mail address: stoyanov@maths.uwa.edu.au


