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1 INTRODUCTION

This paper is devoted to the investigation of the spectrum of Harper equation,

on L2 (R). In (1. 1) h is a fixed positive number, E is the spectral parameter. Harper
equation appeared as a model for the investigation of Bloch electron in a crystal
placed in the weak constant magnetic field [Ho]. It was discovered that for a wide
class of numbers h the spectrum can be a Cantor set and (1.1) became one of the
most popular models of the spectral theory. There are many papers devoted to this
equation. We give just few references allowing to "reconstruct" the history and the
up-to-date state of the problem: [C-F-K-S, H-K-S, S, L~.

Our paper consists of two parts. In the first part we shortly describe a general
tool, the monodromization operation which we hope is very natural for the spectral
analysis of difference equations with periodic coefficients. In the second part of the
paper we apply this tool to investigate Harper equation.
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The monodromization. To investigate the spectrum of an ordinary differential
equation with periodic coefficients one constructs its Bloch solutions. For that one
introduces the monodormy matrix M corresponding to a basis in the space of the
solutions. The spectral analysis comes to the analysis of the matrix equation

where s is constant. It is almost trivial since lVf does not depend on x.
Consider a difference equation with periodic coefficients. In this case one can

introduce the Bloch solution and the monodromy matrix notions as well. But now
the monodromy matrices appear to be periodic in z and constructing the Bloch
solutions one comes to a new difference equation of the form (1.2) with a periodic
matrix M. We say that the original diRerence equation and this new difference
equation are connected by the monodromization.

It appears that there are many relations between important properties of the
difference equations connected by the monodromization. But if the analysis of the
new difference equation does not yet give all the answers, one has to apply the
monodromization once more and so on.

In result, instead of only one auxiliary simplest difference equation one has to
investigate a sequence of difference equations with periodic coefficients.

The case of Harper equation. To investigate Harper equation we rewrite it in
the form 

, B - B

We show that this equation can be considered as a member of a family of equations

This family appears to be invariant with respect to the monodromization (Theorem
3.1). It allows to investigate Bloch solutions of Harper equation and to get a
geometrical description of its spectrum in terms of an dynamical system,

The spectrum is contained in a set sh consisting of the all points E E (-2, 2~ such
that the corresponding trajectories do not leave a certain domain of the phase space,
see Theorem 3.6. It implies that sh has the structure similar to one of the classical
Cantor set: it can be described by successive removing of the subintervals from the
interval [-2,2].

If h/2-x is rational the above process consists only of a finite number of steps. In
this case we obtain complete description of the spectrum.
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The transformation of a in (1.4) can be interpreted in terms of the continuous
fraction

L 1

It reflects the intimate connection between the monodromization and continuous

fractions in general case.

Semi-classical asymptotics. In section 4 we begin asymptotical analysis of the
spectrum, i.e. we begin to investigate the case when all the denominators pi in (1.5)
are bounded from below by a big constant P. In this case the spectrum appeared
to be a Cantor set having zero Lebeague mesure. But the volume of this paper
does not allow to discuss these questions in details.

The papers of other authors. Our work has close connections with ones of

Wilkinson and B.Hellfer, J.Sjostrand, see, for example, [W, H-S~. These papers are
devoted to the semi-classical analysis of the problem. To check that the spectrum is
a Cantor set, having zero Lebeague mesure, these authors suggested a semi-classical
renormalization procedure. It appeared that Harper equation almost reproduces
itself in course of this procedure.

The papers of Wilkinson give an heuristic treatment of the problem. The papers
of B.Hellfer and J.Shostrand contain the rigorous mathematical analysis.

The central point of our work is the exact reproduction in a wider class of
difference equations.

The methods and the restrictions. Our technique is based on the ideas of the
complex WKB method. It is a known tool in the theory of ordinary differential
equations. In (B-F1 - B-F4~ we developed a version of this method for difference
equations. Our method gives the proofs only in the case when all the denominators
pi in (1.5) are bounded from below by some constant

We hope that the results are independent of this condition.
As we already mentioned, our analysis is connected with constructing of Bloch

solutions of Harper equation. Now we can construct them only when the number
h/27r is rational or Diophantine. Consequently, only for these two cases we obtain
the geometrical description of the spectrum.

Note that (1.6) and the assumption for h/27r to be rational or Diophantine are
not contradictory. This number is rational if and only if the continuous fraction
(1.5) is finite, [K], and it is Diophantine if and only if for all I one has C¡3’
with some positive constants C and ~3, see [Y].

Acknowledgements. Authors are very grateful to A.Grigis, B.Helffer, R.Seiler
and J.Sjostrand for many important remarks and stimulating discussions. This
work supported by Russian Foundation of Fundamental Research. The part of
the work was done when the first author was in Technische Universitat, Berlin.
The work was finished during our stay at University Paris 13 and Ecole Normale
Superieur, Paris. We are very grateful for their support and hospitality.
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2 THE MONODROMIZATION.

In this section we consider the matrix difference equation

where z E R is a real variable, is a given matrix function,

The constants ho and h1 satisfy the inequality

2.1 Set of the solutions.

Let be a matrix solution of equation (2.1) and let

This solution is called fundamental.
A matrix function is a solution of (2.1) if and only if it can be represented

in the form [B-F2] :
_ , . ’" - , , - , , ""-

where C( z) is an hi-periodic matrix,

2.2 The monodromy matrix.

In view of (2.2) Wo (z + ho ~ is again a solution of (2.1) and one can write:

where I is just a symbol of the transposition. The matrix is called the

monodromy matrix corresponding to the fundamental solution To .
Obviously,

2.3 Bloch solutions.

We call a fundamental solution Xo(x) of equation (2.1) a Bloch solution, if the
corresponding monodromy matrix is diagonal:

The function in the last formula is called the Bloch quasi-momentum.
We call a Bloch solution monotonous if c &#x3E; 0 for some positive

constant c.
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2.4 The monodromization.

Represent the number ho in the form

This representation is unique. Let Wo(z) be a fundamental solution of (2.1) and
Mi (z) be the corresponding monodromy matrix. If

one can consider the equation

In view of (2.4) this equation is analogous to equation (2.1).
We say that equation (2.7) appears from equation (2.1) as a result of the mon-

odromization. We emphasize that the matrix M, (x) in (2.7) depends on the choice
of the fundamental solution 

Let us investigate the properties of equations connected by the monodromization.

2.5 The chain identity.

Let be rational, 
-

where no and nl are mutually prime natural numbers. The theorem 2.2 from [B-F3]
can be formulated as follows.

Theorem 2.1 Let To be a fundamental solution of (2.1) and be the

corresponding monodromy matrix. Then
1__1 , ,- ’__I , , , - , __I "’...

We call formula (2.9) the chain identity.

2.6 Lyapunov exponents.

In this subsection we assume that the ratio hi / ho is irrational. Under very

general assumptions about the matrix for a.e. x there exist the limits

and

independent of x, see [0]. These limits are called the Lyapunov exponents. We
denote them by À:f: (Mo, hl) -

Note that the ratio h2 is irrational as well. One can try to calculate the

Lyapunov exponents h2). It leads to the following statement.
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Theorem 2.2 Let the fundamental solution of equation (2.1) be locally
bounded. The Lyapunov exponents À:!:(MI, h2) exist if and only if the Lyapunov
exponents hi) exist and

We do not prove this theorem here and remark only that it can be considered as
a generalization of Theorem 2.1 for the irrational case.

2.7 The monodromization and the Bloch solutions.

For h, / ho being irrational the existence of a Bloch solution of equation (2.1 )
from a "good" functional space is usually not obvious. The monodromization can
help to solve the problem.

The monodromization of equation (2.1) leads to equation (2.7). Assume that it
has a Bloch solution XI. By definition,

r2 is a diagonal matrix. Let el (x) C SL(2, C) be a diagonal matrix such that

One can write

where E is an hl-periodic matrix:

Of course, the matrices $1 and -, in (2.12) are not uniquely defined.

One can easily check the theorem:

Theorem 2.3. Let there exist a fundamental solution ~o of equation (2.1), a
Bloch solution X, of equation (2.7) arising after the monodromization of (2.1) and
let X, can be represented in the form (2.12). The matrix

is a Bloch solution of (2.1) and the corresponding monodromy matrix is given by
the formula
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Normal Bloch solutions. Monotonous Bloch solutions are important for spec-
tral applications. Are there monotonous Bloch solutions of equation (2.7) such that
the corresponding Bloch solutions of equation (2.1) are also monotonous? There is
one case when one can guarantee it.

Consider equation (2.1). We call its monotonous Bloch solution Xo (x) normal if
the corresponding quasi-momentum is ho-periodic,

Note the definition of the quasi-momentum and formula (2.15) imply that the
quasi-momentum of a normal Bloch solution is both ho-periodic and hl-periodic in
x. Thus, in the case when hi /ho is irrational the quasi-momentum is independent
of x .

Lemma 2.4 Let equations (2.1) and (2.7) are connected by the monodromiza-
tion and let there exist a normal Bloch solution of (2.7). Then there exists a normal
Bloch solution xo of equation (2.1).

Proof. Let xl be a normal Bloch solution of (2.7) and let k2 (z ) be the corresponding
Bloch quasi-momentum. One can easily represent in the form (2.12) just by
choosing

Therefore, by Theorem 2.3, one can construct a Bloch solution xo of equation (2.1).
Formula (2.14) implies that

’f

Therefore is monotonous. Since ho = plhl + h2 and k2(x) is both hl- and
h2-periodic, formula (2.16) implies that kl (x + ho) = ki (x). It means that xo is a
normal Bloch solution.

a

2.7 The monodromization procedure.

As we have already seen, the investigation of different objects related to equation
(2.1) comes to the analysis of the analogous objects for equation (2.7). If, never-
theless, the analysis of equation (2.7) does not answer the questions concerning
equation (2.1), it is natural to apply the monodromization to equation (2.7). These
arguments lead to the idea of the monodromizaction procedure.

Define the sequence h~, h3, ... , by the formulae

If hi / 1~~ E Q then at some step of this calculation we get = 0, and thus, the
sequence hi appears to be finite.
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Note that the ratio hi / ho can be uniquely represented as a continuous fraction
with the elements from N. The numbers pl, p2, p3, ... coincide with the denomi-
nators of this continuous fraction:

If hI / ho C Q then the continuous fraction (2.7) is finite.

Consider the sequence of the equations

where Mi is a monodromy matrix corresponding to the fundamental solution 
By construction,

One can say that all of these equations are generated by the equation (2.1). We
call this process the monodromization procedure. If ho C Q it consists of a
finite number of steps.

The general properties of the monodromization procedure imply from the prop-
erties of its elementary step, i.e. the monodromization. We discuss specially only
the case ho E Q.

2.8 The monodromization procedure in the rational case.

Denote the number of the last non-zero hi by L. Suppose that we can construct
fundamental solutions for all the L equations (2.19).

The chain identity implies that

where ML(x) is the monodromy matrix constructed at the last step of the mon-
odromization procedure.

One can not construct a Bloch solution of the equation

as in the subsection 2.6: since = 0 one can not apply the monodromization
to (2.21). Consider a fundamental solution of (2.19), the corresponding
monodromy matrix and the equation for eigen-vectors and eigen-values of

The matrix is diagonal, det lll L =1, both the matrices are hL-periodic,

In terms of matrix lll L (z) one can easily construct a Bloch solution of (2.21):

The corresponding monodromy matrix is given by the formula:

The above Bloch solution exists if tr ML (x) =,4- ~2.
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3 MONODROMIZATION PROCEDURE FOR THE CLASS M

3.1 Class M.

Consider the set of the unimodular matrices

Here we describe explicitly the dependence A4 on x : the parameters a, d, s and t
are constant. Since det M = 1 one has

In the above set we separate the manifold M

We denote the pair (s, t~ by w and the corresponding matrices by A4(z, w).
In the sequel we call the value

the spectral parameter. Note that for w E I~I(

At the "curve" t = 0 formula (3.2) does not make sense. Fix the value of the

spectral parameter £ (w) and direct t to 0. It makes the s to tend to +1 . When

the matrix 44(z, w) turns into the matrix

Note that any of the equations

is equivalent to Harper equation (1.1). Thus, one can say that there are two singular
points in corresponding to Harper equation.

3.2 The monodromization on M.
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Consider the equation

Here h and w are two fixed parameters,

One can prove the following statement.

Theorem 3.1. Let Cl, C2 and c3 be fixed constants, -2  C2  c3, ci &#x3E; 0.

There exists an h* such that if

and

one can construct a fundamental solution of equation (3.5) so that the
corresponding monodromy matrix Ml(x) has the form

where w1 E M is a coefficient independent of x,

The fundamental solution is entire in x, both and f (w, h)
smoothly depend on w and h.

Remark. Note that all the coefficients of the matrix smoothly depend
on w. Therefore, even if = 0 for some w, the "new spectral parameter"

remains finite.

Theorem 3.1 was proved in [B-F3] for the case when instead of (3.8) one has
0  c~  ~ (w)  c3. Extending the proof to the case c2  0 we found out that

can have singularities when the value E (w) is close to -2.

We call the solution mentioned in this theorem standard.

Theorem 3.1 remains true for equations (3.4). But in this case, of course, condi-
tion (3.7) disappears and condition (3.8) has to be substituted by

Now the standard solution and the coefficient smoothly depend on E,

The proof for the case 0  c2  E  c3 can be found in [B- F 2] .
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To use Theorem 3.1 for the spectral analysis of Harper equation we have to take
care of the cases when conditions (3.7) - (3.8) are violated.

3.3 Symmetries.

Let us define the operations:

and

Obviously, these operations preserve the properties (3.2).
Consider equation (3.5). One can easily prove the following statement.

Lemma 3.2 Let w) be a matrix solution of equation (3.5) then

where

is a solution of the equation with the matrix A4(z, T w).
Moreover the matrix 

b 11A A

where

I I

is a solution of the equation with the matrix A4(z, jh w).

There is an analog of the first part of this Lemma for Harper equation.

Lemma 3.3. Let be a solution of (1.1) then

is a solution of equation (1.1) with E changed by -E.

These Lemmas lead to beautiful properties of the functions f (w, h) and f o (E, h).
They are also connected with internal symmetries of the spectrum of Harper equa-
tion. We are planning to discuss it in an separate paper. Here we just mention
only that Lemma 3.3 implies the relation
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4 BLOCH SOLUTIONS AND THE SPECTRUM OF HARPER EQUATION

To get a geometrical description of the spectrum of Harper equation we inves-
tigate the existence of monotonous Bloch solutions for the matrix equation (3.5).
Now we can do it only in two cases: when h’ is a Diophantine number and when
it is a rational number.

To prove our main results we assume that the ratio h/27r can be expanded into
continuous fraction (1.5) so that all the denominators pi are bounded from below
by some positive constant P,

4.1 Bloch solutions. Preliminary results.

Consider equation (3.5). Without using the idea of the monodromization one
can prove the following theorem.

Theorem 4.1. Let ci &#x3E; 0 and c4 &#x3E; 2 be some fixed constants. There exists an
1~* such that if

and

then for h /27r being rational or Diophantine one can construct a smooth normal
Bloch solution of equation (3.5).

Does there exist any Bloch solution in the case when the number £ is irrational
but not Diophantine? Such numbers are extremely close to rationals ~K~ . We note
that the Bloch quasi-momentum does depend on z in the rational case and is
independent of x in the Diophantine case. Thus, the answer for the "boundary"
case can be quite subtle.

4.2 The Bloch solutions and the monodromization.

In this subsection we continue the investigation of Bloch solutions. Now we

use the idea of the monodromization and Theorem 3.1. The conditions (3.7)-(3.8)
restrict the direct application of this theorem and we have to use an auxiliary tool:
the invariance properties of equation (3.5) described by Lemma 3.2.
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Consider equation (3.5). Let ho = 2-r, hl = h. Construct the sequence ho, hl,
h~, ... as in section 2.3. Recall that this sequence is finite,

when h/27r C Q.
Define, when possible, the sequence

Theorem 4.2 Let c be a fixed positive constant. There exists P &#x3E; 0 such that

for h satisfying condition (4.1):

then there exists wm+i . In the case h/27r C Q, of course, m  L.

and h/21r is Diophantine, then there exists a normal Bloch solution of equa-
tion (3.5). If h/27r is rational then m  L but instead of the L-th condition
it suffices to check that

Proof. We give here the proof of this theorem to illustrate how our main "tools"
do work.

We shall use Theorems 3.1 and 4.1. Fix the constants in (3.7) - (3.8) and (4.3)
- (4.4). Let

Chose ~* so that h* and the chosen values of constants ci, c2, c3 and c4
both the theorems be valid simultaneously.

Put 
-

Now (4.1) and (2.17) imply that

It is easily seen that if h/27r is Diophantine then all the ratios are Diophan-
tine and if h/27r is rational then all the ratios are rational as well.
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The first statement of the theorem follows from the definition of h and Theorem
3.1.

To prove the second statement we use Lemma 4.3. In this lemma and in the

sequel we denote by X(x7w7h) a normal Bloch solution of equation (3.5) and by
the corresponding quasi-momentum.

Lemma 4.3 Let there exist a normal Bloch solution 7 1 W I h, h). Then there
exists also a normal Bloch solution x(x, w, h).

Proof of Lemma ,~. ~. Recall that 1.lh is defined by (4.5). The case when w = 
is trivial. There are, however, three other possibilities.

The case Iwlh = j w. It happens when the second component of w satisfies the
inequality It I &#x3E; 1. Put

where it is the matrix given by (3.13). Since j2 = 1 then by Lemma 3.2 formula
(4.6) gives a solution of equation (3.5). Obviously, = 

Thus, the solution is fundamental. But

where is the monodromy matrix corresponding to There-
fore is a Bloch solution of equation (3.5) and corresponding monodromy
matrix is given by the formula:

It implies the statement of the lemma.

The case when w, = T w. It happens when

where u3 and are given by (3.12). Again by means of Lemma 3.2 one can
check that is a fundamental solution of (3.5). But
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where

and is the monodromy matrix corresponding to Since

is diagonal, the formulae (4.7) and (4.8) imply that is a Bloch

solution of equation (3.5). Moreover,

It means that is normal.

The case when w, = w is a simple combination of the two previous cases.

0

Now we can come back to the proof of the Theorem. Let for a given w one has
from the beginning:

By Theorem 4.1 one can construct But then, since w, = there
exists x( z, w, h). It proves the theorem in the case (4.9).

If

then by Theorem 3.1 there exists the standard solution W(x,wl,h) of the equation

and applying to (4.10) the monodromization one comes to the equation

Recall that

Consider at first the case when

In this case by Theorem 4.1 one can construct a normal Bloch solution

and then, by Lemma 4.3, a Bloch solution x(x, f (w1, hi), 2r h ). Obviously,1 y

is a normal Bloch solution of equation (4.11).
Since X, is a normal Bloch solution of (4.11 ), then by Lemma 2.4 one can con-

struct a normal Bloch solution X(x7 wl , hi). Now the proof of the theorem follows
from Lemma 4.3
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If instead of (4.12) one has £(w2)  2 + c, then to prove the theorem it is

necessary to apply the monodromization once more, now to equation (4-11), and
so on. It leads directly to the proof in the irrational case. To finish the proof in the
rational case one has to construct also a normal Bloch solution of the equation

where hL is the last non-zero hi. For that one has to use the results of subsection
2.8.

0

4.3 The spectrum of Harper equation.

It appears that for Harper equation as for ordinary differential Schr6dinger equa-
tions one can prove that if for a given E the equation has monotonous Bloch solu-
tions, i.e. solutions having the form

where v C L2(O,27r) is a 27r-periodic function and 0, then Harper operator
has the bounded inverse on L2 ~I~). The existence of the solutions (4.13) can be
investigated by means of Theorem 4.2. It leads to the following result.

Theorem 4.4 Let c be a positive constant. There exists a positive constant P
such that under condition (4.1) the spectrum of Harper equation (1.1) is contained
in the set Sh described by the conditions:

where

and
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Remarks
1. Note that

_ _

where is the sequence of the "monodromization shifts" from subsection 4.2.
2. By definition all the wi are even functions of E.

The theorem implies that the set sh has the structure similar to one of the
classical Cantor set: it can be described by successive removing of the subintervals
from the interval (-2, 2~.

Formulae (4.14)-(4.15) describe a dynamical system. The set Eh can considered
as a "generalized Julia set": it consists of the all points E C (-2, 2~ such that the
corresponding trajectories do not leave the "domaine" £ (w)  2 + c in the "phase
space" M.

Does the set sh coincide with the spectrum of Harper equation? In the rational
case one can obtain the exact condition for E to be in the spectrum:

where Mo is the matrix from (1.3) and n is the denominator of the fraction 1~~2~r. In
this case the monodromization procedure consists of a finite number L of steps. By
means of the chain identities and Lemma 3.2 one can prove that (4.17) equivalent
to the inequality: 

- -

5 SEMI-CLASSICAL ASYMPTOTICS

To describe the semi-classical structure of the spectrum, i.e. its structure when
all the al from (4.16) are small or, equivalently, when P in (4.1) is big, it suffices to
get the asymptotics of the function as h ~ 0. But the volume of the paper
does not allow to discuss it entirely. As we already mentioned the set Sh can be
described by successive removing of the subintervals from the interval (-2, 2~. Here
we describe the first step of this removing. It gives correct idea about the whole
process.
We begin by writing down the asymptotics as h -i 0 for the function 

which enters into the second of the conditions (4.14). Obviously, it suffices to

consider the case E &#x3E; 0.

Semi-classical asymptotics of the function El (E).

The leading terms of the asymptotics can be described in terms of the complex
isoenergetic curve

The function p(z) defined by (5.1) is a many-valued function. The picture of its
branching points is 27r-periodic. There are always only four branching points in the
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FIG.2

strip -~r  Re z  7r. In fig. 1 we show branching points for 0  E  2, fig. 2

corresponds to E &#x3E; 2.
Put

and

The contours y1 and y2 for different values of E are shown in fig. 1 - 2. The
branches of the momentum p in (5.2) and (5.3) have to be chosen so that S’(E) &#x3E;

0 for E &#x3E; 0 and 4l(E) &#x3E; 0 for 0  E  2. Note that the function S(E) is
monotonously increasing, 8(0) = 0, the function is monotonously decreasing
and ~(o) = 2~r2, 7 ~(2) = 0.

To write down the asymptotic formulae we have to introduce also two standard
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functions U(ç) and V(~), ~ E R. The function U is given by the formula:

it possesses the properties: ~U~~~~ = 1 and U(g) - 1 as g - +oo.
The function V(~) is given by the formula

Now we can write down asymptotic formulae for Let 0  e  1 be a
fixed constant. For 0  E  e:

Finally, when 2 + ~  E  2 + Const one has

All these formulae are uniform in E.

The asymptotic formulae allow, in particular, to draw a typical graph of the
El (E). We show it in fig. 3.

Note that due to (3.14) El (0) = 2 cos( 2"2 ) and that by the definition of Elh

4.2 Asymptotic properties of the spectrum.
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I’ 

FIGURE 3.

Let us come back to the Theorem 4.3 In view of (4.14) the graph of the function
shows that as ao - h --3 0 outside the small vicinity of the point E = 0 the

spectrum can be covered by a system of exponentially small intervals.
If we want to investigate the spectrum with more details, we have to take into

the account the second condition from (4.14),

For that we have to separate from (-2, 2) all the subintervals where the graph El (E)
is monotonous and El (E) :5 2 + c. Denote one of them by [a, b). On this interval
we have "to replace" the graph of by the graph of the function E2 ~E~. The
further asymptotic analysis shows that if al is small the graph of E2 (E~ on the
interval [a, b) has, up a natural change of scale, the same character as the graph of
El (E) on the whole interval (-2, 2). It means that the spectrum of Harper equation
on the interval [a, b) is contained in the set of subintervals which are discribed by
the condition E2(E) :5 2 + c. Outside the small vicinity of some point in [a, b] they
are exponentially small with respect to the natural new scale.

Repeating these arguments in the case of an Diophantine h/2-T, one can see that
the whole spectrum of Harper equation is contained in a Cantor set having zero
Lebeague mesure. 

’

In the case 27r/h = q, q E N just one step of the above process leads to the
complete asymptotical description of the spectrum. In the case h/2-r 6 Q one has
to make a finite number of steps.
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