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SEMICLASSICAL ASYMPTOTICS FOR EXCHANGE ENERGYT

VICTOR IVRII

In this talk I would like to present the very first results of my intervention to the

Multiparticle Quantum Theory (MQT). A lot of nice results was obtained by math-
ematical physicists but the Theory of Semiclassical Spectral ,4sjrmptotic,s (TSSA)
was applied only in a few papers and I believe that the systematic application will
provide some progress. This is my long term project. However, it is vital to combine
methods of TSSA and MQT.

1. General. Let us consider the following operator (quantum Hamiltonian }

describing 1’V same type particles in the external field with the potential V and re-
pulsing one another according Coulomb law. Here x, C and ( .z 1, , , . , E 

A is a positive Laplacian in 1R d, function is assumed to be real-valued. Mass
is equal to 2 and Plank constant and a charge are equal to 1 llere. The crucial

question is the quantum statistics. We assume that the particles (electrons) are
fermions. That means that the Hamiltonian should be considered on the Fock

space H L2(IRd) of the functions antisymmetric with respect to all vari-_
ables while for bosons one should consider a space symmetric functions
or (what is the same in our problem) on the space of all f1111C-

tions. We neglect the fact that one particle is described by the wave function
4Y e rather than by the wave function e C). One call 

adjust our arguments to the case q &#x3E; 1. Let us assume that

(2) Operator H is self-adjoint on H.

We will never discuss this assumption. We are interested in the ground st;1tC
energy E = of our system i.e. in the lowest eigenvalue of the operator H on
?-~. The first approximation is the Hartree-Fock (or Thoma,s-Fermi ) theory. Namely.
let us introduce the space density of the particle with the E 7~:

t Work was partially supported by NSERC, grant [3827 1-.
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(antisymmetricity of il&#x3E; implies that it doesn’t matter what variable is replaced by
~r). Let us write the Hamiltonian, describing the corresponding "quantum liquid":

2
where the numerical value of x is d( 2 d)-1, Wd is the volume of tlle unit
ball in The classical sense of the second and the third terms is clear allel why
the density of the kinetic energy is in the semiclassical approximation will
be explained later. So, the problem is to minimize this functional under r estrictions

The solution if exists is unique because functional £(p) is strictly convex’. The
existence and the property of this solution denoted further by is kllOBVll lzl the

series of physically important cases.
To justify the heuristic formula E - ST F = E(PTF) and to find the error estimate

let us deduce the lower and upper estimates of E. For lower estimate we apply the
electrostatic inequality due to E.H.Lieb (later we replace it by more precise bound
due to Graf-Solovej):

This inequality holds for all (not necessarily antisymmetric) fllllctiollS l’ with
’ Actually it was proven = 3 but generalization for (1 &#x3E; 2

is rather trivial. So,

where , means the inner product in H and .4 is one-particle Schrodinger operator
with the Tholnas-Ferlni potential vl-

The physical sense of the second term in tV is transparent. Skipping the positive
second term in the right-hand expression of ( 7) and believing that the third tfBrnl is

1 Operator with the Schwartz 1 is positive due to Ff’fFerlnan-La decompo-
sition for d &#x3E; 2.



XX-3

not very important for the ground state function we see that we need to estimate
from below the first term. Here assumption that , is antisymmetric is crucial.
Namely, for general ) the best possible estimate is where ~1 is the lowest

eigenvalue of A (we always assume that there is sufficiently many eigenvalues under
the bottom of the essential spectrum of A) and we cannot go further. However, for
antisymmetric ~ we get instead

where N(B), N1(B) are the number and the suin of all the negative eigenvaliies
of operator B (such that C R+)  0. Applying the
semiclassical approximation (need to be justified!) one gets

and therefore the below estimate for the ground state energy is

Furthermore, applying Se1111C1aSSICal approximation for the nuiiil)ei- Nj .4 - of

eigenvalues below A (and this number should be approximately A"-) one gets an
equality

.,

On the other hand, let us ronsi(ler the Euler-Lagrange equation for /9 = y’hL’:

with the Lagrange factor v. Expressing p and integrating vve get

Comparing ( 11 ~ and ( 13 ) we get that with some error A = i/. Substituting to
the fir st term in (10) A = l~ and v - W = + § )pi we get the lower estimate
E &#x3E; error. 

’

To get the upper estimate one takes a test function ~’~(,z°1, ... , .r,~ ) which is al
RlltisYlll1netrization with respect to yt°1 ... , :c n) of the product Ó 1 ( ,t’ 1 ) 
where ,c1, ... , are orthonormal eigenfunctions of ..4. corresponding eigenvalues
/B 1 ’B ... 1 ; . Namely this function minimized the expression
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in H. One can write = 1~" det (~i(x~ )~ i ,.r ~=1 , ... , l~ and it is called Slatter determi-

nant. = 1 and p ( r ) = where == ~~ ~/(-~)~7(!/) is

the Schwartz kernel of the pro jector to the subspace spanned 1 ~.7 ~ .Y’ Pretty
easy calculations show that

Let us replace in the first term ?’ by N(A - /N ) . Then vve get Ni ( -4 - B) + 
p) with an error A(N - N(A - A)) linked with the possible degeneration of the
eigenvalue À == AN. Then we get an upper estimate

Treating the third and fifth terms in the right-hand expression as errors and ap-
plying the semiclassical approximation to the first one we get the upper estimate
E  1"TF + error.

So, there are two types of errors. The first is due to replacement E hy

and the second is an error of the semiclassical approximation of tWO first terms
including lnay be the replacement A by v. Actually, negligence of the third term in
(14) is the semiclassical approximation either.

2. Large molecule. I. The most known example is the case of n large nuclei
with the cha,rges Z1, ... , Z, located at fixed points ,yl , ... , ~?, . Then

in (1). Let us assume that

The first assumptions means that the system is neutral and it yields that 7/ = 0. Let

us assume that d = 3. The properties of PTF are well-known. In particular. 
where p doesn’t depend on 1V explicitly and it is analytic (excluding

positive and N.anishing at infinity a,s (inin j T - Yj I) -4. Then
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with constant Ko = C’7  0 (depending oil Yj). It can be proven by the methods of
mathematical physics solely that

Let us consicler operator ./1. Rescaling as before we get in the new coordinate

with potential TV which doesn~t depend on TV explicitly. Then N1 (.-I) _

N1 ( Ah ~. Weylian semiclassical approximation for Ni(.4/J and it yields
to approximation for E. The error is 0 ~ h-2 ~ and it yields to the error 
in the final answer. If potential TV was smooth the error would 1)~ 0 (h -~ ) for the
rescalecl one-particle problem and the final error would be 0(A"~). However, the

Coulomb singularity of vh produces additional with r~ ~ = £ ~ =§ ,
~ = in the semiclassical approximation for N~(.4/~) and it yields the Scott
correction terln

in the final answer. The error 0(/? ~) (and even 0(/?~ ~) was recovered ill one

atom case by Fefferman and Seco (see [FSI,2] for references to earlier papers) and
this and all the previous proofs 11eavily use the splierical symmetry of the problem.
Actually, in all these papers variables were separated and the ODE was carefully
investigated and the semiclassical approximation for the final answer was obtained
by the WKB method. This proof is very sophisticated and very long and it leads
to the record-beating estimate but it works only for spherically symmetric system.
So, the final error was 0(A~ ). On the other hand, by methods of tlie semiclassical
spectral asymptotics for PDE Ivrii and Sigal [IS] got an error estimate O (fi ~ l ) for
sel11iclassical approximation (with Scott correction term) for 1 and it leads

to tlie final error 0 (-A’ 1-6 Later the error was improved up to (9(/?"~). So. the

final error is again. I should note that both results were obtained under

(physically reasonable) assl1lnption Iy] - Ykl FN-1- V’ k with an arbitrarily
small constant F &#x3E; 0. It is very important that H 2013 ~ - == &#x3E;. - .7;-

However, one can get the remainder estimate without these assumptions.
Then applying Tellers lemma one gets immediately that the the excess (ground
state energy for molecule with the added potential energy of repulsion between
nuclei 1ninl1S the sum of ground state energies for atoms) is larger than

where C’ is the mininml distance between nuclei. Here the first term is tlie lower

bound for excess lI1 the Thol1las- Ferl1li -il)proxim-,ition al1cl Teller lemma deals BB"it 11
it and second is the remainder estimate. Therefore, assuming that nuclei occupy
positions minimizing the ground state energy one gets estimate ( 2 _- _ 2 . S(). our
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assumption is justified in this lllodel..LB.Pl)lying now remainder estimate 
5

one improves this estimate N- 21,

The last thing I want to explain is why one can replace A by v = 0. In the

lower it is trivial: £ x A- doesn’t increase if one replaces arbitrary 1 by 0.
&#x3E; - 

.

In the upper bound one can apply all the above arguments with lV replaced by
,I1T = maxa, SO j) and then one can replace A - by 0. Then one gets
the proper upper bound for the ground state energy E(Z, N) of the same s3-stei&#x3E;i
but with V electrons. However, according to HVZ-theorem E(Z,7V) E(Z, N) if
Z = N &#x3E; lV. I recall that Z is the total charge. Note that these arguments belong
to MQT.

3. Large molecule. II. In order to improve the remainder estimate 
in the final answer one needs to improve the remainder estimate O(12-1 ) in the
semiclassical asymptotics for and the remainder estimate in the original
reduction.

Let us consider first the semiclassical asymptotics for N1 (~.h ). It is standard that

the remainder estimate 0(h,^1 ) cannot be improved without global assumption:
one needs to consider closed Hamiltonian trajectories at the energy level 0 for the
corresponding classical Hamiltonian a(x , ~) _ 1~12 +W(~~). It is known in the theory
of the semiclassical spectral asymptotics and the same conclusion is made ill [FS1,2]
on the ground of their calculations. So, let us 0}
with the natural measure p = da and Hamiltonian flow preserving it.
The first very basic conclusion is the following: 0 denotes tlie

set of points of° E , periodic ivithr-espect to 4)a, then

where are the leading and Scott coefficients and

is Sc-Iiivinger correction; Zl, x2 are known positive numbers. One can easily justify
the basic assumption = 0 for the atom using the known properties of TV.
Moreover, one can prove this for molecule as well assuming that -

0o b’j (physically reasonable assumption). In order to improve this remainder
estimate one should assume some properties of the Hamiltonian flow. Namely, to get

with 8 &#x3E; 0 one should assume no more than power growth of the Jacobiall
matrix of q,( t) and some estimates for the measure of "almost periodic" points.
However, for atom it is completely integrable and one can check this properties.
For molecule with 

’

the necessary properties are due to the properties of atoms (one should 
1z- with arbitrarily small 6" &#x3E; 0. The assumption to the nuclear distances is

physically reasonable. So, 111 the physically interesting; case thls part of the jar) is
done.
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For atoms the arguments of Fefferman-Seco go further: they got the same remain-
der estimate with the small but specked exponent 6 &#x3E; 0. This is the aclvantage of
the explicit calculation over general methods of PDE in the (pretty rare) case when
these calculations are possible. Moreover, using the methods of the semiclassical
spectral asymptotics one can prove that under assumption (22)

where Ajh mean reduced "one-atomic" operators and b = 126’ - 1 for 6’  ~ .
Therefore, applying Fefferman-Seco result (asymptotics of Ni ) for atom one extends
it with the same (pretty small) exponent 6 for molecules under this assumption. In
the "optimal positions of nuclei model" we already got 6’ = 1 and it is suflilcient
for this extension. However, I don’t know how to extent Fefferman-Seco results for
term (25). But it is not necessary, if the lower bound for e (in the original model)
is all we want to know. One can now improve it further.

Finally, I would like to notice the following funny result. If a~~ the trajectories
escape to infinity then the remainder

estimate is linked only with the singularity. Namely, let us assume that TV,- _
with ~f (r) &#x3E; 0, arT,2 f( r) &#x3E; Eor2 f {r), (  for all ci  Further,

let us assume that for all a : 1;0, 0  tl  1.

Then one can get the remainder estimate 0(1), witll l, = ( 1- ?c~ ){ 1 - 
for  , q &#x3E; ; respectively. In this case the Scott correction term is with

2 2

1 = l { C’ -+-1 ) 1 ( Wlth some constant and coefficient 12 is de7.11ed y’ the different
way. Moreover, for q - 3 the first term is and for tl &#x3E; 3 Scott term
is principaal and coefficient Ko is defined by the different way for c 2 t. Moreover,
this conclusion remains true if I  for I Q I  1 with

sufficiently small E &#x3E; 0.

This is impossible if in the original problem electron-nuclei interaction was
Coulombian (because I’ decays as v i . However , I believe that in the case of
more slowly decaying at infinity potential V one cal get satisfying these as-
sumptions. However, these funny nuclei can bind an infinite i-iul-i-il-)ei- (_)f electron.

4. Large molecule. III. Correlations. Only now I pass to the main topic
of my talk. Now we need to improve remainder estimate il the reduction. First of
all, Graf and Solovej improved the electrostatic inequality and applying it to the
problem in question improved the lower estii»ate:

with some (known) constant Jr3 &#x3E; 0. The one can rewrite the third (Dira,c cor-

rection) term in the form The proof is pretty complicated but completely
in frames of MQT (I10 PDE!). To get an upper estimate we try again the Slater
determinant test function. Then we need to consider asymptotics of
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and

Let us start from the first one. We ca,ll it correlation.

Theorem 1. In our conditions

This theorem is a corollary of the following local version and some functional
analytical arguments (nevertheless not arguments of mathematical physics):
Theorem 2. Let us consider Schrodinger operator ..4h == -1~~~ ~ Let 

be self-ad oint in where X is a domain in d &#x3E; 2 containing the Ul1it 
B(O, 1) and let

be supported in ~(0, ~) x B(0, 2 ) and

wi th 0  p  cl . Here K - K (d). Then

Where e(x, y) is the Schurartz kernel of the spectral projector 11(0). Here 1,Vlevl =
and moreover Weyl x under natural conditions.

The last theorem is due to more general theorem I don’t want to discuss here.
Moreover, there is no need to improve the remainder estimate for our goal. HoBvever’l
I want to note that the main obstacle are not only closed trajectories but also loop
(see below).

5. Large molecule. IV. Loops. Let us consider term (25). I recall that

p(~~) = c(x, a). The local theorem is now

Theorem 3. (i~ In frames of theorem 2

provided either d &#x3E; 3 our
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-/ 
d

here an d below 

(ii ) Moreover, for d = ?

15.ithout condition (31 ); I recall 0  p  2.

Applying this local theorem one can recover only estimate for (25). In

order to improve it one should consider Hamiltonian trajectories. However, at the
moment not only closed trajectories seem to cause troubles but loops as well.

Definition 4. Point (~.() is a loop point if _ ( .r, ~’ ) for some
t i- 0,~. Note, that (’ = g means exactly that (.1’.~) is periodic.

One can introdllce measure the lay er of over .1’ and one

can prove easily that left-hand expression in (31) is Oh1 ‘l) l)roYideel/ll’ -111e3S11re
of the loop points over ~’ is 0 and we can control long-term trajectories. Moreover.
if ji-niea,sure of all the loop trajectories is 0 then R = o(h2-d) and = 

These results with the possible adjustments for u;ell-coiitrolled Hal11iltol1iaIl 
perimt to recover estimate and even 0 (iV’ 3 -) for (25) under COl1clitiorl
(22).

I would like to notice that the p-ineasure of the set of loop points which are
not periodic is 0 and therefore these points are of the little importance 
Really, due to condition fl’ # ( the loop points forlll a set of the (natural) measure
0 along any non-periodic trajectory.

6. Jellium model on sphere. To understand the link of the periodic tra-
jectories and (25) let us consider the high-density neutral jelliurn (Hl the sphere
instead of standard IR. d. The neutral jellium model means that tllP potential 1/" is

cI’PatE’Cl by the charges uniformly distributed on the manifold 1 with the density
p _ Then pr F (.1’) = p and = 0. So. we get ..4. = -A. I will

discuss only upper bound. There is a very little doubt that, the bound can

be obtained 1)y Graf-Solovej method. In this case A = (27r)~~ ~/). In the

general model one can get easily upper hound (substituting the Slater determinant
as a test function)

and going to semiclassical expression one gets easily the aiisw(-,r in the for m +

with well-established constants Moreover, under cC&#x3E;11cli tioll = 0

one gets easily. the upper bound in the form + h" + o(214
Let us consicler ultimately  _ 2. There is all explicit formula for N1 (,,--1-
+ (nevertheless it contains non-Weylian ternl of the magnitude .X" 3 j and

we need to pstirllate only (25). Note, that nevertheless eigenfunctions 



XX-10

to eigenvalues less than are not chosen uniquely, their total contribution tc&#x3E; 

is defined uniquely. However, it is not true for eigenfunctions corresponding to
eigenvalue /N N because only some but not all of them should he taken (the number
of these eigenfunctions should be N(A - ÀN-1). This arbitrary choice doesn’t
affect other terms in (34). One can note easily that (25) doesn’t change if one takes

corresponding only to these last M eigenfunctions and p = Let

be the dimension of the eigenspace corresponding to À1V; formula is
l{nown but out of importance. It is not true that for any N and M - 1, ... , one

can pick eigenfunctions with = p. However, -1  C1.lvIN for any choice
of these eigenfunctions and mesf x, p(~ ) - pi &#x3E;  for an appropriate
choice of these eigenfunctions where E &#x3E; 0 is arbitrarily small a,nd E~ - 0 as
N ~ oo. Thus, upper estimate

fiolds and I am sure that one can replace by O(1Vi-8) using the same
argument s .

Moreover, it is not very difhcult to treat jellium model for manifold X with the
boundary and even with singularities of some type.
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