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Introduction

The Lagrange problem consists in finding the plane curve which by its rev-
olution about an axis in its plane determines the column of greatest efficiency.
For column of unit length and volume, efficiency denotes the structure’s resis-
tance to buckling under axial compression. When A is the magnitude of the
axial load and u the resulting transverse deplacement, the potential energy is

! !
/ ETWPdx — ,\/ [ |*da
0 0

with the two terms measuring bending and elongation respectively. Here [ is
the second moment of area of the column’s cross section and F is its Young’s
modulus. For sufficiently small A, the minimum of the potential energy over
all admissible displacements is zero. That means that

A = inf/EI|u"|2d.1'// |’ |*dx,

where inf is taken in the class HZ2(0,1). The first order necessary conditions
require then that the function w, on which the infimum is attained, satisfies
the equation

(ETu")" + Mu" =0, u(0) = «'(0) = u(l) = u'(1) = 0.

For the Lagrange problem the Young's module is assumed to be constant
and, as the column is a solid of revolution, each cross section’s second mo-
ment of area is simply a constant multiple of the square of its area A, i.e.
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I(z) = cA*(z). (If the column is hollow, then I(z) = cA®(z).) We assume that
A(z)dx = 1, i.e. the volume is unit.

The problem was attacked at first in 1962 by Keller and Tadjbakhsh. They
received a necessary condition A*|u”[> = A® and proved that 167%/3 is the
buckling load of the resulting column. In 1977 Olhoff and Rasmussen noted
that the proof of Keller and Tadjbakhsh is not neat, because the first eigenvalue
can be multiple and the least eigenvalue does not vary smoothly with A at
points, where the multiplicity exceeds one. Cox and Overton attemted to
prove that the solution of Keller and Tadjbakhsh is not optimal.

It is worth to remark that the article of Keller and Tadjbakhsh was very
useful and the final result is correct in spite of some errors in the proofs. We
have used other methods, independent of the multiplicity of the eigenvalues.
We study just the mathematical problem of optimisation of the first eigenvalue
under the general condition I(z) = cA%(«) with an arbitrary real ¢ and find
the solution. It is interesting to note that we need for this the Sobolev’s
type spaces, in which first or second derivatives are summable in some real
(sometimes negative) power.’

We will consider here also other close problems related with estimates of
the eigen-values of an elliptic operator.

Close results for other boundary value problems were obtained in our works

[10]-[13].

I. The Lagrange problem

The considered Lagrange problem consists in the finding of extremal values
of the functional

o Qa)y"(x)de
LiQ,y] = T

under the conditions

/01 Q(z)de = 1, Q(z) > 0, (1)
y(0) =0, ¥'(0) =0, y(1) =0, ¥'(1) =0, (2)

where « is a real, a # 0. It is easy to see that this problem is equivalent to the
variational problem: to find the extremum of the functional
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Q( 2d.
Fl@wl= fOsz/( (/?1 1’

under the conditions (1) and
1
y(0) =0, y(1) =0, / y(x)dr = 0.
0

The Euler-Lagrange equation for the functional F' has the form

(Qx)y") + py = C, y(0) =0, y(1) = 0.

Let « € R\ 0 and " be the set of functions @ satisfying the conditions (1)

Let

C= inf inf L A, = (1
m élell\ 5‘151 (Q,y], sup m Q. y].

Our aim is to find the values of m, and A/,.
Our main result is following.
Theorem 1. A, is finilc fora > —1/2. a # 0 and M, = o< fora < —1/

my >0 fora < —1 and m, =0 fora > —1.
We can prove also that the extremal values are attained on certain functions
Q@ and y.
Theorem 2. If a < —1 then there exist a function y € H and a function
Q satisfying (1). such that y"*(x) = Q(x)*~! and
d2a+ 1)y a+ 1 \1=1/a _,1 1 1
L@yl =m. = Qa (‘2(\' + l> B<§ 2 + 2_) ’

where B is the Euler function.
If1 >a>-1/2, a #£0, I’/zm there exist a function yo € H and a function

Q satisfying (1), such that yJ*(x
ilJf LIQ.y] = L[Q.yo) = M,.

=Q(x)*"" and

If o > 1, then

12a+ 1)/ 14ayi=1/0 1 1 |y
< L Ly
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If0 < a<1, then

420 +1)/ 1+ayi-t/a 1 1 1
Mo=—=(53a) B3t

If -1/2 < a <0, then

_ 42a+1) s 1+ a \1-1/ay [ di 2
A[a— Ial (1+20) (/O (1+t‘2)l/2—1/2c~') '

Corollary 1. If o = —1, then m = 16, but the extremal function Q(x) does
not exist.

Corollary 2. Ifa = 1, then m = limy_ym(«a) = 48. The estimate is
realized by the function yy such that y(x) =a for0 < x < 1/4, y(a)=1/2 -2
for1/d<a<3/4 andy(x)=a—1 for3/4 <o <l.

Our proof uses, in particular, the following Lemma.

Lemma. Let 0 < p < 2/3 and N be the class of absolutely conlinuous non-
negative in [0, h] functions y of the space W)(0.h) such that y(0) =0, y'(x) >
0. Let

(o'l
fry(2)2dr

Glyl =

and m = sup e Gly]. Then

)_9 . D) o .
(22PN 2 g / dt 2
m = (2_31)) (1—)—-3)/1 ( A ————(1+12)l/p>

and there exists an absolutely continuous monotone function yo(x) such that
Yo(0) = 0 and G[yo) = m.

Let p < 0 and K the class of non-negative functions y of the space 1, (0, h)
such that y(0) =0, y'(x) > 0. Let

ho 1 \P 4 )2/P
Gly] = (fo _;/ (x)Pdx) .

o y()3de

Let m = sup, ¢ Gly]. Then

_ 1 2-—2]) 2/p,. 2 2/p—3 ‘ )
”’*1(2_31,) (3—1—,)/: P=33(1/2.1 —1/p)
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and there exists an absolutely continuous monotone concave on (0,1} function
Yo such that yo(0) = 0 and Glyo] = m.

Besides, we need to know the behavior of the solutions of the equations of
the form

Qz)y"(x) + my(z) =0
in the points where () vanishes.

In particular, in the classical Lagrange problem with a = 1/2 the solution
has the following form:

x = (2t +sin2f)/4r, Q(x) = 16c0s* /9, where 0 <1 < 2.

The optimal value M = 167%/3 was indicated by Keller-Tadjbaksh. The opti-
mal column has two points, at which Q(x) vanishes.

2. The Sturm-Liouville problems

Consider the problem: to find the extremal values of the functional

Ly(2)2de
J10.y] = Jo ¥ (@)
@91 fo P(x)y(x)2de

in the class N’ = H(0, 1) of functions y and in the class L, of positive functions
P such that

1
/ P(x)¥dx = 1.
0
Our main result is the following theorem.
Theorem 3. Let A, be the k—th eigen-value of the Sturm-Liouville problem
y" +AP(2)y =0, y(0) =0, y(1) =0,

k=1,2..., M <A <....
If a > 1, then

Q

inf Ay =m, = 4' )2. A > m k2.

PeL 200 — 1

l/a(/l dt
0o V1 — t2cv/(a—1)

If a =1, then infpep, Ay = 4, M\ > 4k%
If a <1, then infpep, A, = 0.
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If « < 1/2, then

supA; = M, = 4| e 2, A < ALLKZ.

" (f Jmr=)
PeL 20 — 1 o V1 + t20/(e=1)
If a« > 1/2, then suppgy, Ay = o0.
The close problem of finding extremal values of the functional
(Jo Pr(2)ly™ ()| dz)"/"

(Jo p2(2)[y(@)|*da)/s

where p;, py are given positive functions, r > 1,s > 1, was studied by Buslaev
and Tikhomirov [14]. They proved that the extremal values of the functional
Ji coincide with Kolmogorov’s diameter of the weighted Sobolev class W, in
the metrics of L ,,.

Jily] =

A more general problem is to find the extremal values of the cigen-values
of the problem:

(Q(z)y") + AP(x)y =0, 5(0) =0, y(1) =0,

if Pe L, @ € Lz. The class L. is defined as the set of positive in [0, 1]
functions R such that

1
/ R(z)"dx = 1.
0

The problem is to find

Mo = inf A, Mas= sup A
*# 7 PeLaQeLs of PeLQ,g)eLB
Here we have obtained the following sharp result.

Theorem 4. If o < —1 and 8 > 1 then m, 3 > 0. For all other values of
the parameters a, 3 we have myz = 0.

Ifa>0and 1/ <1/a4+20r—1/2<a<0and 1/3 > 1/a+ 2, then
M,z < oo.  For all other values of the parameters a, 3 we have M, 3 = 0o

Let us consider the problem:

—y" 4+ P(x)y = Ay, (0) = y(1) = 0.
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if Pe€L,.
Let Ay be the first eigen-value, A\; < A, <.... Our aim is to find

m, = inf Ay, M, = sup A;.
Pel, Pela

Theorem 5. If a > 1, then M, = h, < oo. If a < I, then M, = oo.
If a >0, then my, = 7. If a <0, then my = h, > w2
Here h, is the least eigen-value of the following non-linear problem:

1
—y" +y D =y, (0) = y(1) = 0: / ly() PN dr = 1.
0]

One can consider the same problem for the equation
—y" = P(r)y = Ay

Then we can prove the following statement.

Theorem 6. Ifa > 1, then m, > —oo. If a < 1, then m, = —o0.
For all real o, we have Ay < 7.

One can also consider the following problem. Let us find the extremal values
of the eigen-values in the problem:

v APy =0, ylai) = y'(ai) = ... =y (@) = 0.

where r; areodd for | </ <s,0=a;<ay, < ...<az=1.r +ro+...4+r, =
m, (—1)" %! > 0.
We are looking for the values of

m, = inf Ay, Al, = sup Aq.
PElL, Peln
This problem is in general not self-adjoint. M.Krein has proved that if r;
are odd for all 7, then the eigen-values of the problem are real, 0 < Ay < A,.. .,
and A\ — +o0o as kb — +o00.
Here we have the following result.

Theorem 7. Ifa > 1, then M, = oc, m, > 0.
If a < 1/m, then M, < oo, m, = 0.
If1/m <a< |, then m, =0, M, = oo.
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3. Differential operators of higher orders

Consider the boundary problem:
(=1)™y @™ 4+ AP(x)y = 0,

y(0) =y'(0) = ... =y™10) =0, y(1) =y'(1) = ... =y™ (1) = 0,

if P € Ly, ie [y P(x)*de=1.
The problem is to find

max = inf A, M, = sup A,
PeL. PeLa

where A; is the k—th eigenvalue.
We have succeded to prove the following result.

Theorem 8. If o > 1. then
/\k > C'al"mv M, = oo.

If « <1/m, then
A S Co k™, magr =0.

If1/m < a <1, then
Mo =0, My =00, k=1,2,...

The close non-linear problem: to find the extremal values of the eigen-values
in the following boundary problem:

(__l)m.y(Zm) + “y((r+1)/(<"—1) — O, a > ],

y(0)=y'(0) = ... =y D0) = 0. y(1) =y'(1) = ... = y" (1) = 0.

has been considered by Buslaev and Tikhomirov (see [1]).
The spectrum of the latter problem is continuous. However it is discrete, if
one adds the condition

1
/ ly(2) 2/ N = 1.
0

The asymptotic properties of the eigen-values were studied in [1-1].
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4. Multidimensional problems

Let Q be a bounded domain in R™ and
(=A)"u = AP(z)u, u € W7(Q),

where A is the Laplace operator, m > 1, the function P is positive and belongs
to La, 1.e. [ P(z)%dz = 1.
The problem is to find

m, = inf Ay, M, = sup A;.
PGLQ P€L.

Here we have the following result (see [10]).

Theorem 9. If n > 2m, a > n/2m, then M, = oo, m, > 0.
If n >2m, a < n/2m, then m, = 0.
Ifn <2m, a > 1, then my > 0.

The following theorem shows that the regularity of the boundary is essential
in this problem.
Let us recall that the Minkovsky dimension of a set A is defined as

InmesA,

lim,_¢ ,

Inp
where A, is the p—neighbourhood of A.

Theorem 10. [f the boundary 0S) is smooth enough (for example, satisfies
the Lipschitz condition, if m = 1) and a < 1/2m, then M, < oc.

Ifm =1, a <1/2, then my > A, where X is the least eigen-value in the
following problem:

Au + AlotD/le=1) — 0, ular =0, / |u(.’c)|2°’/(“_l)(l.r =1
N

in the ball ' whose measure is equal to the measure of ).

If m = 1,n > 2, the Minkovsky dimension of 02 is yu and p > 2a, then
M, < oo. However, for any yu such that y < 2« there exists a domain Q with
the Minkovsky dimension of dQ equal to p and such that M, = oc.

Proof. If @ < 0, then
[ ut@pde < ([ Pla)luta) Py [ P(e)edr) ==,
Q Q Q
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where p = 2a/(a — 1) > 0. Therefore

Ja |D™ugldx
(Jg [uolrda)?/?”

where ug is a function whose integrals in the right-hand size of the latter
inequality are finite. For instance, if vy = d(z)” in some neighbourhood of the
boundary, where d(x) is the distance of 2 from the boundary, then it is true
when

A/-[ (a3 S

y>m—1/2,v> —1/p.
If 0 < a<1,then p <0 and

/QP(‘T)G‘LT < (/Q P(fl‘)u(ﬂ')zdl’)a(/ﬂu(flr)P(l.I‘)l—“.

In this case the function wg satisfies the conditions of convergence if
—1/p>y>m—1/2.

Therefore such a ~ exists, if 1 > 2ma.
Now let m = 1. If the boundary of 2 is irregular and its Minkovsky content
1s p < 1, then the function wug satisfies the required conditions when

—p/pzy21—yp/2,

1.e. when u > 2a.

On the other hand, if 4 < 2a, let us take as Q the domain in the plane of 2, 7,
contained in the square 0 < <1, 0 <y < 1, and obtained from the square by
removing the segments @ = A,,1/3 <y < 2/3, where A, = ko X7_, j™% s >
1,n = 1,2,... and kg is such that kg Y2177 = 1. Let us put a, = kgn~2,
Q(z,y) = h(y)b,, for A, < & < Ap41, where h € C§°(1/3,2/3), h(y) = 0 for

y < 1/3 and for y > 2/3, and the constants b, are chosen so that

2

bya,,

oo
— 0 asn — oo, Z bya, = oo.

n=1
Given ¢ > 0 one can take Q. = 0 for x < A,, and * > Ay, where m is such
that b,a?, < e and k is such that

Ax 1
/ / Qe(z,y)"dady ~ 1.
0

m
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Then Lo -
/ / Q. (x)u(2)dedy < 52/ / |Vu(x)idady,
o Jo o Jo

for all u € W}(2) and therefore M, = oco. It is easy to see that the Minkovsky
dimension p of the boundary is equal to 1 —1/s. So we can put b, = nle=1)/a
and all conditions can be satisfied, if u < 2a. a
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