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1 Introduction

Let S be a symplectic manifold with boundary aS’ and let p : S’ -~ R be a
smooth (COO) function with 0. Following [MS] (see also sec. 24.3 in [H]),
one defines the generalized Hamiltonian flow of p as follows.

Let p E be a defining function of 8s, i.e. p &#x3E; 0 in S’ B 8S and p = 0
on 85 (cp might be only locally defined around 8S’). Assume that

We are going to define the flow of p on the zero level set

Consider the folowing subsets of E:

The gliding vector field Hfl on G is defined by

Definition ([MS]). Let I c R be an interval. A curve 7 : I --3 ~ is called a
generalized integral curve (bicharacteristic) of p if there exists a discrete subset B
of I such that:

then there exists

then there exists

(iii) for each t E B, 7(t + s) E S B aS for all small s 0 and there exist the lim-
q(t+0) which are points of one and the same integral curve of cp on aS.
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Clearly, such a curve -/ has discontinuities at the points of B. To get a contin-
uous curve we have to identify some pairs of points on 85. Consider the following
equivalence relation on y iff either as, y E f18S’ and
x and y lie on one and the same integral curve of ~p on 8S. The quotient space
t = ~/ N, which carries a natural structure of a manifold with boundary, is called
compressed characteristic set and the projection l’ of a generalized integral curve
I on t is a continuous curve called compressed integral curve of p.

In what follows we assume that

In this case one can define a flow

such that t E R} is a compressed integral curve of p for each a E E (cf.
[MS]). It was shown in [MS] that the maps Ft are continuous.

Remark. It is clear from the definition that the maps Ft depend on p. In

general cp is only locally defined and so in such cases ~Ft} is a local flow defined for
small ltl. However, the integral curves of p, disregarding their parametrization, are
globally defined and do not depend on p. To avoid the inconvenience caused by
the change of the parameter along integral curves, one may consider maps between
cross-sections of a given integral curve (the same definition as that of a Poincar6
map). Since the problem we deal with below is of local nature, and locally the
maps between cross-sections and Ft have equivalent behaviour, we consider the
maps Ft as if they were globally defined.

Note that in general the maps Ft are not smooth. This is easily seen for

S2 being a domain in Rn with smooth boundary an, and p given by

An elementary argument shows that if Q is the interior or the exterior of a ball in
R’, then the maps Ft are H61der continuous with Holder exponent 1, and! is the
maximal number with this property. 

2 2

It is natural to ask if the maps Ft are Holder continuous in the general case.
In the present talk we consider some partial results in this direction.
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Given S and p as in the beginning of this section, fix an arbitrary metric d on
E generating its topology.

Theorem 1. Let po E t and To &#x3E; 0 be There constants C &#x3E; 0 and

a &#x3E; 0 such that

for every p ~ E and every t with It I :5 To.

For k = 2, 3, ... denote

Theorem 2. Let K be a compact subset of E and To &#x3E; 0 be such that

Denote by k the projection of K in 2 - Then there exist constants C &#x3E; 0 and
a &#x3E; 0 such that

f or E K and t E [0, To] .

It is natural to expect that the assertion of Theorem 2 remains true without

assuming (4). Actually the proof of Theorem 2 is much easier than that of Theorem
1. That is why below we restrict our attention to Theorem 1. A scheme of its proof
is given in section 3.

2 Motivation

In this section we briefly discuss a problem comming from the scattering the-
ory, which indicates that regularity properties of the generalized Hamiltonian flow
might be useful.

Let 0 be a domain in R’~, n &#x3E; 3, n odd, with C°° boundary 8S~ such that

is compact. Define S’ and p by (1) and (2), respectively.
The scattering operator related to the wave equation in R x S2 with Dirichlet

boundary conditions on R x 8Q can be represented as an unitary operator
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(see [LP1]). The kernel of S-Id, which can be considered as a distribution

is called the scattering kernel.
The following problem arises: is it true that there exists subset R of full

Lebesgue measure in x sn-l such that

for all (w, 0) E R? Here £w;,e is the set of all (w, B)-rays in Q, i.e. infinite continuous
curves in Q with incoming direction and outgoing direction 0 which are projec-
tions of generalized integral curves of p in S’. By T., we denote the sojourn time of
7 E L,w;,e (see [PS1] or ch. 1 in [PS2] for the precise definitions). There is no doubt
that the right-hand side of (5) contains certain geometric information about the
obstacle K, and so if (5) holds for sufficiently many pairs (cv, 8), one could get this
information knowing the singularities of the scattering kernel for the same pairs
(w7 0). It is already known that this can be done for a special class of obstacles
K. More precisely, the answer to the above question is afhrmative, provided K is
a finite union of disjoint convex bodies ([PS3]). Using this fact, it was shown in
[S] that if K and L are two obstacles, each of them being a finite disjoint union of
convex bodies, satisfying an additional condition (H) of M. Ikawa [I], and if

for almost all (úJ,8) E sn-l x Sn-1, then K = L. For convex obstacles K and L
such a result was established by Majda [Ma] (see also Lax and Phillips [LP2]).

Turning back to the question posed above, let us consider one possible way to
deal with it. In fact, it follows from the results in [PS3] that to give an affirmative
answer, it is sufficient to establish the existence of a set R of full Lebesgue measure
in sn-l x sn-l such that for (w, 0) E R there are no (r~, 0)-rays of mixed type in
Q, i.e. (c~, 0)-rays having non-trivial segments lying on an. To do so consider a
fixed (w, 0)-ray 7 of mixed type in Q and take a point (z, () contained in a gliding
segment of q (lying entirely on 8Q). Denote by Gt the generalized geodesic flow
on 5’*(H) generated by the flow Ft, 8*(0) being the cosphere bundle of Q. Then
taking a sufficiently large rational number q &#x3E; 0, we have

where q) = 77. This can be written as
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1 being defined by

The choice of (z, () now shows that

More generally, it is clear that the existence of a 0)-ray of mixed type is equiv-
alent to the existence of a rational q &#x3E; 0 with (6). Consequntly, the set of those
pairs (w, B) for which there exist (w, 0)-rays of mixed type is contained in

Since

and = 2n - 3, it is natural to expect that Wq(S*(8n)) has Lebesgue
measure zero in x This will be so provided Wq has some "good" regu-
larity properties, which could be eventually derived from corresponding properties
of the flows Gt and Ft. Unfortunately, our Theorems 1 and 2 do not provide such
properties.

3 Sketch of the proof of Theorem 1

A standard compactness argument shows that the assertion of Theorem 1 is a

consequence of the following (local) lemma.

Lemma 1. Let po E t be fixed. There exist a neighbourhood Uo of po in
and constants T &#x3E; 0, C &#x3E; 0, a &#x3E; 0 such that (3) holds for all p E Uo and t E [0, T].

Denote again by po an element of E the projection of which in t coincides with
po. It follows by [MS] (cf. also sec. 24.3 in [H]) that there exist local coordinates

around po = (0,0) in S such that cp = xl, i.e. locally

and
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r being a smooth function. Throughout we use the notation

Define the metric d by

and set

There are several cases for po.

case 1. po E S’ ~ as. In this case locally around po the generalized integral
curves of p coincide with the integral curves of the Hamiltonian vector field Hp, so
the assertion follows trivially with a = 1.

case 2. po E Gd. This means that &#x3E; 0. Then there exists a neighbour-
hood % of po in S’ and a constant c &#x3E; 0 with xr ( p) &#x3E; c for all p E YQ. Choose a
neighbourhood Uo of po and T &#x3E; 0 such that Ft(Uo) C ~o for all t E [0, T]. It then

follows by Lemma 24.3.4 in [H] that for each p E Uo the generalized integral curve
t E [0, T] } has at most one reflection. Using this one can easily derive that

the assertion of the lemma holds with a = 2.

case 3. po E Gg. As in the previous case, we find neighbourhoods Uo C Yo
of po and c &#x3E; 0 such that 0’ (p)  -c for each p E Yo. Using Lemma 24.3.5exi
from [H] we find a constant C’ &#x3E; 0 such that if f Ftp : t E [0, is a reflecting
bicharacteristic (in this case it is equivalent to say that the bicharacteristic is not
entirely contained in then we have

for all t E [0, T], where

From this the assertion of the lemma follows easily with a = ~.

case 4. Po E Gk B 3. Let (~),~)) be the integral curve of the
vector field Hp on G with initial conditions = z’(0), /’(0) = ~(0). Set
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Given p E E, define ep(t) and f p(t) as e(t) and f (t), respectively, replacing po with
P.

Choose neighbourhoods Uo c Yo of po and T &#x3E; 0 so small that H~ has a
constant sign in % and FtUo C Va for all t E (o, T~. Later we will have to eventually
take smaller Uo and T.

In the case under consideration we have

for some constant a ~ 0 and some smooth function
L &#x3E; 0 with 

- -

Using standard facts from the theory of differential equations, it follows that if Uo
is small enough, then there exists a constant c &#x3E; 0 such that for every p E Uo we
have the representation

with

where

We may assume that T  2, then (7) and (8) imply

Next, we distinguish two subcases.

Subcase 4.1. a  0. Fix an arbitrary j3 &#x3E; 0. The assertion of Lemma 1
follows immediately from the following

Lemma 2. Uo and T &#x3E; 0 can be chosen so small that there exists a constant
A &#x3E; 0 with

Proof of Lemma 2. Set
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and choose T &#x3E; 0 such that

Take p E Uo and set
."

for all t E (0, T). Using the inequalities (24.3.7) in [H], it is not hard to see that
there exists a constant C1 &#x3E; 0 such that

Set

and note that there exists a constant C2 &#x3E; 0, which does not depend on p, with

for t E (o, T~ (cf. p. 436 in [H]). Consequently, one finds a constant Co &#x3E; 0 with

for t E [0, T].
As in [H], we see that

for all t E [0,T] for which h’(t) exists. Using an argument similar to that above,
we find a constant Co &#x3E; 0 (we may assume this is the same constant as in (11))
such that

for all t E (o, T~ .
Consider the function

It is clearly continuous and g’(t) exists almost everywhere in (o, T). Set
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For those t E [tb, T] for which g’(t) exists, (11) and (12) imply

and integrating the latter inequality gives

for t E [t6, T].
On the other hand, it follows easily by the definition of t5 that g(t)  constb’

for t E [0, ts]. Therefore g(t) :5 const6l-,’ for all t E [0,T]. Consequently, 
constó1-,8 and 1771(t)l  const6l 2’0 in [0, T]. Applying a standard argument from
the theory of differential equations to the rest of coordinate functions, one gets

for all t E [0, T~ . This completes the proof of Lemma 2.

Subcase 4.2. a &#x3E; 0. This case is easier than the previous one. One can

define ts in a similar way and show that the integral curve Ft p has no reflections
for t E [ts, T], provided Uo is small enough and p E Uo. In this way we find

1

for all t E [0, T) .
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