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§1. Profiles and profile equations.

Our goal is to introduce the reader to the nonlinear evolution equations governing the
profiles appearing in quasilinear geometric optics.

Studying the profiles corresponds to studying how the original systems propagate
weakly nonlinear high frequency waves. As the waves considered have small amplitude, it is
not surprising that the governing equations involve only the low order Taylor polynomials of
coefficients. An overly optimistic person might even hope to classify the resulting equations
into a finite number of canonical classes.

Our point of view is inpired by the very interesting article of Majda, Rosales, and
Schonbek [MRS]. Some of their observations are recalled in §4. In the time since that
paper was written, the formal aysmptotic expansions of nonlinear geoemetric optics have
been rigorously justified in a wide variety of contexts so information about the profiles
translates into information about the original hyperbolic systems.

The phenomenon of resonance has some surprising consequences. For simplicity we
consider the case of one space variable and the system of equations

(1.1) Oru + A(u)0yu=0.

Here u = wu(t,2) is a real k-vector valued function and A is a smooth real ¥ x k matrix
valued function of t,z € R x R. Suppose that the system 1s strictly hyperbolic in the sense
that for all u near 0, A(u) has k distinct real ergenvalues.

Weakly nonlinear geometric optics expansions for solutions near the background so-
lution u = 0, have the form

(1‘2) u(t,x) = EU(t,“L’,tpl(t,fE)/af, T ,901\4(15,.7:)/5) + 0(5)

with profile U(t,z,0y,---,05r) almost periodic with repect to the angle variables §. The
phase functions ¢; are real smooth functions with nonvanishing gradients. Solutions of
the form 2.1 have amplitudes of order ¢ and wavelength of order . Note that the small
parameter does not appear in the equation (1.1), which does not have a natural length
scale. The small parameter is introduced by the initial data.

Denote by
(1.3) L =0+ A(0)0,
the linearized operator at u = 0. The equation for u reads
0= Lu+ (9, A(0)u)dju + 0(u?).

For solutions as in 1.2, the second term 1s 0(¢). As uis 0(¢) it 1s not surprising that the
nonlinear terms are negligeable for times o(1) and one anticipates nonlinear effects to be
important for time 0(1).
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We consider the special case where the profiles are independent of z. This resem-
bles the idea of homogeneous turbulence and the name homogeneous oscillations seems
appropriate. Finally we suppose that the phases ¢o; are linear functions of ¢,z. Then 1.2
implies

ut ~elU(t,T/e,X/e)

with U almost periodic in the fast variables T, X,

(1.4) U, T,X) = Z Ua.(t)ei"'(T’X)_
aER xR

The most direct derivation of the equations determining U begins by supposing that 1.4
is the first term of an asymptotic expansion

(1.5) u ~ cU(t t/e,a/e) + 2V (t,t)e,x/e) +---.

The reader is forwarned that there are examples where the error u® — €U is o(¢) and not
much better so that the supposition 1.5 is not correct in those cases [JMR2]. Nevertheless
it is our prefered derivation (see [JMR3] for the general case). Substituting 1.5 into 1.1
one finds

(1.6) Opus + A(u®)0pus ~ e ' W_y(t,T/e, X/e) 4+ " Wo(t, T /e, X /) + - --
(1.7) VVo(t,T, .Y) = orU + A(0)oxU = L(@T,ax)U R
(1.8) Wi(t,T,X) = L(0r,0x)V + U + (0, A(0)U)0x U.

Here 0, A(0)U is the derivative of A applied to the increment U so is a matrix. Equations
for the profiles are obtained from the equations W; = 0. The key to unraveling these
equations is that the operator L(0r,dx ) is neither injective nor surjective.

The equation Wy = 0 shows that U satisfies the linearized equations with respect to
the fast variables,

(1.9) L(Or,0x)U = 0.

In particular the values of U(0,T,X) are determined by those of U(0,0,X) by solving a
hyperbolic initial value problem. Thus the appropriate initial data for U are U(0,0, X).

Analysing 1.9 in Fourier yields

(1.10) 0= (dr + A(0)dx)U =) a0l + a1 A(0)]Uq(t)e’* T .

Let A; denote the eigenvalues of A(0). Thus for a # 0,U4 can be nonzero only for those
a such that ag = Aja; for some j. In that case Uy(t) must belong to the jt* eigenspace.
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Hyperbolicity implies that RF = ker(ag + a14(0)) + rg(ap + a1 4(0)). Let E, denote the
corresponding projection of R* on the kernel of ap + a14(0). In particular E, vanishes
unless ag = Ajaq for some j. If {r;} is a basis of eigenvectors and {¢;} the associated dual
basis of eigenvalues of A4(0)*, then in Dirac’s notation

Eys =1r; ><(j| when ag=-Xja;, a1 #0.
The important averaging operator E is defined on trigonometric series by

(1.11) E(Z Vaeia.(T,.\’)) =V, + Z EaVaeia'(T’X) .
a#0

In the space of formal trigonometric series with smooth coefficients

(1.12) E’ = E. ker(L(dr.0x)) = rg(E), rg(L(dr ,0x)) = ker(E)
Then 1.9 takes the simple form

(1.13) EU =1,

and multiplying 1.8 by E yields

(1.14) E Ut + (0, A00)U)Ox U] =0 .

The equations 1.13-1.14 have the form of an evolution equation U; = F(U) on the set of

U satisfying EU = U, and F(U) = E((0,A(0)U)0x U).

The next results are very special cases from [JMR1].

Theorem 1.— Suppose that g and dg/dX are almost periodic R* valued functions of
X € R. Thereisaty € [0,00] such that 1.13-1.14 have one and only one solution U(t,T, X)
such that U(0,0,X) = ¢, and the functions U(t,.,.) and V, 1 xU(t,.,.) are continous on
[0, t«[ with values in the almost periodic functions of T, X equiped with the L°°(R§~’X : R¥)
norm.

In addition, the spectrum of U(t) is contained in the Z-module generated by spec

(U(0,.,.)), and, if t, < oo then

sup |V;’T_\'U(t,T,X)] — 00 as t—t,.
IS A S

Theorem 2.— Suppose that U and t, are as in Theorem 1 and 0 < t < t,. There is an
€o > 0 such that for any ¢ < ¢y the initial value problem

Oru + A(u)0pu® =0, v (0.20) = cg(X/¢)
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has a unique solution u* € C'l([(),ﬁ] x R) and as ¢ tends to zero
us(t. ) I(t,t/e,afc) =o(c) in L>([0,t] x R)
and

Vi {us(t,0) —cU(t, t/e,x/e)} = of in L*™([0,t] xR) .

The form 1.13-1.14 of the profile equations is particularly well adapted to multidi-
mensional generalisations. In the special case of one space dimension, there is a simpler
presentation, which does not extend cleanly to the multidimensional case. Qur approach
was to expand in a Fourier series and then apply equation 1.9. Operating in the reverse
order, the general solution of 1.9 is of the form

(1.15) Ut,T,X) =Y oj(t,X — \;T)r,

with scalar valued o;(¢,60). Almost periodicity in 7, X holds if the o; are almost periodic
in 6. Introduce the phase functions

(1.16) pj(t,e) =a — At
which satisfy the eikonal equation detL(0;p,d,¢) = 0. Then
(1.17) U= (0j(t.0;(T,X))r;

Equations for the o; are derived by plugging 1.17 into 1.13-1.14. Introduce E; the projector
which extracts the A; part of U, namely

(1.18) EjV = ) EU, ™™V,
00=—A]'(_\’1
Then
(1.19) E= EEJ' R E]‘ = '7’.7' >< (’]‘IE y EJ'E = EEj = Ej .

Equation 1.14 is then equivalent to

(1.20) E; Ui+ (0, A0)U)0xU] =0 for 1<75<k.
Define k£ x k matrices B; by

(1.21) Bj = (0.4(0))r;

Equation 1.20 holds if and only if for 1 < j < &,

(1.22)  Boj(t, (T, X)) + Z < C|Byulry > Tjlou(t, 0 (T, X))0s0u(t, 00 (T, X)) =0

N

where I'; is the operator, acting on scalar valued trigonmetric series, which extracts the
part with spectrum in R(1,—2;),

(1.23) I‘j(SL’af-iO' '(T"\')) = Z vae'® AT.X),

ap=—2Aja,
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§2. One mode solutions of the profile equations.

To analyse the equations 1.22 for the amplitudes o;, one must compute
(2-1) P] [0'” (f, Q;I(Tv X ) )89 Uu(t7 @V(Tv *Y))]

for all j, u,v. Abreviate 2.1 as I'j(0,0¢0,) and evaluate for j = 1, the other values of j
being similar. Two easy consequences of the definitions are

(2.2) I'1(010901) = 010901, and T'j(010901) =0 for j#1.

Proof. Expand
010901 = Saq1(n) im 1(m) exp ({(n +m)p(T, X)) .

The spectrum, in T, X is contained entirely in the set ag = —Ajay, a1 #0. ////

It follows that one generates a subclass of solutions by choosing o; = 0 for j > 2, and
o1(t,8) a solution of Burgers’ equation

(2.3) do1+ < (4]By|ry > By(01/2) =0,

The equation is genuinely nonlinear if and only if the selfinteraction coefficient < ¢ |By|r; >
is nonzero. Recall the following facts about Burgers’ equation for initial data periodic in

6.

The solutions have L?(#) norm independent of time so long as they remain Lip-
shitzean in 6.

Nonconstant solutions do not remain Lipshitzean but have unique extensions to
global weak entropic solutions on [0, c0[xS! for which the L?(S!) norm is nonincreasing.

. The solution operators S(t) so defined are L!(S!) contractions.
. The total variation of solutions is a decreasing function of time.

The term 9p0? leads to interaction among the Fourier coefficients ¢. In a sense
Burgers’ equation likes the coefficients to decay like 1/n. If one starts with smooth data,
that is rapid decrease, shocks tend to form and shocks have this regularity. If one starts
with very singular data, say L°°, there is a regularizing effect which forces the solution
to be BV, functions whose coefficients are 0(1/|n|). These vague comments constitute a
sort of Kolmogorov’s law, and it would be nice to have more precise versions. Using the
Hopf-Lax explicit solution [L] it is not hard to show that jump discontinuities form. For
times when o(t) has such a discontinuity,

(2.4) lim sup |6(t.n)n| >0

|n|—oc
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Conjecture. For nonconstant entropic 8-periodic solutions of Burgers’ equation, 2.4 holds
for a strictly positive fraction of times t € [0, ool.

Summarizing, the system 1.1 has solutions
(2.5) uf(t, @) = eoj(t, (x — Ajt)/e)rj + o(e)

whenever ¢} is a smooth periodic solution of Burgers’equation on [0,t] x S*. Here o(¢) is
measured in L®([0,%] x S*). In this sense Burgers behavior is always present in 1.1. The
main feature is the breaking of waves which is caused by the generation of high frequencies
thanks to the fact that 9yo? is an operator which is nonlocal in the frequency space.

§3. Equations for 3 x 3 resonant interactons.

Our main goal is to study the interaction of high frequency wave trains like those in
§2. To do that we simplify to the case of 3 x 3 systems, that is k = 3. The key fact is that
for k > 3 there is always a resonance relation since three linear functions of two variables
are always linearly dependent. Thus there are constants y; # 0 such that Lvy;p; = 0.
Phases ¢;(t,z) = f;j(z — Ajt) with nonlinear function f; satisfy the eikonal equation and
one gets fine single mode waves. However, generically there would not be any resonance.
The choice of linear phases was not at all innocent.

Replacing the phases ¢; by ¢ = 7;¢; and the amplitudes o;(t,6) by ¢; = 0;(t,6/7;)
preserves the linearity of the phases and the almost periodicity of the amplitudes but
simplifies the resonance relation to

(3.1) P14+ @2+ B3 =0
and 1.22 becomes

Z < [Bulry > 7 Ti(0, (8 (T, X))095, (2, @0 (T, X)) =0

"

the only change being the insertion of the factor v,. We drop the tilda’s remembering that
our phases are no longer given by 1.16.

We seek solutions with o; 2m-periodic in 6.

To write the equation for o1, return to 2.1 for j = 1. The cases u = v have already
been calculated. Expand

(3.3) I'i(0,090,) =T Z Gu(n)ima, (m)exp(i(np, (T, X) + mp, (T, X)) .

n,m
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The operator I'; annihilates all terms for which ny, + me, is not a multiple of ;. For
example if 4 = 1 and m # 0 the term is annihilated. For m = 0, the term vanishes thanks
to the :m factor so

(34) F](O’]ayd,,) = O f()l‘ 14 # 1.
Similarly if v = 1 all terms with g # 0 are killed and
(3.5) I'i(0,0p01) = 6,(0)0p01 for pu#1

The remaining terms are crucial. Consider y = 2, v = 3, the reverse choice being similar.
In 3.3 only terms with n = m survive. For them use the relation @, + @3 = —p; to get

['o30p03 = L ,(n)ing(n)exp(—ine (T, X))
(3.6) = S[04(aq * 03)]"(n)exp(—iny)
= R[04(02 * 03))(21(T, X))

where R is the reflection operator and * is convolution

(3.7) Rg(6) = g(—8)

(3.8) 09 ¥ 03 = / 02(8 — v)oz()dy /27 .
Sl

The equation for o; then takes the form
Aoy = (c*'Fy + *'63)0po1 + ' y(a]) + ¢*'g(R(a2 * 03)) .

The right hand side is a 8 derivative so the mean value of o; is independent of time and
similarly the other means. We restrict attention to the case

(3.9) 1 =09 =03 =0.

In that case the profile equations take the simple form

0(0'] -+ 01890'12 + ])11?0(}(02 * 0'3) = 0
(310) 010'2 + 6‘2090'-5 + bgRO/,v(O’] * 0’3) = 0
o3 + 30405 + b3ROs(0y x02) = 0.

The system is integrodifferential.

The uniqueness part Theorem 1 implies that if o4 (t, ) are odd functions of 8 at ¢t = 0,
they remain so and the system becomes

dor + 007 — bOgloyxo3) = 0
(3.11) 0oy + ('2090-3 — bOy(oy x03) = 0
0oy + ('339(7;'1) - byOs(0) ¥ 02) = 0.
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An even simpler case arises if for 1 < j < 3. ¢; = ¢ and b; = b. Then there are solutions
o = (v,v,v) provided

(3.12) v+ c(v2)g — blv* )y =0, o(t,0) = —v(t, —6).

Thus 3.12 is a model equation for resonant interaction. In 3.11, the ¢; terms are of Burgers
type and the the b; terms represent the effect of the resonant interaction of the waves of
the other families on the given family. They would be absent if there were no resonance.

A first remark 1s that the interaction terms are less singular than the Burgers terms.
This is illustrated by the following estimates

106 * o)L < ol [10s0||1
(edpo)lle~ < llolle~ |10s0||L
106(o* )y < lolle [100|| 11
I(c0s )| 11 < lollz~ 19sa]l L1

A consequence is that the local existence of profiles given by Theorem 1, follows arguments
familiar from the local existence theory for quasilinear hyperbolic systems.

84. Profiles for compressible inviscid 1-d Euler.
For this system, 3.11 simplifies even further. If one takes A\; < Ay < A3, then o; and
o3 represent genuinely nonlinear waves called acoustic waves. However, o, in not only

linearly degenerate, which means ¢, = 0 but the interaction coefficient b, = 0 also. Thus
09 is independent of time. In addition. one has ¢; = ¢ and by = —bz. Thus with

(41) I\((’)) = -—1)1890'-_)_(9),
the profile equations take the elegant form

(421) 0{0] —|—C890"12+]\’*0':3 =0

(4.27) 003 + cOyos — kx oy = 0.

Since o3 is constant the interaction term appears as a linear perturbation of the
Burgers system. In addition the linearized equation

01(71 +]\'*O'3:O. 0/0:;—1\’*01 =0
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has evolution operator which is particularly simple, namely

(4.3) G1(t.n) + ig3(t.n) = ¢ *G (0.n) 4 i65(0.n)).

In particular the L2(S!) norm is preserved. It follows that the L*(S') norm of 01,03 is
conserved (resp. nonincreasing) for smooth (resp. entropy satisfying weak) solutions of

4.2.

If o3 € BV, then k is a bounded measure so the linear operator o0 — (k xo3, —k * 07)
is bounded on all L?(S') spaces. It follows (see [MRS]) that for arbitrary BV (S?!) initial
data , there are unique global entropy satisfving solutions of 4.2 satisfying

(4.4) llo1(t), o3(t)l|Bv(s1) < exp (Ct)]]o1(0),03(0)||By(s1),0 <t < oo .

In the same paper. one finds interesting exact solutions when £ is constant plus a
sum of delta functions. In addition they performed numerical simulations for oo = sin(8).
These revealed the following qualitative features.

. There is a tendency to avoid wave breaking. As the o; component became steep,
instead of breaking it would back off, and the o3 wave would steepen and so on.

The waves seemed to be recurrent, and the authors suggested that this might
correspond to solutions almost or quasi periodic in time. The growth allowed by 4.4 was
not observed.

. Traveling cusp shaped waves were often present. The system 4.2 seems to like cusps.

Thus motivated, Pego proved the following result.

Theorem 3.— ([P]). For oy = sin (8). there is an explicit one parameter family of smooth
solutions of 4.2 each of which is periodic in time. The limiting value of the parameter yields
a time periodic solution with a traveling cusp.

Applying Theorem 2, one sees that for arbitrarily large times ¢, the Euler equations
have x-periodic solutions u® € C*>([0.T] x R) of the form

glo1(t, (x — Ait)/2)ry +sin(x/2)ry + o3(t, (@ + Art)/e)rs] + o(e).
Similar initial data for Burgers equation would lead to shock formation in finite time
independent of &, so these solutions avoid the formation of shocks for arbitrarily long

periods of time.

Problems. Are there nonconstant x-periodic solutions of the Euler equations which are
smooth for all positive times? Time periodic?
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§5. The sawtooth miracle.

In contrast to the case of 1-d gas dynamics, the general system 3.11 may have solutions
which explode in finite time. An elegant construction of such solutions is given by Hunter

[H].

Let S(6) be the 2r-periodic sawtooth function such that

(5.1) S@)=6for —m<O<m.
Then in the sense of distributions one has (! 3.13)
(5.2) 05(S%) =28, and, 04(S*S) =S.
Thus one generates discontinuous solutions of 3.11 of the form
(5.3) o;(t,0) = a;(t)S(6)
provided
Oy + 2(:1(1.% — biasaz = 0
(5.4) Bias + 2ca3 — byayaz = 0
Oaz + 2c3al — byaya; = 0.
The solution is entropy statisfying if and only if
(5.5) : ajcp 2 0for j =1,2,3.
Thanks to the sign condition 5.5, the selfinteraction terms c;a? always act to decrease

the size of |a;|. For definiteness suppose that the ¢; > 0 so the entropy condition is simply
a;j > 0.

Then if the b are large and positive they tend to make nonegative solutions of 5.4 grow.
If the b are positive and large compared to the ¢; all strictly positive solutions will diverge to
infinity in finite time. In this way one sees that there are explosive discontinuous solutions
of the profile equations. A recent result of Schochet [S] justifies nonlinear geometric optics
with discontinuous profiles. His L! bounds on the error are not proved on time intervals
which approach the blow up times of the profiles. To use Theorem 2 we need to construct
smooth explosive profiles.

Conjecture. If the ¢; are nonnegative and there is a solution a of 5.4 with strictly positive
a; such that |a(t)| diverges to infinity as t — t, < oo, then for any é§ > 0 there is a smooth
27 periodic solution o of 3.11 which explodes at time t < t, + 6.

Conjecture. Suppose that 1.1 is a system of conservation laws and there is an entropic
sawtooth solution of the profile equations which explodes at time ¢, < oo and that ¢ >
t«. Then there are BV periodic initial data of arbitrarily small sup norm and uniformly
bounded BV norm for which the initial value problem does not have an entropy solution
in BV ([0,t] x S1).

The argument of [JMR4] yields the following,.
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Theorem 4.— Suppose that the b, are strictly positive. Then there is a ¢ > 0 and a
t; € [0,00[ such that if |¢c,| < ¢ for 1 < j < 3. there is a ty €]0,t;] and an odd solution
o € C®([0,t2[xS? : R?) of 5.4 such that

(5.6) / oi(0) sin (6)df — oc as t — ta.
St

Idea of the proof. When ¢, = 0. the equations 5.4 are local in Fourier. If the intial
data are positive multiples of sin(6), then the solution is of the form o; = §;(t) sin ()
with 3; — bjﬂ']‘? = 0. so /# diverges in finite time.

If the c; are sufficiently small one can control the spreading effect in Fourier of the
Burgers term to show that the solution of 5.4 with the same initial data explodes with first
Fourier coefficients dominant. /////

Theorem 5.— Suppose that b;.6.|cj| < é, and ty(c) are as in the previous theorem.
Then there is a C > 0 such that for all N > 0 and ny > 0 there is a t €]0,t2] and a solution
u € C*([0,t] x S) of 1.1 such that

(5.7) lu(t,8)] <y fort.6€0,t] x S'. / |01 (0,6)|dy < C
st

(5.8) / |Ogu(t, 8)|d0 > N/ |Ogu(0, 8)|d6.
St St

Proof. Take initial data v = Sc0;(0.6/2)r; with o as in Theorem 4 and ¢ = 1/m. Let m
tend to infinity and apply Theorem 2. /////

Remarks.

1. The unbounded variation amplification in finite time shows that solutions of 3 x 3
systems which are small in amplitude and of moderate size in total variation can display
behavior radically different from Burgers’equation thanks to resonant interaction of small
amplitude oscillations.

2. In the 2 x 2 case, the analysis of Glimm and Lax [GL] shows that for L small
solutions and fixed positive finite time, the variation per period is bounded by a fixed
positive constant. Thus 5.7-5.8 is impossible in that case.

3. Glimm [G] constructed solutions of small initial variation whose variation at time
t is bounded by a fixed multiple of the initial variation. Thus his solutions too cannot
satisfy 5.7-5.8. This also indicates (it does not prove since we lack a uniqueness theorem
for weak solutions) that though our solutions are as small as we like in sup norm their
initial variations must be hounded helow.
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4. Theorem 5 complements and contrasts with the unbounded amplification of the

BV norm in dimensions d > 1 [R]. The latter depends on the phenomenon of focussing
which is a linear phenomenon which can take place in an arbitrarily small neighborhood
of a single point. The current result depends on resonance which is nonlinear and requires
initial oscillations over a finite range in @ so that the resonant interaction takes place over
a finite interval of time. In particular the phenomenon does not take place for solutions of
arbitrarily small initial variation.
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ERRATA de 'exposé n°l du 20 octobre 1992 de J. RAUCH

Page/Line

I-2/5 cU(t,t/e,x/e) in place of eU(t,T /e, X /¢)
1-2/6 U(t, T, X) in place of U

I-3/-1 eg(x/e) in place of eg(X/e)

I-4 /formula (1.18) Vo in place of U,

[MRS] A. Majda, R. Rosales, and M. Schonbek, A canonical system of integro differential
equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79 (1988) 205-262.
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