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§1. Profiles and profile equations.

Our goal is to introduce the reader to the nonlinear evolution equations governing the
profiles appeaiing in quasilinear geometric optics.

Studying the profiles correaponds to studying how the original systems propagate
weakly nonlinear high frequency waves. As the waves considered have small amplitude, it is
not surprising that the governing equations involve only tlie low order Taylor polynomials of
coefficients. An overly opti1istic person might even hope to classify the resulting equations
into a finite number of canonical classes.

Our point of view is 1I1p1I’ed by the very interesting article of Majda" Rosales, and
Schonbek [MRS]. Some of their observations are recalled in §4. In the time since that

paper was written, the formal aysmptotic expansions of nonlinear geoemetric optics have
been rigorously justified in a wide variety of contexts so information about the profiles
translates into information about the original hyperbolic systems.

The phenomenon of resonance has some surprising consequences. For simplicity we
consider the case of one space variable and the systeln of equations

Here u = u (t, x) is a real k-vector valued function and A is a, smooth real k x 1~ matrix

valued function of t,, x, E R x R. Sii,ppo,se that the system is strz*ctly hyperbolic in the sense
that f or all u near 0, has k oistinct real ez*gen,val,ites.

Weakly nonlinear geometric optics expa,i-isions for solutions near the background so-
lution u = 0, Ila.ve the form

with profile U(t, x, 81, ~ ~ ~ , almost periodic with repect to the angle variables 0. The
phase functions pj are real smooth functions with non vanishing gradient. Solutions of
the form 2.1 have amplitucles of order ~ and BvaVelel1gth of order 6. Note that the small
parameter does not appear il the equation (1.1), which does not have a natural length
scale. The small parameter is introduced by the initial data.

Denote by

the linearized operator at 11 = 0. The equation for 1£ reacls

For solutions as in 1.2, the second term is 0(I ). As 11 is 0(I ) it is not surprising that the
nonlinear terms are llegligeal)le for times o( 1 ) and one anticipates nonlinear effects to be
important for time 0(1).
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We consider the special case where the profiles are independent of x. This resem-

bles the idea of homogeneous ttirl-)ulence and the name homogeneous oscillations seems
appropriate. Finally N%.e suppose that the l)Ila.ses CP j are linear functions of t, . Then 1.2
implies

with U almost periodic in the fast variables T, X,

The most direct derivation of the equations determining U begins by supposing that 1.4
is the first term of an aSymptotic expansion

The reader is forwarned tha,t there are examples where the error u~ - ê U is o(~) and not
much better so that the suppasition 1.5 is not correct in those cases [JMR2]. Nevertheless
it is our prefered derivation (see [JMR3] for the general case). Substituting 1.5 into 1.1
one finds

Here is the derivative of A applied to the increment U so is a matrix. Equations
for the profiles are obtained from the equations 1,Vj = 0. The key to unraveling these
equations is that the operator is neither illjective nor surjective.

The equation Wo = 0 shows that ET satisfies the linearized equations with respect to
the fast variables,

In particular the values of U(O, T, X) are deteriiiined by those of U(O, 0, X) by solving a
hyperbolic initia,l value problem. Thus the appropriate initial data for U are U(O, 0, X ).

Analysing 1.9 in Fo-Lirier yields

Let Aj denote the eigenvalues of ..4 ( 0). Thus for c~- ~ 0, can be nonzero only for those
c~ such that ao = for In that case 111ust belong to the j th eigenspace.
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Hyperbolicity implies that R/ = ker(ao + oi.4(0)) ~ + ~1~4(0)). Let Ea denote the
corresponding projection of Rk on the kernel of ao + a, ~4( 0). In pa,rticular EQ vanishes
unless ao = for some J. If I is a, basis of eigenvectors the associated dual

basis of eigenvalues of .4(0)*, then il Dirac’s notation

rhe important averagilg °l)erator E is definecl OI1 trigonometric series by

In the space of formal trigonometric series with smooth coefficients

Then 1.9 takes the simple form

(1.13)

and multiplying 1.8 by E yield

The equations 1.13-1.14 have the form of an evolution equation tTt = 0(U) on the set of
U satisfying EU == [1, and - 

The next results are very special cases frC&#x3E;lll 

Theorem 1. Suppose and dgldx are almost periodic Rk valued functions of
X E R. E [0 , cxJ] such tha,t one solution U(t, T, X)
such that = g, and the fullctions ~~( t, ., . ) are continous on

[0, t* values in the almost 1-)el-iodic functions ofT,...Y equiped mith the Rk)
norm. 

In additioii, the slie(-ti-tilii of r f ) 1.5’ cOlltaille(1 II1 the Z-modLlle generated by spec
(U(o, ., .)), and, if’t*  x, then

Theorem 2. Suppose that LT t* are as in Theorem 1 ancl 0  t  t*. There is an

£0 &#x3E; 0 such tha.t for  Eu the initial .value l)roblerIl
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has a unique solution E x R) and as 6 fencls to zero

and

The form 1.13-1.14 of the profile equations is particularly well adapted to multidi-
mensional generalisations. Il the special case of one space dimension, there is a simpler
presentation, which does not extend cleanly to the l11ulticli11le11siol1al case. Our approach
was to expand in a Fourier series and then apply equation 1.9. Operating in the reverse
order, the general solution of 1.9 is of the for 111

with scalar valued periodicity in T, X holds if are almost periodic
in 0. Introduce the phase functions

which satisfy the eikonal equation 0. Then

Equations for the aj are derived by plugging 1.17 into 1.13-1.14. Introduce Ej the projector
which extracts the Aj part of [T, namely

Then

Equation 1.14 is then eiuiN.a,lent to

Define k i»atrices B j by

Equation 1.20 holds if a,nd only if for 1  j  ~,

where rj is the operator, acting on scalar valued trigonmetric series, which extracts the
part with spectrum in R( 1, -~~ ),
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§2. One mode solutions of the profile equations.

To analyse the equations 1.22 for the amplitudes one must CC&#x3E;11l1)ute

for all j,fl,v. Al)reviate 2.1 as alld evaluate for j = 1, the other values of j
being similar. Two easy consequences of the defi111t10I1S are

Proof. Expand

The spectrum, in T, X is contained entirely in the set 0. ////

It follows that one generates a subclass of solutions hy choosing aj = 0 2, and
a solution of Burgers’ equations

The equation is genuinely nonlinea,r if and only if the selfintera,ction coefficient  &#x3E;

is nonzero. Recall the following fa.cts about Burgers’ equation for initial data periodic in
0.

. The solutions have £2(8) norm independent of time so long as they remain Lip-
shitzean in 0.

. Nonconstant solutions do not remain Lipshitzea,n but have unique extensions to
global weak entropic solutions on for which the £2 (51 ) norm is nonincreasing.

. The solution operators S( t ) so defined are contractions.

. The total variation of solutions is a, clecrea.sing function of time.

. The term Doo, 2 lea,ds to interaction among the Fourier coefficients ~. In a sense

Burgers’ equation likes the coefficients to decay like 1/~2. If one starts with smooth data,
that is rapid decrease, shocks tend to form and shocks have this regularity. If one starts

with very singular data, say L 00, there is a, regularizing effect which forces the solution
to be BV , functions whose coefficients are 0( 1 / ~~~n ~ ). These vague comments constitute a

sort of I(olmogoroBr’s lav,, and it would be nice to have more precise versions. Using the
Hopf-Lax explicit solution [L] it is not hard to show that jump discontinuities form. For
times when a(t) has such a, discontinuity,
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Conjecture. For nonconstant entropic 6-periodic solutions of Burgers’ equation, 2.4 holds
for a strictly positive fraction of times t E [0, too[.

Summarizing, the system 1.1 ha,s solutions

whenever o~~ is a smooth periodic solution of Burgers’equation on (o, t~ x Here o(E) is
measured in L°°((o, tJ x s1 ). In this sense Burgers behavior is a,lways present in 1.1. The
main feature is the breaking of waves which is caused by the generation of high frequencies
thanks to the fact that âoa2 is a,n opera,tor which is nonlocal in the frequency space.

§3. Equations for 3 x 3 resonant interactons.

Our main goal is to study the interaction of high frequency wave trains like those in
§2. To do that we simplify to the case of 3 x 3 systems, that is ~~ = 3. The key fact is that
for k &#x3E; 3 there is always a resonance relation since three linear functions of two variables
are always linearly dependent. Thus there are constants 7j :A 0 such that = 0.

Phases = with nonlinear function fj satisfy the eikonal equation and
one gets fine single mode waves. However, generically there would not be any resonance.
The choice of linear plzases not at all i1Lnocent.

Replacing the phases ~~ lJy g3 m and the amplitudes by 
preserves the linearity of the phases ancl the almost periodicity of the amplitudes but
simplifies the resonance relation to

and 1.22 becomes

the only cha,nge being the insertion of the factor ̂ ,~,, . We drop the tilda’s remembering that
our phases are no longer given by 1.1C~.

We seek solutions with 2r-periodic in 0.

To write the equa,tion for a1, r etLll’11 to 2.1 for j = 1. The cases p = v have already
been calculated. Expand
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The operator f1 a.11l1illilatcs all terms for which + is not a multiple of For

example if J1 = 1 andiii. fl 0 term is annihilated. For 1» = 0, the term vanishes thanks
to the im factor so

Similarly if v = 1 all terms NN-itli ti 7 0 are killed and

The remaining terms are crucial. Consider ii = 2 , 1/ = 3, the reverse choice being similar.
In 3.3 only terms with 11 _ 1n, survive. For them use the relation ~2 + ~3 = to get

where R is the reflectioii operator is convolution

The equation for o1 then takes the form

The right hand side is a, 0 derivative so the mean value of 0"1 is independent of time and
similarly the other means. We restrict attention to the case

In that case the profile equations take the simple forll1

The system is integrodifierential.

The uniqueness part Theorem 1 implies that if H ) are odd functions of 0 at t = 0,
they remain so and the system becomes
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An even Sill1})Ier case arises if for 1 J  3, Cj = c aiid b- = b. Then there are solutions
~ = (v, v, v) provided

Thus 3.12 is a model equation for resonant interaction. In 3.11, the c j terms are of Burgers
type and the tIle bj terms represent the effect of the resonant interaction of the waves of
the other families on the given family. TIley. would be absent if there were no resonance.

A first remark is that the interaction terms are less singular than the Burgers terms.
This is illustrated by the following estimates

A consequence is that the local existence of profiles given by Theorem 1, follows arguments
familiar from the local existence theory for quasilinear hyperbolic systems.

§4. Profiles for compressible inviscid 1-d Euler.

For this system, 3.11 simplifies even further. If one takes A2  ~3, then ~1 and
a3 represent genuinely i-iol-lliiie,-i,i- iN,a,Nres called acoustic waves. However, a2 in not only
linearly degenerate, which l11eallS C2 = 0 but the interaction coefficient b2 = 0 also. Thus
Q2 is independent of tillle. In addition, one ha,s (’1 = c3 and b1 == -b3. Thus with

the profile equations take the clegallt form

Since rJ’2 is constant. the interaction term appears a,s a, linea,r perturbation of the
Burgers system. In addition the lineaiize4 equation
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has eVOIt1tiol1 operator which particularly simple, ii,-imel.)-

In particular the L’ ( Sl norm is preserved. It follows that the norm of a3 is

conserved (resp. nonincreasing) } for smooth ( r esp. entr opy satisfying weak) solutions of
4.2.

If a2 E BV , then k is a bounded measure so the linea.r operator a - (k * ~3, -~~ * ~1 )
is bounded on all sha.ces. It follows (see that for arbitrary initial

data , there are unique global entropy satisfying solutions of 4.2 satisfying

In the same paper, one finds interesting exact solutions xxrhen k is constant plus a
sum of delta functions. In addition they performed numerical simulations for ~2 = sin(O).
These revealed the following qualitative features.

. There is a, tendency to avoid wave breaking. As the al COl11pollel1t became steep,
instead of breaking it would back off, and the a3 wave would steepen and so on.

. The waves seemed to be recurrellt, a,nd the authors suggested that this might
correspond to solutions aIn&#x3E;ost or quasi periodic in tlnle. The growth allowed by 4.4 was
not observed.

. Traveling cusp sha,pecl waves were often present. The system 4.2 seems to like cusps.
Thus motivated, Pego proved the following result.

Theorem 3. (7D- For Qo = sin ( 8 ), tliel-e i.s an explicit one para,meter fa,mily of smooth
solutions of 4.2 each of’ whjch is periodic in time. The limiting va.Iue of the parameter yields
a time periodic solution 1viti1 a traveli11g’ CUS]).

Applying Theorem 2, one sees that for arbitrarily la.rge times t, the Euler equations
have x-periodic solutiolls ti‘ E C’x’( O, T] x R) of the form

Similar initial data for Burners equations would lead to shock formation in finite time
independent of E, so these solutions avoid the formation of shock for arbitrarily long
periods of time.

Problems. Are there nonconstallt x-periolic solutions of the Euler equations which are
smooth for all positive tilnes’? Till1e periodic?
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§5. The sawtooth miracle.

In contrast to the case of 1-cl gas dynamics, the general system 3.11 may have solutions
which explode in finite elegant construction of such solutions is given by Hunter
[H] .

Let be the 27r-I)eric)clic sawtooth function such that

Then in the sense of distributions one has (! 3.13)

Thus one generates discontinuous solutions of 3.11 of the form

provided

The solution is entropy satisfying if a.nd only if

Thanks to the sign condition 5.5, the selfinteraction ter11ls always act to decrease
the size of For definiteness suppose that the c~ &#x3E; 0 so the entropy condition is simply
aj &#x3E; 0.

Then if the b are large and positive they tend to iiiake l10llegative solutions of 5.4 grow.
If the b are positive and large compa.recl to the Cj all strictly positive solutions will diverge to
infinity in finite time. In this way one sees that there a.re explosive discontinuous solutions
of the profile equations. A recent result of Schochet [S] justifies nonlinear geometric optics
with discontinuous profiles. His L1 bounds the error are not proved on time intervals
which approach the blow np times of the profiles. To use Theorem 2 we need to construct
smooth explosive profile.

Coiijecture. If the Cj are nonnegative and thei-e is a solution a of 5.4 with strictly positive
aj such that ] diverges to infinity as t - t*  then for any 6 &#x3E; 0 there is a smooth
27r periodic solution a of 3.11 which explodes a.t time t  t* + b.

Conjecture. Suppose tha,t 1.1 is a system of conservation laws and there is an entropic
sawtooth solution of the profiles eqtia.tions which explodes at  oo and that t &#x3E;

t*. Then there are BB7 periodic initial data af arbitrarily small sup norm and uniformly
bounded BV norm for which the initial value does not have an elltropy solution

x 51 ).
The argument of yields the following.
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Theorem 4. nre Then there is a 8 &#x3E; 0 and a

ti E [0,oo[ [ such that if I  ~ for 1 ::; j ~ 3 ~ rllcv is and a.n odd solution

a E R3) oi 5.4 such tllat

Idea of the proof. When c, - 0, the equations 5.4 are local in Fourier. If the intial

data are positive i»ultiiJles of then the solution is of the form Q _ sin (0)
= 0 , So 1-3 diverges ill finite time.

If the c; are sufficientl3,- snlall one can control the spreading effect in Fourier of the
Burgers term to show tha,t the solution of 5.4 witli the same initial data explodes with first
Fourier coefficients dOlllil1Rllt. / / / / /

Theorem 5. Suppose that  li, ~~ ( c ) are as in the previous theorem.
Then there is a C’ &#x3E; 0 such tl18,t for &#x3E; 0 &#x3E; 0 tliel-e is a. t t2] a,nd a solution
u E X sl ) of 1.1 tilat

Proof. Take initial elata l/. = with a as in Theorem 4 and 1/77-t. Let 1n
tend to infinity and apply Theorem 2. / / / / /

Remarks.

1. The unbounded variation amplification in finite time shows that solutions of 3 x 3
systems which are small in amplitude and of moderate size in total variation can display
behavior radically different fi-()lil Burgers’equation thanks to resonant interaction of small
amplitude oscillations.

2. In the 2 x 2 case, the analysis of Gliliiiii and Lax [GL] shows that for L’ small
solutions and fixed positive finite time. the variation per period is bounded by a, fixed

positive constant. Thus 5.7-5.8 is impossible iii that case.

3. Glin&#x3E;n&#x3E; [G] constructed solutions of small initial variation whose variation at time
t is bounded 1)), a fixed multiple of the initial variation. Thus his solutions too cannot

satisfy 5.7-5.8. This also indicates (it does not prove since we lack a uniqueness theorem
for weak solutions) that though our solutions are as small as we like in sup norm their
initial variations must be bounded below.
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4. Theorem 5 complements and contrasts with the tinlio-Lii-ided amplification of the
BV norm in dimensions (I &#x3E; 1 latter cl&#x3E;r)ellcls on the phenomenon of focussing
which is a linea,r phenomenon which can take place lIl an arbitrarily small neighborhood
of a single point. The Cllrrel1t result depends on resonance which is nonlinear and requires
initial oscillations over a finite range in ,z so tliat the resonant intera,ctioli takes place over
a finite interval of time. In particular the phenomel-ion does not take place for solutions of
arbitrarily small initial ,raria tiOll.
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