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I. Description of the return method.

The goal of this paper is to describe a method called the return method in [Co2]
and introduced in [Col] to solve a stabilization problem, which allows also to prove
controllability in some cases.

In order to explain this method, let us consider first the problem of local con-
trollability of a control system in finite dimension. So we consider the control system

where x ERn is the state and u C R’ is the control ; we assume that f is of class
C°° and satisfies

There are various possible definitions of local controllability. Here we use the following
one.

Definition 1.1. System i - f (~, u) is locally controllable if for any T &#x3E; 0 there

exist E in (0, ~oo) such that for any ~o and x, of norm less than -, there exists a
bounded measurable function u : [0, T~ -~ Rm such that if r is the (maximal) solution

f (x, u (t)) whi ch satisfies x(o) = x 0, then x (T) - x1.

One does not know any interesting necessary and sufficient condition for local
controllability but there are many useful necessary conditions and sufficient condi-
tions which have been found during the last twenty years ; for a state of art see for
example the survey paper by Kawski (K, two recent research papers by Agrachev-
Gamkrelidze [A-G] and by Bianchini-Stefani [B-S], and the references therein. Note
that all these conditions rely on Lie bracket and that this geometric tool does not
seem to give good results for distributed control systems - in this case x is an infi-
nite dimensional space -. On the other hand for linear distributed control systems
there are powerful methods to prove controllability - e.g. the H.U.M. method due
to J.-L.Lions, see [L1][L2], and the references therein -. The return method consists
in reducing the local controllability of a nonlinear control system to the existence
of - suitable - periodic trajectories and the controllability of linear systems. The
idea is the following one : assume that, for any positive real number T, there exists
a measurable bounded function : [0,T] - Rm such that, if we denote by jf the
(maximal) solution of # = ~c(t)), x(O) = 0, then

and

the linea.rized control system around (x, IT) is controllable on [0, T]. (1.4)
Then it follows easily from the inverse mapping theorem - see e.g. [So2 ;3.Th.6] -
that z = f (x, u) is locally controllable.
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Let us recall that the linearized control system around (x, is the time-varying
control system

. i , - i .. , ,

For the linear control system (1.5) controllability on (0, T~ means, by definition,
that for any yo and y1 in R’~, there exists a bounded measurable function v : [0, T] -
Rm such that if !/ = A(t)y + B(t)v and y(o) = yo, then y(T) = yi. There is a

well known Kalman-type sufficient condition for the controllability of (1.5) due to
Silverman and Meadows [S-M] - see also [So2 ;Cor.3.5.17] -. This is the following
one :

Proposition 1.2. Assume that for some 7 in [0, T]

then system (I.S~ is controllable on (o, T). Moreover if A and B are analytic on [0, T]
anf if system (1.5) is controllable on ~0, T), then (I.6~ holds for aII t in ~0, T).

Note that if one takes 11 = 0, then the above method just gives the well known fact
- see e.g. [So2 ;3.Th.6] - that if the time-invariant linear system ?/ = 

/âu)(O, O)v is controllable, then the nonlinear control system i = f (x, u) is locally
controllable. But it may happen that (1.4) does not hold for 11 = 0, but holds for
other choices of u. Let us give simple examples.

Example 1.3. We take n = 2, rrz = I and consider the control system

Let us take u - 0 ; then x - 0 and the linearized control system around (x, u) is

which is clearly not controllable. Let us now take u E C°°( [0, T]; R) such that
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Then one easily checks that

In particular we have

The linearized control system around (x, IT) is

so

and one easily sees that (1.6) holds if and only if

Note that (1.17) holds for at least a 7 in [0, T] if (and only if) u 0 0. So (1.4) holds
if (and only if) u 0 0.

Exemple 1.4. We take n = 3, m = 2 and the control system is

Again one can check that the linearized control system around is controllable
on [0, T] if and only if ti fi 0. Note that for system (1.18) it is easy to achieve the

"return condition" (1.3) ; indeed, if

then

and, in particular,

One may wonder if the local and controllability of x = f (x, u) implies the exis-
tence of u in COO([O, T]; Rm) such that (1.3) and (1.4) hold. It has been proved to
be true by Sontag in ~Sol~. Let us also remark that the above examples suggest that
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for many choices of u then (1.4) holds. This in fact holds in general. More precisely
let us assume that

where Lie .~’ denotes the Lie algebra generated by the vector fields in 7 ; then for
generic u in (1.4) holds ; this is proved in [Co3] [Co4], and in [So3] if
f is analytic. Let us recall that by a theorem due to Sussmann and Jurdjevic [S-J],
(1.22) is a necessary condition for local controllability if f is analytic.

For controllability the return method does not seem to give any new interesting
result if J’ lies in a finite dimensional space ; in particular the local controllability in
Example 1. follows from the Hermes condition and the local con-

trollability in Example 1.,~ follows from Chow’s theorem [Ch]. But it gives some new
results for distributed control system ; let us mention that if x belongs to an infinite
dimensional space then (1.3) and (1.4) do not always imply the local controllability
of x = on [0, T] ; for example the phenomenon of "loss of derivatives" may
appear ; in some cases this can be solved by using the Nash-Moser process - see e.g.
[Ha] -. In section 2 of this paper we sketch a proof, relying on the return method, of
the boundary controllability of the Euler equations of incompressible perfect fluids
on a bounded connected and simply connected domain of R2.

For the stabilization problem the return method allows to obtain new results
even if x lies in a finite dimensional space. Now given T &#x3E; 0, we want to find

C°°(R x R; Rm) T-periodic in time vanishing on 10} x R such that the origin
of R~ is a locally asymptotically stable point of i = u*(x, t)). So now we first
try to find IT E C°°(R’~ x R; Rm) T-periodic in time vanishing on {0} x R such that

and, for all {0} small enough,

the linearized control system around (Xxo .))is controllable on [0, T] (1 .24)

.where xxo denotes the solution of the Cauchy problem

If such a u exists one can deduce the existence of u* with the above properties by
pertubing u slightly in a suita,ble way ; let us mention tha,t Pomet has given in [P]
- see also [C-P] - a nice method to construct from u,. As a,n application of the
return method we have obtained in [Col] :
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m

Theorem 1.5. Assume that f (x, it) and that (1.22) holds. Then,
i=l

for any positive T, there exists u* E C’(R n x R; R~), T-periodic in time, vanishing
on {0} x R such that 0 is a Iocally asymptotically stable point f (x, u*(x, t)).

In fact in [Col] we have given a global version of Theorem 1.5 ; but the proofs
of [Col] can be easily adapted to obtain Theorem 1.5.

2. Boundary controllability of the 2 - D Euler equations.

Let Q be a non empty bounded open connected subset of R2 of class C°° . Let
r be the boundary of Q, let n be the outward unit normal vector field on F, and
let fa be a subset of r which has a non empty interior in r. The problem of the
controllability of the Euler equations for (n, fo) is the following one : let T &#x3E; 0, yo
in COO(n; R2), and Y1 in R2) satisfying

does there exist and p in ) such that

So now the state space is the set of y in C"O(a; R2) satisfying div y = 0 on Q. The
control does not appear in the above formulation ; one can take, for example, y ~ 7-1 on
Fo and curl y := on each point of Fo where y ~ n &#x3E; 0. If the above

problem has a solution (y, p) for all YO,Y1 in R’) satisfying (2.1) to (2.4) then
the Euler equations are, by definition, controllable for (n, fo). Then we have proved
in [Co5] :

Theorem 2.1. If Q is simply connected, then the Euler equations are controllable
for (Q, Fo ) .

We briefly sketch the proof of this theorem. First one notices that this theorem
is a straightforward corollary of the following proposition :
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Proposition 2.2. There exists a positive real number v such that if yo is in

R2), satisfies (2.1), (2.3), and :

then there exist y in C’(Q x [0,1]; R2) and p in COO(n x (o,1~; R) satisfying (2.5) to
(2.9~ with (T, y1 ) = (1, 0) and such that

Indeed one easily checks that if (y, p) satisfies (2.5) to (2.7) and if A &#x3E; 0, then

(YÀ,PÀ) defined by YÀ(x, t) = Ay(x, At), px(x, t) = ,.B2p(x, At) satisfies (2.5) to (2.7)
with T/A instead of T ; similarly (y_, p_ ) defined by y(x, t) = -y(x, T - t), p(x, t) =
p(x, T - t) also satisfies (2.5) to (2.7) if (y, p) satisfies (2.5) to (2.7) ; this allows to
deduce theorem 2.1 from Proposition 2.2 - see [Co5] for more details -.

In order to prove Proposition 2.2 we use the return method. One first construct
a Lipschitzian bounded contractible open subset Qi of R2 the boundary of which
consists of two closed disjoint segments of straight line F-i and I‘1 and of two con-
nected closed disjoint curves ~’ and ~" which meet 1,_1 and r1 at right angles. We
impose also

and that there exists a neighborhood of F-i (resp. Fi ) such that S~1 intersected with
this neighborhood is the intersection of one of the open halfspace the boundary of
which is the straightline containing F-i (resp. Fi ) with the part of the strip limited
by the two straightlines passing through ar_1 (resp. arl) and orthogonal to F-i
(resp. Fi ) contained in this neighborhood ; see the figure below.
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The existence of such a Qi follows from the assumptions on Q and ro . Clearly
there exists 0 E [-1,1]) such that

Simple classical arguments relying on extensions by symmetries show that in fact
0 E (-1,1~). Let q E C~([0,1]; [0, +oo]) be such that

Let M be a positive real number and let y :
be defined by

for all (x, t) in Q x ~0,1~. Then (2.5) to (2.9) hold with y == fj, p = p, T = 1, Yo == 0,
and Y1 = 0. Let us study the controllability of the linearized control system around
(y, p). This linear control system is :

This linear control system is controllable on [0,1] if given zo and z, in R 2)
satisfying

there exist z ) satisfying (2.21),(2.22),(2.23),
and
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Taking the curl of (2.21) we get, using (2.13),

with

Let us assume that VO vanishes at some point a in S2. Then, using (2.19) and (2.28),
we get that 

-

and so clearly the linear control system (2.21) to (2.23) is not controllable on ~0,1~.
Conversely if

and if M is large enough then the linear control system (2.21~ to (2.23) is controllable
on [0,1]. This can be seen using an extension method similar to the one introduced
by Russell in [R]. Let us give the proof. Let bounded open subset of R2
of class C°° containing Qi ; let us extend 0 to all of Q2 ; this extension, that we
will denote also 0_, is required to be of class C°° and of compact support in 522. Let
0 : S~2 x (o,1~ -~ S~2 be defined by

Note that

Using (2.14), (2.15),(2.16),(2.30), and (2.32), one easily gets that, if M is large
enough,

Since we get from (2.33)

E [0,1]) be such that p(0) = 1, J-l(1) == 0. We now define y on all
n2 X (o,1 by requiring (2.19) for all (x, t) in Q2 x (o,1. Let us consider the linear
Cauchy problem, where the unknown are z : Q x (o,1~ --~ R 2and w : Q3 x (o,1~ -~ R
and the initial data Wo : 1 Q3 - R,
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Clearly for any Wo in Coo (!13; R) this Cauchy problem has a (unique) solution (z, W)
in C"(Q x [0,1]; R2) x COO(!1 x ~0,1); R). Note also that, by (2.34), there exist wo
in COO(!12 x [0,1]; R) such that

With such a wo we have, since is simply connected,

Moreover since is simply connected we get from (2.35),(2.37), and (2.38) the exis-
tence of 7T in C’°(Q x [0, 1]; R) such that (2.21) holds. So the linear control system
(2.21) to (2.23) is controllable on [0,1]. As mentioned in section 1, this does not
imply, since the control system (2.5) to (2.9) is in an infinite dimensional space, that
if yo is "close" to i/(-,0) ~ 0 then there exists (y, p) close to (y, ~) such that (2.5) to
(2.9) holds with T =1 and y1 = 0. But it is proved in [Co5] this is in fact true - with
yo "close" to 0 meaning that IYol1 is small - and that one can also impose (2.10). The
proof relies again on an extension method, similar to the above one.

Finally let us just mention that using the strong maximum principle and Morse
theory it is proved in [Co5] that (2.30) holds ; instead of Morse theory one could
alternatively used degree theory : indeed using the maximum principle as in [Co5]
one can show that V8 does not vanish on 8Qi and that

Since is holomorphic in Qi (2.30) follows from (2.44).
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