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We describe some approximations for the two-dimensional Navier-Stokes equations
which are globaly stable and have the minimal global B-attractors (= MIGBA,) in
e-vicinities of the MIGBA for the investigated problem. In the end of the lecture we point
out some other equations for which we have analogous results.

In all our theorems 2 is any bounded domain (b.d.) in R2.

1 The Galerkin-Faedo (G.-F.) approximations.

Consider the problem

(1y) Ow(t) — vAv(t) + v(t).Vo(t) = =Vp(t) +

(12) div ’U(t) =0 , ’U(t)wg =0 s ’U(O) =@,

inabd QCR?andt € R" = [0,00). Here v(t) : @ — R? and p(t) : @ — R! are
unknown functions, v(t).Vu(t) = Zi=l V()0 v(t) , vi(t)(k = 1,2) are components of
v(t) ,v is a positive constant, ¢ and f are known functions independent on ¢, &;v and 0;,v
are partial derivatives of v in t and z.

Let Hy be the closure in the norm || - || of L2 = L%(2, R?) of the set
J®(Q) = {ulu € C*(Q,R?),div u = 0 ,supp u is a compact in Q} ,

H, be the closure of J*°({2) in the norm || - ||; of Dirichlet integral, i.e. in the norm

1/2

2
lully = /Q S (Ouyui(@)dz| = 0zul]

1,k=1

and H_; be the dual space to H; relative to Hy with the standard norm || - ||-; . We
denote by (u,v) the inner product v and v in Hp.

It is known ([1]-[3]) that for any f € H_; the solution operators V; : ¢ — v(t,¢)

for the problem (1) exist in the whole Hy and form the continuous bounded semi-group
{Vi,t € RT, Hy}. For it, the ball

Br = {ulu € Ho, ”u” < R}aR > R(_)_ = (V\/x)_lllf”-l’

is B-absorbing set and the intersection

() V(Br) =DM

>0
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is MIGBA. Here — ), is the first eigenvalue of Stokes operator A with D(A) C H,([4], ch.2).
N is a bounded subset of H; and there is a majorant ¢, for

t+1
(2) sup  sup {[|¢1 ,Ilatv(t,sﬂ)ll,/t 16z, v(7, @)IIPdr} < ¢a(llfll-1,v7")

pedN  tER?

These facts and some other properties of 90 (for f € Hyp) were proved by us in [1] (see also
[2],[3]). But the method of prooving the basic estimates given in [1] required a smoothness
of 02 and could be applied only to the Rothe approximations and to the G.-F. approxi-
mations with the eigenfunctions {¢}$, of A as the coordinate functions in Hy. In [5],[6]
we have given an other method of estimating the solutions to the Navier-Stokes equations
which can be applied directly to the G.-F. approximations with the arbitrary coordinate

{Qbk}z‘;l in Hy.

Denote by v™(t,¢) = > 1, ci*(t,)¢x the G.-F. approximations and by V;™ : ¢ —
v™(t, ) the solution operators for the G.-F. equations. The family {V;™,t € R*, HJ*} for
eachm = 1,2, -+, is a continuous semi-group. Here H"® = span {t1, -, %n, } is considered
as a subspace of Hy. The following facts are true :

Theorem 1.— Let Q bea b.d. in R? and f € H_;. The Galerkin-Faedo approximations
with arbitrary coordinate functions in Hy have MIGBAs IM™(m = 1,2,---) lying in H®
and having the properties :

(3)  sup  sup{flells, [|90™ (¢, o)l / 10z, 0™ (m @)Pdr} < da(llfll-1,v77)
pem  tER

with the same ¢, as in (2). For any € > 0 exists a number m(¢) € Nt such that
(4) IM™ C 0.(IM) for m > m(e) .
Here 0.(2M) is the e-vicinity of 9 in Hy =

It is useful to bear in mind the following known fact :

]
Lemma 1.— If {¢i}32, is a coordinate system in WZ(Q) then {p = Vi, =
(=02, ¢k, Oz, k) } 72, Is the coordinate system in Hy. The inverse statement is also true :

if {$x}%2, is a coordinate system in Hy, then each v determines a function ¢y € V?/’i(Q)
and {@r}%2, is a coordinate system in WZ(Q) .
The proof of Theorem 1 is based on some a priori estimates for v™. They are the

same as for solutions v(t) of problem (14) proved in [5] (see also [6]). These estimates are
derived only from the inequalities :

(51) 5 IO + w10 = (£,0(0) < Il 000
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vd

(52) o ®)I® + 5 =

180> = —(v(t).Vo(t), Brv(t))+

+(f,00(1)) < llo@®llaalldzvI 10wl + I Fl-1 1020l

| e

18ev ()1 + vl|OZ ()] = —(Bv(t)-Vu(t) + v(t). VOru(t),

N =
Qu

(53)

t

ev(t)) = —(0v(t).Vu(t), 0v(t)) < [0 (t)l5 IOz v(t)]l -
Here || - ||4,0 is the standard norm in L*(}; R?).

The assertion (4) can be proved by reductio ad absurdum. Suppose that (4) is not
true. Then there is an € > 0 and a sequence ap; € IN™i /mj — oo, such that

(4") dist {am;, M} > ¢ .

Due to (3) the set |J 991™ U 9N lies in the ball By, (Hy) of Hy (with radius ¢; =

m=1
#1(|fll-1,¥71)), is a precompact in Hy and lies in a ball Bg,(Ho) of the space Hy. In
particular, am; € Br,(Ho) N By, (Hy). Choose T € R* such that

(4") Vr(Br,(Ho)) C 0c/2(IN).

Each a,; determines a ¢n; € 9™ for which V¥ (¢m;) = am;. The set {¢m,;} also
belongs to Br,(Ho) N By, (H;). Therefore we can choose a subsequence {c,om; } converging
to a ¢ in the space Hy and ¢ € Bg, (Ho)NBgy, (Hy). We have for {V, (‘Pm; )} the estimates

(3). They permit to extract a subsequence m/ for which v, (SDm;') converge to a v(t)
uniformly in ¢ € [0,7] in the norm of Hy. In particular,

" €
(4") V2" (pmy) = o(T)| < 5 for mj >mg .

Following standard arguments we prove that v(t) is the solution V;(¢) of the problem (1)
with ¢ € Bg,(Hp). Due to (4") and (4") dist {am;:,gﬁ} < ¢, but this contradicts to the

hypothesis (4’).

Remark : The MIGBAs which we have in this lecture are invariant compact connected
sets in the phase spaces choosed by us. They have all properties of )1 for the problem (1)
proved in [1]-[3]. We can give for them common majorants for the number of determining
modes and for their fractal dimensions.
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2 A discretization of t.

For the study and computations of attractors some discretizations of ¢ can be useful.
One of them for the F.-G. approximations has the form

(6) (v*(8), ¥x) + v(Vo™ (1), Vo) + (0™t = 7). Vo™ (2), 1) =

:(fad)k) y k=1,2,---m, vm(o)z(pm’

for t = le,4 € N*,7 = const > 0; v*(t) = 77 o™(¢t) — v™(¢t — 7)]. The systems
(6) determine successively in t = 7,27, -, the velocity fields v™(¢,¢™,7). The solution
operators V™" : ¢ — v™(t,,7) form the discrete semi-group {V,["",£ € Nt H}. It
has MIGBA 901™7. Let 7 = 7, — 0 when k — oco.

Theorem 2.— Let the conditions of Theorem 1 be fulfiled and )™ be attractors from
Theorem 1. For any § > 0 exists a number n(§,m) € N* such that

IN™™ C 0s(IN™) for k> n(6,m) .

Here 05(M™) is é-vicinity of 9™ in H and 74 — 0. There is a common majorant for

all ™™ in Hy, i.e.

sup  |lelli < d2([| fll-1, v, 70) =

mtnz,rk

e

The proof of Theorem 2 is based on a priori estimates for v™(¢),¢ = 7, = 1,2, -+, which
we derived from the following relations :

(71) o™ (N = llo™ (¢ = T)II> + o™ () = o™ (t = DII” + 270]|0:0™ (#)||* =
=27(f,v"™(1)) < 27| fll-1l|Gzv™ ()] ,
27 [l ()II” + v[|0e0™ ()]1* = v]|0s0™ (t — T)II + v]|0z0™ (t) -
(72) —0,v™(t — 7)||? = =27 (v™(t — 7).Vo™(t), v (1)) + 27(f,vi(t)) <

< 27" (t = 7)lla, @G0 ™ DI lvi" (Wlle,0 + 27 fll-1][0z07" (D],

and
o I = llof*(t = I + lof* () — o (t = 71> + 27v|| 807 (1)|* =

(73) = =27(v™(t — 27).Voi*(t) + v (t — 7).Vo™(1),vi* (1)) =
= =27(vi*(t — 7). Vo™ (), v (t)) < 27||vf*(t — 7)|la,0 -
[0zv™ ()] lo7*(D)lla , t = L7 .

They are corollaries of (6) and they are difference analogues of the relations (55 ).
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3 An ¢-approximation

Consider the e-approximation

1
(81) 0w — vAv — 7 1Vdiv v + v. Vo + §vdiv v=f,

(82) U|BQ =0 3 v[t:O =p, €C (07 1] )

of the problem (1;). The following statement holds for (8;) :

Theorem 3.— Let Q be a b.d. in R? and f € VVz'l(Q) The solution operators

VE 1 ¢ — ve(t,p) form the continuous semi-group {V£,t € RT,L?(Q,R?)}. It belongs to
the class 1 and has a compact MIGBA 9J1°. There is a common majorant ¢, for

sup  sup sup {[lell, e T [ldiv o], |0v°(t, )],
€€(0,1]  ,eMNe teR?

t+1
/ (e |divaro®(m, @)1 + 107 0% (1, @)II*)dr} < @s(|IFll-1,v77) -
¢
For any 6 > 0 there is a €(6) > 0 such that
M= C 0s(IM) for € €(0,e(6)] .

Here 05(9MN) is -vicinity of M in the space L?(Q,R?). For the solving of (8x),k = 1,2,

can be used the approximations of n.n.1 and 2 with arbitrary coordinates {11}, in the

space I;I)/ ; ). =

Write down the relations from which we derive a priori estimates for the solutions of

(8k) :
(%) I + vldeo )+ ldiv (D) =

= (f,v(®) < N Fll-1l18=0(D)],
(92) 180 ()] + IIa v + 52 1 ||le ()] =

= —(v(t).Vu(t), pu(t)) — %(v(t)div(t),@tv(t)) + (f, (1)) <
< lv@lla,ell0:v ()| 0cv(t)]l4,0 + éllv(t)lh,nlldiv v(®)[|10ev(t)]l4,0+
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HIFl-1 110z 0l
1d 2 2 2 -1 : 2
(93) 5 g 10" + v 0po()II” + e ldiv Opo(2)|” =

= —(B(t).Vo(t) + %v(t)div By0(t), Byu(2)) — (v(t). Vv (t)+
+%8tv(t)div o(t), Bev(t)) = —(By(t). Vo (t) + %v(t)div By0(t),

oww(t)) < 0w (i)l @llOzv()]l + %llv(t)ll4,n :
Idiv Bio(B)]] (10w (t)ll4,0

4 Difference schemes

We have consider difference schemes suggested by us in 50th and 60th (see, for exam-
ple, [7], [8], [4]) and have found that some of them are globaly stable and have MIGBAs
lying near 1. Let us discribe here on of them. Take h € (0, ho] and 7 € (0, 7o), with
some ho and 79, and the mesh R} : z = (kh) = (kih,k2h),(k1,k2) € N x N in
R2. Let wip = {z = (z1,22) € R¥z; € (kjh,(kj + 1)h),7 = 1,2} ; Qp - the set

U ww C R?; Sy = o0y, and Qp = ﬁh\ S, C R?. We shall use the same nota-
wen CN
tions Q4, Sy, and Q for the sets of points 2 = (kh) € Ri belonging to Qx, Sy and
corresponding by. Introduce also notations :

vgi(2,t) = h—l['v(:z: + heiat) —v(z,t)},vz,(z,t) = h"l[v(:v,t) —v(z — h5i7t)] )
1 +i ;. 20
vi(z,t) = 77 o(z,t) —v(z,t — 7)), v(z,t) = v(z + he', t), v (z,t) =v(z,t £ 7T),
where €' is the ort along the axis ;. Take the following difference scheme (see [4], p. 238):

1 —-0,+% 1 -0

(10y) Vit = Winga, + 35 Uk Vst vk Viz, = —pz; + f1i=1,2,
(102) Vkz, =0,

(103) vls, =0,

(104) vle=o = "
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the equations (10;) have to be fulfilled in the points (z,t) with ¢t = {7, £ = 1,2,---, and
z € Qp ; the equations (102)- in (z,t) with t =47, £ =1,2,---,and 2 = Q) = Q, U S},
where S} is a part of S, which we get replacing the points of 2, by vectors —het, i =1,2;
the equations (103) - in (z,¢) with ¢t = ¢r, £ =1,2,--- and 2 € S}, the equations (104) -
in (z,0) with z € Q4. In (10;) f* is a mesh-function on ), and ¢" is a mesh-function on
Qy satisfying the equations

©"ls, =0 and go’,;xk =0inz € Q).
We add to (10%) the equations

(10s) Zp=0fort=€7—,€=1,2’...
2

It was proved in [8] (see also [4]) that the system (10x), k = 1,---,5, is uniquely solvable
and its solutions v™7 converge when h = ur — 0 (u is a fixed positive number) to the
solution v of the problem (1j) on the finite intervals [0,T] of t-axis if f,¢ and 9 are
smooth enough and f*, p"* approximate f and ¢ in a properly way. Now we have proved
that the scheme (10y) is globally stable. More precisely : introduce the linear set of mesh-
functions u® : H* = {ut|q, |u"|s, =0, up,, = 0 in the poins of )} and consider H" as
Euclidian space with the norm

(11) o, = (B2 (uh)?)H2,

Qp

For a fixed f* € H" the solution operators V*™ : o* — vh7(t, o), t = ¢r, £ € N*,
form a discrete semi-group in H*. It has MIGBA 901"™ and there is a common majorant
¢4 for all MM with h = ur, 7 € (0,70 :

h, -
sup  sup {lleyll,, ;" (r,0")llen} < dalllFMlan, v~ 7o)
q,hemh,r [)GN

Denote by @" the piece-wise constant interpolation of u® € H" ie. " € L*(Q, R?), a"(z)
= ut(kh) for € wrp, C Qit(z) = 0 for z € Q\ Q. Let, for example, 7 = 7% = 7027 % k =

0,1,2,---,h = hy = prp, Mem = gﬁﬁ and ﬂﬁﬁ - the set of @"* for all p** € f)ﬁl’j The
following statement is true :

Theorem 4.— Let Q2 be a.b.d. in R? and f € L?(Q; R?). For any € > 0 exists a number
n = n(e, u) such that

= ‘
M, C 0.(OM) for k > n(e, p).
Here 0.(9M) is e-vicinity of M in the space L*(Q,R?) .
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Analogous results hold for the systems of ODE :

+k

1 1
(114) Opvi(t) — Vig,z, (1) + 92 Ok ()viz, (1) + 'évk(t)viik(t) = —pz,(t) + fi, 1 = 1,2,

(1) V() = 0, o(B)ls, = 0, v(0) =", ¢ € R*.

The basic relations which we use for the solutions of problem (10;) resemble the relations
(7k) and for the solutions of problem (11j)- the relations (5 ).

The results analogous to results described above are true for :

1) the Navier-Stokes equations with the periodic or non homogeneous boundary con-

ditions : v|gq = aleq with a(z) = rot b(z), b € W}(Q), if I is a piece-smooth curve.

2) the termo-convection and magneto-hydrodynamical systems for viscous incompress-

ible fluids in 5.d.Q2 C R2.

3) the modifications of the three dimensional Navier-Stokes equations in b.d. 2 C R3

which were suggested by us in [9] [10] (see also addendum in [4], second russian edition).
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