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We describe some approximations for the two-dimensional Navier-Stokes equations
which are globaly stable and have the minimal global B-attractors (= MIGBA,) ill
~-vicinities of the MIGBA for the investigated problem. In the end of the lecture we point
out some other equations for which we have analogous results.

In all our theorems is any bounded domain (b.d.) in R2.

1 The Galerkin-Faedo (G.-F.) approximations.

Consider the problem

in a b.d. Q c R 2 and t E R+ = (o, oo). Here v(t) : Q - R2 and p(t) : Q - R1 are
unknown functions, v(t).Vv(t) = I 1, 2) are components of
v(t) , v is a positive constant, (/? and f are know functions independent on t, atv and 
are partial derivatives of v in t and z k .

Let Ho be the closure in the norm 11 - 11 of L2=- L~ (S~, R2 ) of the set

.

H1 be the closure of in the norm ]] . 111 of Dirichlet integral, i.e. in the norm

and H_1 be the dual space to Hl relative to Ho with the standard norm 11 . ~~_1 . We
denote by (u, v) the inner product u and v in Ho.

It is known ([1]-[3]) that for any f E H-1 the solution operators Vt : cop -7 
for the problem exist in the whole Ho and form the continuous bounded semi-group

E R+, Ho}. For it, the ball

is B-absorbing set and the intersection
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is 11~IIGBA. Here -a1 is the first eigenvalue of Stokes operator A with C HI ([4], ch . 2 )
9N is a bounded subset of Hl and there is a majorant ~1 for

These facts and some other properties of 9J1 (for f E Ho ) were proved by us in [1] (see also
[2], [3] ). But the method of prooving the basic estimates given in [1] required a smoothness
of and could be applied only to the Rothe approximations and to the G.-F. approxi-
mations with the eigenfunctions of Li as the coordinate functions in 77i. In ~5~, ~6~
we have given an other method of estimating the solutions to the Navier-Stokes equations
which can be applied directly to the G.-F. approximations with the arbitrary coordinate

Denote by _ the G.-F. approximations and by ~111 : 
the solution operators for the G.-F. equations. The family E for

each 7TZ=l,2,’’’,isa continuous semi-group. Here ~IQ = is considered
as a subspace of Ho. The following facts are true :

Theorem 1. Let n be a b. d. in R2 and f E H -1. The Galerkin-F’aedo approximations
with arbitrary coordinate functions in H1 have MIG-BAs = 1,2,...) lying in Ho t
and having the properties :

with the same ~1 as in (2~. For any 6 &#x3E; 0 exists a number m( E) E N+ such that

Here is the e-vicinity of 9J1 in Ho n

It is useful to bear in mind the following known fact :

~ ~ ~ 

o 

Lemma 1. If is a coordinate system in 2 (Q) then k= W2
axl~~)~~ 1 is the coordinate system in Hl. The inverse statement is also true :

, ~ ~ ~ ~ ~ 0if is a coordinate system in Hl, then each 7f k determines a function pk E w 2~ 

0 and is a coordinate system in k= 2

The proof of Theorem 1 is based on some a priori estimates for v’~ . They are the
same as for solutions v(t) of problem (1k) proved in [5] (see also [6]). These estimates are
derived only from the inequalities :
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is the standard norm in L4(Q; R2 ).
The assertion (4) can be proved by reductio ad absurdum. Suppose that (4) is not

true. Then there is an E &#x3E; 0 and a sequence amj E OO1mj , m j - oo, such that

00

Due to (3) the set U 9N lies in the ball of HI (with radius 01 =
M=1

is a precompact in Ho and lies in a ball BR1(Ho) of the space .Ho. In

particular, ani ~ BR1(Ho) n Choose T ~ R+ such that

Each am, determines a E for which V~~ (~mJ ) = am, . The set f I also
belongs to Therefore we can choose a subsequence (p~~z, ) converging

, 
&#x3E;

to in the space Ho and ~o E We have for f Vt the estimates
~,, 

(3). They permit to extract a subsequence m’! for which vtm’ (~m~,~ ) converge to a v(t)I i

uniformly in t E [0, T] in the norm of Ho . In particular,

Following standard arguments we prove that v(t) is the solution of the problem 
with p E Due to (4" ) and (4"’ ) dist ~a~~~ , ~}  6, but this contradicts to the

i

hypothesis (4’).

Remark : The MIGBAs which we have in this lecture are invariant compact connected
sets in the phase spaces choosed by us. They have all properties of 9n for the problem ( l k )
proved in ~1~-~3~. We can give for them common majorants for the number of determining
modes and for their fractal dimensions.
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2 A discretization of t.

For the study and computations of attractors some discretizations of t can be useful.
One of them for the F.-G. approximations has the form

for t = ~,~ E N+,T = const &#x3E; 0 ; vm(t) = T-lw’~(t) - v""(t - T)]. The systems
(6) determine successively in t = r,2T,’’-, the velocity fields vm (t, ~’~, T). The solution
operators Yt’~’’~ : ~ --~ v’~(t, ’P, T) form the discrete semi-group IV 7,7’, ~ E N+, ~a ~. It

has MIGBA 9J1m,r. Let T = Tk -~ 0 when k -~ oo.

Theorem 2. Let the conditions of Theorem 1 be fulfiled and 9J1m be attractors from
Theorem I. For any 6 &#x3E; 0 exists a number n(6, m) E N+ such that

Here 0~(~’~ ~ is b-vicinity of in Hå and Tk - 0. There is a common rna jorant for
in HI, i . e.

The proof of Theorem 2 is based on a priori estimates for 
we derived from the following relations :

They are corollaries of (6) and they are difference analogues of the relations (5~,).
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3 An --approximation

Consider the 6-approximation

of the problem (1~). The following statement holds for (8k ~ :

o

Theorem 3. be a b.d. in R2 and ,f E W-1(5~~. The solution operators
2

~ : (/? 2013&#x3E; form the continuous E R+, LZ (S~, R2 ~ ~ . It belongs to
the class 1 and has a compact MIGBA There is a common ma jorant ~z for

For any 6 &#x3E; 0 there is a £(6) &#x3E; 0 such that

Here 06(9N) is b-vicinity of 001 in the space the solving of(8k),k == 1, 2,
can be used the approximations of n.n.1 and 2 with arbitrary coordinates in the

o 1
w 2 ~S~).

Write down the relations from which we derive a priori estimates for the solutions of
(8k) :
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4 Difference schemes

We have consider difference schemes suggested by us in 50th and 60th (see, for exam-
ple, [7], [8], [4]) and have found that some of them are globaly stable and have MIGBAs
lying near 001. Let us discribe here on of them. Take h E (0, ho] and T E (0, To), with
some ho and To, and the mesh Rh : x = N x N in

R2. Let Wkh - (Xl, X2) E (kjh,(kj + 1)h), j = 1, 2} ; Qh - the set

U Wkh C R2 ; Sh = 8Qh and Qh = QhB Sh C R2. We shall use the same nota-
_

tions Qh, Sh and Qh for the sets of points x = (kh) E R~ belonging to nh, Sh and S~~t
corresponding by. Introduce also notations :

where c’ is the ort along the axis xi. Take the following difference scheme (see (4~, p. 238):
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the equations (101 ) have to be fulfilled in the points (x, t) with t = £7, R = 1, 2, ..., and
x E flh ; the equations (102)- in (~, t) with t = RT, R = 1,2,..., and x = U Sh,
where S’h is a part of S’h which we get replacing the points of nh by vectors 2013/~eB z = 1, 2 ;
the equations ( 103 ) - in (x, t) with t = £7, R = 1,2,... and E S’h, the equations (104) -
in (.r,0) with x E nh. In (101 ) f h is a mesh-function on nh and p~ is a mesh-function on
nh satisfying the equations

We add to the equations

It was proved in [8] (see also [4]) that the system = 1, ... ,5, is uniquely solvable
and its solutions v h, rconverge when h = 0 (p is a fixed positive number) to the
solution v of the problem (i k) on the finite intervals (0, T~ of t-a,xis if and 8Q are
smooth enough and approximate f and p in a properly way. Now we have proved
that the scheme ( 10 k ) is globally stable. More precisely : introduce the linear set of mesh-
functions uh : Hh = 0, Uh - 0 in the poins of Q£ ) and consider H h as
Euclidian space with the norm

For a fixed fh E Hh the solution operators ~h -~ = £T, £ E N+,
form a discrete semi-group in Hh. It has MIGBA 9J1h,T and there is a common majorant
4Y4 for all 9J1h,T with h = J-lT, T E (0, To] :

Denote by u h the piece-wise constant interpolation of u It E Hh, i.e. u h E L2 (n, R’ ), U h (x)
= for x E Wkh, C nuh(x) = 0 for x E Let, for example, T = Tk == To2-k,k =
0,1,2,’.. h = hk = itrk, and the set for all E 9J1k The
following statement is true : 

~ 

Theorem 4.- Let Q be a.b.d. in R2 and f E L2(fl ; R2). For &#x3E; 0 exists a number
n = such that

Here of 9R in the space L~(S~, R2~ ~.
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Analogous results hold for the systems of ODS :

The basic relations which use use for the solutions of problem ( 10~; ~ resemble the relations
(7~ ) and for the solutions of problem ( i i k )- the relations (5~ ).

The results analogous to results described above are true for :

1) the Navier-Stokes equations with the periodic or non homogeneous boundary con-
ditions : = with a(~) = rot b(x), b E W22(Q), if an is a piece-smooth curve.

2) the termo-convection and magneto-hydrodynamical systems for viscous incompress-
ible fluids in C R2 .

3) the modifications of the three dimensional Navier-Stokes equations in b.d. Q C R3
which were suggested by us in [9] [10] (see also addendum in [4], second russian edition).
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