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1. Introduction

In this paper we discuss some results on the large time asymptotics of the fun-
damental solution 0, x, y E Rd, @ of the equation

where the function V(x) (potential) is a random ergodic field in Rd. For time inde-
pendent V these results were mainly obtained in the context of the spectral theory
of random Schrôdinger operator

acting in (see book [1] and referencies therein). They, however, can also be
interpreted in the terms of diffusion in random media. Namely, random nonnegative
V (x) models traps randomly distributed in the medium, nonpositive V (x) models
sources of diffusing particles and V(x) which assumes values of both signes can be used
to describe, for instance, the evolution of biological species in a random environments
both of nutrients and inhibitors (see e.g. [2]).

II. First Moment

Consider where the symbol E~.} denotes the expectation with
respect to the probability measure generated by V(x). Due to the ergodicity of this
random field the expectation depends only on x - y. Thus we can write that

In particular,

We derive now an upper and a lower bound for Q(t).

Upper bound.

By the Trotter formula for x, y varying in any compact domain of Rd

or
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is the fundamental solution of (1) with V - 0.

By the Jensen inequality we have

Now plugging this inequality in (5) and using the ergodicity of we obtain the

upper bound 
- 1-- ~ , _.._.. ’lit. "00....--.....’IIitrr.

where

Lower bound.

Since K(t, x, y) is a positive defined kernel

Take a nonnegative smooth function 0(x) with a compact support and unit L2-norm,
multiply (9) by 0(x)o(y) and integrate over x and y. We obtain

where

and we have used the Schwarz inequality in the 1.h.s. of (10). By spectral theorem
and the Jensen inequality we have

This inequality and (10) yield the lower bound

where

is known as the characteristic functional of a random field V(x).

Summarizing (7) and (10) we ca,n write the following two side bound for Q(t) :
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where b(x) is the Dirac 6-function.

We discuss now results, that can be obtained basing on these bounds.

(i) Gaussian random field.

This random field is uniquely determined by first two moments. Since 
does not depend on x we can set it to be zero without loss of generality. Denote

This is the correlation function of V(x). Since any linear combination of Gaussian
random variables is again Gaussian one and since for any such random variable e
with = 0 

-

we have for (12) :

Thus the r.h.s. of (13) is

To obtain the asymptoticaly same lower bound we choose

where cp(x) is a nonegative smooth function with the unit ball as a support and unit
L2-norm and

where 0  a  1/2. With this choice of a "trial" function in the l.h.s of (13) and in
(16) we obtain finally that for the Gaussian V(x) with B(x) continuous at x = 0

If B(x) is C2-smooth at zero we can replace 0(1) in (20) by O(i-1~2) with a = 1/4 in
(19).

Thus, the leading term of is determined by the contribution of the
neighbourhood of x = 0 having the size R N ~-1/4 while the range of free diffusion is
known to be t1~2. In other words, the mean concentration of diffusing particles in the
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random environment is controlled by a strongest source in the t-1/4 -neighbourhood
of origin. 

.

(ii) Poisson random field.

This is the random field of the form

where u(x) is a smooth integrable function and are Poisson points in Rd.

This means that if v(A) = E A) for a Borel set A in on Rd, then for any
k v(01), ~ ~ ~ , are independent random variables if ~1, ~ ~ ~ , A k do not intersect
and 

, 1 &#x26; , ,

where p is the density of Poisson points. This random function models chaotically
distributed traps (u &#x3E; 0) or sources (u  0) in the diffusion problem and the random
potential generated by repulsive (u &#x3E; 0) or attractive (u  0) impurities in the
spectral problem.

The characteristic functional here is r

and by using similar "trial" function (18) in (13) we obtain that

(a) if minxERd u(x) -  0

where h is the Hessian of u ( x ) at x = 0 ;

(b) if 1

where Ca,d depends on a and d only.

It is easy to check that asymptotic formulae (20), (23) and (24) can be written
in following common form
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showing that the quantum mechanical kinetic energy -DA does not contribute to
the leading term of log Q(t) for t -3 +00. Thus we call these asymptotic formulae
classical.

An example of the quantum asymptotic formula in which both operators -DL~
and V give contribution of the same order of magnitude provide (21) with nonnegative
fastly decreasing ~c(x), such that constlxl-a, Ixl ] --~ 00 , a &#x3E; d + 2. In this case
the best lower bound can be obtained from (11) with the trial function of the form
(18) in which R = const. t1/d+2, t - +oo. This lower bound is

where

Id is the lowest eigenvalue of the Dirichlet problem for -0 in the unit ball of Rd and
f.4.)d is the volume of this ball.

However the upper bound (7) is not precise enough to coincide asymptotically
with (26), (27) for t --7 +00. Corresponding upper bound was obtained by Donsker
and Varadhan [3] as the result of their deep study of large deviations of the Wiener
process. The connection of our problem with the Wiener process is provided by the
Feynman-Kac formula [4] for 

where Wô’x denotes the conditional expectation with respect to the Wiener measure,
concentrated on the set of trajectories x(s), 0  s  t , x(O) = x , x(t) = y.

Another example of quantum asymptotic corresponds to (1) for d = 1 in which
V(x) is the Gaussian white noise, i.e. generalized Gaussian process with B(x) =
Bob(x). In this case the asymptoticaly exact lower bound is given again by (11) but
respective upper bound is to be extracted from some results of the spectral theory
of the Schrôdinger operator with the same potential (see [5]). The final result is

We mention also one more quantum asymptotic for the discrete analog of ( 1 ), in which
X E 7d , )A is the finite-difference Laplacian and V(x) are independent identically
distributed and nonnegative random variables. By using the same strategy as in
obtaining (29), i.e. (11) for a lower bound and spectral theory for an upper bound
[1] we can obtain that if
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then

By the way, the classical asymptotics in the discrete case can be obtained very easily.
Indeed, since for the discrete Laplacian JIAII = 2d  oo, we have

This inequality and the relation log F(t) = oo which is valid for any
unbounded (say Gaussian) V (x) imply (25) for all such V’s

Summarising we note that all hnown rigorous and nonrigorous (see [1,5]) large
time asymptotics for log can be written in the universal form

III. Higher moments.

Since the study of the large time behaviour of higher moments is more compli-
cated we restrict ourselves to the Gaussian V(x), for which the correlation function
$(x) is continuous at zero.

Consider

By using the Feynman-Kac formula (28) and identity (15) we obtain

where Wi, i = l, ~ ~ ~ , .~, is the conditional wiener expectaction with respect to tra-
jectories xi(s)xi(O) = = 0. In other words (32) is the multiple Wiener integral
over loops.

Upper bound.

Since B(x) is a positive defined function, B(O). Using this inequality
in (32) we have (cf.(13))

Lower bound.
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Given e &#x3E; 0 choose 6 such that B(x) &#x3E; B(0) - b, Ixl [  s. Restrict each Wiener

integral in (32) to trajectories ~, 0  s  t. Then

where is the Wiener measure of trajectories satisfying the condition Ix( s)1 
 t, x(o) = x(t) = o.

If k6( t, x, y) is the fundamental solution of the heat equation (eq.(l) with V = 0)
with the Dirichlet boundary condition, at x ~ 1 = 6 then k6(t) = k6(t, 0, 0), This rep-
resentation yields the bound k8(t) &#x3E; C1 exp~-C2t~E2~ where Ci and C2 are inde-
pendent of t and e. Combining the latter bound with (34) and (33) we obtain the
asymptotic relation

As in (20), the main contribution in (35) is due to trajectories that "live" all the time
0  s  t in the small neighbourhood of the origin. Here is an example of moment
for which relevant trajectories a,re different.

This quantity arises in the semiconductor physics. According to [6], for the
Gaussian V (x) with continuous 

where = minxERd B(x).

Denote by the ball of radius 1- centered at x. The relevant trajectories for
(37) are : seats inside ~~(0) for 0  s  t - 8 and jumps from Qc(0) to xo
during t - b  s  t, while x-2 (s) seats inside during 0  s  t - 8 and jumps
to 0 during the same period t - b  s  t where s, 8 --&#x3E; 0 as t - oo.

IV Time dependent coefficients.

Here we demonstrate that for time dependent random V in (1) the large time
behaviour of moments of the fundamental solution may be rather different. Subse-

quent arguments are not completely rigorous but widely accepted in the theoretical
physics literature.

We consider the "opposite" case very short correlated in time random Gaussian
function V(t, x), in (1) specified by the relations :
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Take the expectation of (1)

Now make use the formula valid for a functional F[V(.,.)] :

This formula is a natural continuous analog of the following formula valid for a func-
tion ,~’(V1, ~ ~ ~ , vn) of a family of the Gaussian random variables V1, ~ ~ ~ , Vn, E~Vi~ _

The proof of his formula can be easily obtained by integration by parts.

Using (40) in the second term of the r.h.s. of (39) and taking into account that

we obtain the closed equation for C~(t, ~ - y) :

Thus

Comparing this expression with (6) we conclude that for the 6-correlated in time
Gaussian V defined by (38) the growth of x, x)} is much slower than for time
independent Gaussian V, defined by (14).

Similar arguments can be a,pplied to

Namely, by using (40) and (41) we can obtain for this function the closed equation

where



XXI-9

is the ~-body Schrôdinger operator with tlle pair interaction potential -B(x).

Thus the large time behavior of (42) as determined by the lowest eigenvalue ~.~
of his operator. Applying the variational pr inciple one can show that

where 6 = o~ 1 ), .~ - 00.

Thus, for large t alld f the behaviour of is given by relation

which is apparently, difl~erent from (35).
The same relation ca,n also be obtained in the framework of the Wiener integral

technique.
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