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TIIE DISTRIBUTION OF EIGENVALUES

OF PARTIAL DIFFERENTIAL OPERATORS

D.G.VASSILIEV

§1. Main results

In this work we consider the asymptotic behavior of eigenvalues of scalar self-
adjoint differential operators acting on compact manifolds.

1. Let us introduce the necessary notation.

Let M be a compact n-dimensional (n &#x3E; 2) C°°-manifold (with boundary r
or without boundary); without loss of generality, M is assumed to be connected
(otherwise the problem decomposes into a finite number of independent subprob-
lems). By T*M we denote the cotangent bundle on M. Local coordinates on M

are denoted by x = (~1,~2?’-’?~) or by y = (yl, y2, ..., y~,); covectors over the
point x are denoted by Ç, == (~1) ~2 i ... 7 ~n)i covectors over the point y are denoted
by 77 = (7/i, r~~, ... , r~~,). Then (x, ~) or (y, 7/) can be considered as local coordinates
on T*M. In a neighborhood of F we will use only special coordinate systems of
the type x = (X’, x ) ~ _ (~’, ~n), where x’ _ (Xl, x ... I Xn-1) are coordinates on
r (the boundary coordinates), 0 is the "normal" coordinate, r = ~x~ = 0},
’ = (gi , g2 , ... , gn-i ), and gn is the conormal component of the covector ~.

Let A be a formally selfadjoint elliptic differential operator on M of order 2m with
complex C°°-coefficients acting on half-densities. If M is a manifold with boundary,
then the operator A will be considered together with some regularly elliptic formally
selfadjoint boundary conditions. Formal selfadjointness of the operator and of the
boundary conditions means that (Au, v) _ (u, Av) for all C°°-"functions" (more
precisely, half-densities) u(x), v(x) satisfying the boundary conditions; here

is the scalar product in the space L~ (M), dx = dx1 dx2 ... dzn. The definition of
regular ellipticity can be found in [9].

For simplicity we also assume that A is positive, i.e., ( Au, 1l) &#x3E; 0 for all C(X)-

"functions" u t 0 satisfying the boundary conditions.
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Under the above-mentioned assumptions the differential operator A generates a
positive selfadjoint unbounded operator .~ in L2(M) with a discrete spectrum accu-
mulating to +oo. Eigenvalues v of this operator can be found from the differential
equation

with the boundary conditions (in the case of a manifold with boundary)

where the Bj are "boundary" differential operators. Let us enumerate the eigen-
values of the problem (1.1) or ( 1.1 ), (1.2), taking account of multiplicity: 0  v1 
v2  ~ ~ ~  vk  ~ ~ ~ . To simplify the notation of the spectral asymptotic formulas,
we will use below Ak = U1~~2~’~ instead of v a are the eigenvalues of the operator
~1/(27~ .

In physical and mechanical applications the mathematical problem (1.1) or ( 1.1 ),
(1.2) usually describes free oscillations of some system (an elastic body, a resonator,
etc.), with v being the frequency parameter proportional to some power of the
natural frequency. Selfadjointness of the problem means conservation of the full
energy in the oscillating system, and positivity means stability (i.e., absence of
movements with the amplitude exponentially growing in time).

The number of eigenvalues Ak smaller than a given A is called the eigenvalue
distributions functions :

The aim of this paper is to describe the asymptotic behavior of N ( A ) as A - +00.

2. Let denote the principal symbol of the differential operator A. Let
S*M = ~(x, ~’) : = 11. There exists a standard symplectic measure on
T*M with an element written in local coordinates as dx d~ = dzn dgi ... dçn.
This measure generates a standard measure on S*M with the element dx d~ satis-
fying the equality dz dg = (2m)-1 dx 

The principal symbol of the operator determines the first term in the asymptotics
of the eigenvalue distribution function.

Theorem 1.1 ([13], [17], [15], [3]).

The estimate of the remainder term in (1.3) is precise. This means that 0 cannot
be replaced by o without some additional assumptions about the operator. More-
over, we will see that the refined asymptotic formula (for example, for a manifold
with boundary) contains a second term of order 
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3. Singling out the second term in the asymptotics of N(.1) requires the study
of some global geometric characteristics of the problem.

First let M be a manifold without boundary. We will consider the Hamiltonian
system on T*MBO,

where h(x,ç) = (A2m(x,ç))1/(2m) &#x3E; 0 and the dot denotes differentiation with re-

spect to time t. The system (1.5) generates the Hamiltonian flow 4l~ in the phase
space T*M. Trajectories of this flow are also called bicharacteristics of the operator
A. We will denote the trajectory starting at a point (y, j7) by (xt(y, 17), ~t(y, r~)). Let
us call the trajectory T-periodic (T ~ 0) if (~T (y, r~), ~T (y, y)) _ (y, ~), and abso-
lutely T-periodic if in some coordinate system (and, consequently, in any coordinate
system) the quantity

considered as a function of (y, 71), has a zero of infinite order at the point (Y"q).
Note that in terms of geometric optics absolute periodicity means infinite order
focusing of rays returning to a neighborhood of the initial point. In the analytic
case absolute periodicity means that not only the trajectory itself is T-periodic, but
all the sufficiently close trajectories are also T-periodic and with the same period
T. Of course, the existence of an absolutely periodic trajectory is a rather rare
event, usually connected with a very strong (obvious or hidden) symmetry of the
problem.
Now let A be a second-order operator on a manifold with boundary. We will

reflect trajectories from the boundary according to the law of geometric optics:
the angle of incidence equals the angle of reflection (the angle between curves
which intersect at a point xo is calculated in the local coordinate system in which
~2(~0? 0 = 1Ç"12). The arising construction is called a geodesic billiards, and the
trajectories are called billiard trajectories. Note that a trajectory cannot always
be reflected according to this rule (in the case when the angle of incidence equals
zero). Moreover, it can happen that in a finite time a billiard trajectory experiences
an infinite number of reflections from the boundary, hence it cannot be defined for
all t. In the first case we call the trajectory tangent, in the second case we call
the trajectory dead-end. It can be shown [7] that the measure of the set of points
(y, q) E T*M, which are the starting points of tangent or dead-end trajectories,
equals zero; thus the billiard flow ~t is naturally defined on a subset of full measure
in T*M.

For higher-order operators the reflection law does not allow a simple geometric
interpretation; moreover, a reflected trajectory is determined, generally speaking,
ambiguously. If the trajectory intersects with the boundary at a point (x, ~), then
we call reflected those trajectories that emanate from any point (x, ~) such that
h(x, g) = h(x, ~) and the covector  - Ç" is conormal to F at the point x. In

other words, the reflection law is determined by the conditions of continuity of x
and ~’ and by the condition of preservation of the value of the Hamiltonian h. It is
clear that ~ is determined from the above-mentioned conditions, generally speaking,
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ambiguously: several (  m) reflected trajectories can correspond to one incident
trajectory. This construction is called the bl-anching Harrciltonian billiards. We will
still denote its trajectories by (x t (y, ’f7), (we assume that some trajectory
is chosen from all the trajectories outgoing from the point (y,,q)). The concepts of
periodic, absolutely periodic, and dead-end trajectories are naturally introduced for
the branching Hamiltonian billiards. We will call a trajectory tangent if the vector
x = åhjåç is tangent to r at the point of incidence or the point of reflection. We
will call the point (y,q) E T*M periodic (absolutely periodic, dead-end, tangent) if
at least one periodic

(absolutely periodic, dead-end, tangent) billiard trajectory originates from this
point. It can be shown analogously [7] that the measure of the set of tangent points
is always equal to zero. However, the measure of the set of dead-end points of a
branching Hamiltonian billiards can differ from zero [5].
Theorem 1.2 ([12], [6], [16], [3]). If the measure of the set of absolutely pe-

riodic and dead-end points of the branching Hamiltonian billiards (or the flow 
equals zero, then

In Theorem 1.2 the constant ci takes into account the boundary conditions and
is expressed as some integral over T*r; for details see §2. Note that for a manifold
without boundary cl = 0.

Numerical examples, which illustrate the high effectiveness of the two-term as-
ymptotic formula ( 1.6), can be found in [3], [4].

4. There exist different sets of sufficient conditions for Theorem 1.2 ~1~, [3, §1.2],
[5]. Here we describe one of them.

Definition 1.3. We will say that a Harniltonian h(x,ç) satisfies the simple
reflection condition if only one reflected trajectory corresponds to every trajec-
tory arriving at the boundary, i.e., for any point (X’,~’) E T*rBO the equation
8h( x’, 0, ~’, = 0 has only one real root ~*(x’, ~‘). If this root is sim-

ple, then we will say that the Hamiltonian satisfies the strong simple reflection
condition.

Under the simple reflection condition the billiard flow is defined on a subset

of full measure in T*M.

Definition 1.4. We will say that the manifold M is Hamilton convex if 0,
the strong simple reflection condition is fulfilled, and

on 

Here lf, gl = f~g~ - f~g~ is the Poisson bracket.

Example 1.5. If M is a domain in 1~’~ and ~2~(~~) = l~l", then Hamilton
convexity is equivalent to convexity in the usual sense.

The above-mentioned set of sufficient conditions is contained in the following
assertions.
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Proposition 1.6. If the simple reflection condition is fulfi’lled, then the measure
of the set of’ dead-end points is equal to zero.

Thus, under the simple reflection condition the billiard flow -4~’ is defined on a
subset of full measure in T*M.

Proposition 1.7. If the problem is analytic and the manifold M is Hamilton
convex, then the measure of the set of absolutely periodic points is equal to zero.

Example 1.8. Let M be a convex domain in JRn with an analytic boundary and
A2m(X, ç) == lç/2m. Then (1.6) is valid.

Example 1.9. Let M be a part of the sphere Sn C cut off by a plane in
1R n+l. Let A be a power of the Laplacian, corresponding to the standard metric
on the sphere. If M is strictly less than a hemisphere, then M is Hamilton convex
and (1.6) is valid. If M is greater than or equal to a hemisphere, then M is not
Hamilton convex and one cannot guarantee (1.6). Moreover, it can be shown that,
if M is strictly greater than a hemisphere, then the formula (1.6) is necessarily false.
In the intermediate case, when M is a hemisphere, the validity of (1.6) probably
depends on the boundary conditions.

5. Let us discuss the realtionship between the concepts of periodicity and abso-
lute periodicity. Let flT be the set of T-periodic points in S*M, let IIT C flT be
the set of absolutely T-periodic points, and let II = U flT , IIa = U TIT. ZFrom

the point of view of applications, it is more convenient to deal with absolutely peri-
odic points (see [3] and subsection 4 above) because in analytic problems absolute
periodicity means existence of an open set of periodic trajectories, and therefore R’
is organized simpler than II is. This fact simplifies the formulation of effective suf-
ficient conditions. The set of periodic trajectories (as shown by simplest examples)
is significantly larger and more complicated. Nevertheless, in some works (for ex-
ample, by V. Ya. Ivrii) a condition is imposed on the measure of the set of periodic
trajectories (volll = 0). Such an approach allows one to simplify somewhat the
proofs of the main results. It is remarkable that there exists a simple relationship
between the sets of periodic points and absolutely periodic points, which is estab-
lished (if we assume that the measure of the set of dead-end points equals zero) by
the following

Proposition 1.10 ~5~. vol U = 0 , and consequently Vol(HBHa) = 0.

Sets of measure zero in S*M (or in T*M) do not influence the first and second
terms of the asymptotic expansion of N(A). Therefore, by virtue of Proposition
1.10, it makes no difference which set (II or Ha) is used.
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§2. The coefficient ci

In this section we describe how to compute effectively the coefficient ci from the
asymptotics (1.6).

Let us retain in the operators A, Bj only the terms with top order differentiations,
replace all the differentiations along the boundary D~~ (= -18/8z’) by ~’, and set
x = (x’, 0) in the coefficients. We denote the resulting operators by Ar, B~ . These
operators depend on the point (x’, ~’) E T*F)0 as on a parameter.

Substituting the operators for A, Bj in the original partial-differential
spectral problem (1.1), (1.2), we arrive at a one-dimensional selfadjoint positive
spectral problem on the half line 0  +oo: an ordinary differential equation
with constant coefficients

with boundary conditions at zero

For convenience, in this part of the paper we use the original spectral parameter
v - A2m.

Let v be a positive real number. Let us denote

where and are the integral kernels of the resolvent

(,Ar - K1)-1 of the problem (2.1), (2.2) on the half line 0  +00 and the

problem (2.1) on the whole axis -oo  +00 (without boundary conditions at
zero), respectively, and L(v) is an oriented smooth curve in the complex K-plane
with a cut along the nonnegative real axis; L(v) connects the points v + i0 and
v - ZO moving counterclockwise. Completing the definition of the function trace(v)
at possible discontinuity points by left continuity, let us call this function the reg-
ularized trace of the spectral projection of the problem (2.1), (2.2). We will also
use the notation tracer, ~’, v) - trace(v), recalling the dependence of the problem
(2.1), (2.2) on the point (x’, ~’) E T*I)0 as on a parameter.

The coefficient C1 in the asymptotics (1.6) is defined by the formula

The inequality

is proved ([3, §2.1]) from variational considerations. By virtue of the positiveness
of the spectral problem (2.1), (2.2) we also have
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¿From (2.5), (2.6) we conclude that the integral (2.4) is finite.
In practice, it is not very convenient to calculate the regularized trace trace(v)

by the formula (2.3), because one has to calculate a double integral. However, it
turns out that trace( v) can be calculated without any integration by the formula

where NB(v) and pB(v) are the eigenvalue distribution function and the scattering
phase, respectively, of the problem (2.1), (2.2); the subscript B emphasizes the
dependence of the eigenvalue distribution function and the scattering phase on the
boundary conditions (2.2).

That the regularized trace of the spectral projection is expressed in terms of
scattering data is a sufficiently well-known fact in mathematical literature; see,

e.g., Buslaev’s work ~18~, where a very general case of a partial differential operator
with variable coefficients was considered (certainly, the operator acts in an un-
bounded domain). Our case of the one-dimensional spectral problem with constant
coefficients is remarkable only in that all the constructions here are very simple and
are actually of a purely algebraic character. For proofs and details see [3, §§ 1 .I and
4.1].

Let us define the functions NB(v) and 
A number v is called an eigenvalues of the problem (2.1), (2.2) if for this v the

problem has a solution u(x,,,) 0 0 tending to zero as Xn -+ +00; such a solution is
called an eigenfunction, and the number p of linearly independent eigenfunctions
corresponding to a given v is called the multiplicity of the eigenvalue v.
A number v is called a point of the continuous spectrum of the problem (2.1),

(2.2) if for this v the problem has a solution 0 which does not tend to zero
as zn - +00, but is majorized by some polynomial in such a solution is called

an eigenfunctions of the continuous spectrum, and the number of linearly indepen-
dent eigenfunctions of the continuous spectrum corresponding to a given v is called
the multiplicity of the continuous spectrum at the point v. The linear independence
of a set of eigenfunctions of the continuous spectrum is understood modulo ordi-
nary eigenfunctions, i.e., any nontrivial linear combination of eigenfunctions of the
continuous spectrum from the collection indicated must be a function that does not
tend to zero as zn - +oo.

Note that a point of the continuous spectrum of multiplicity q may at the same
time be an eigenvalue of multiplicity p.

The number of eigenvalues of the problem (2.1), (2.2) is finite (as shown in
[3, §4.1], it does not exceed (3m - 1)((2/m)! )/(2(m!)2)). Let us enumerate the

eigenvalues in order of their growth taking multiplicities into account, and define
the eigenvalue distribution function NB(v) in the standard way as the number
of eigenvalues less than a given v. Here we count both eigenvalues outside the
continuous spectrum and those lying on the continuous spectrum.

The continuous spectrum of the problem (2.1), (2.2) fills the semi-infinite interval

(A2~,(~n) - A2m(x’, 0, ~’, çn) is the total symbol of the operator Ar). We will call a
number v* a singular point of the continuous spectrum if the equation A2,, (~,,) - V*
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has a multiple real as will be clear from the following, such points 1/* are
"singular" in the sense that the multiplicity q of the continuous spectrum may
change at these points. Let us enumerate the singular points of the continuous
spectrum:

(certainly, I  s  2m - 1) - After the removal of the singular points, the continuous
spectrum splits into the zones

Let v belong to one of the zones (2.8), and let 2q be the number of real gn-roots of
the equation = v (certainly, 1  q  m). Let us enumerate these gn-roots
in order of their growth, taking the sign of ~4~ = into account:

We will look for the eigenfunctions of the continuous spectrum corresponding to
the given v, i.e., for the solutions of the problem (2.1), (2.2) of the type

where are unknown constants, and are linearly independent solu-

tions of the equation (2.1), which decrease as zn - +oo; the normalizing factors
(~2~A2~(~~(v)))1~2 in the first sum in (2.11) are introduced for convenience to
make the matrix S(v) defined below unitary. It can be proved that the linear space
of the eigenfunctions of the continuous spectrum (2.11) is q-dimensional and that
each eigenfunction of the continuous spectrum is uniquely determined by the non-
trivial set of q constants c- or q constants c~ . (Here dimensionality and uniqueness
are understood modulo ordinary eigenfunctions. This remark is necessary in the
case when the point of the continuous spectrum simultaneously happens to be an
eigenvalue.) Thus, the number q (half the number of real gn-roots of the equation

= 0) at nonsingular points of the continuous spectrum equals the multi-
plicity of the continuous spectrum. Finally, it can be proved that the columns of
coefficients c+ and cl are related by the proportion

where S(v) is a unitary q x q matrix, regularly dependent on v in each of the zones
(2.8).

The coefficients c- and c+ are called the complex amplitudes of waves coming
+oo and going to Xn _ +oo, respectively. The matrix S(v) is called

the scattering matrix . The motivation of these names is the following. Let us
introduce a time factor exp(-itA), A = vl/(2m) &#x3E; 0, into (2.11) and assume that
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the coefficients c- and c+ smoothly depend on A. Let us denote the resulting
function by We will consider the wave packet

(p(A) E Co is a spectral density with a sufficiently small support), which satisfies
the nonstationary problem (2.1), (2.2), with (= (-z9/9~)~) substituted for
v ("the generalized wave equation"). Let us take an, arbitrary time It I » 1, and
determine, taking into account the presence of the asymptotic parameter t, which
terms of (2.11), and for which Xn, do not vanish asymptotically. Then, calculating
the stationary (with respect to A) points of the phase functions in the standard way,
we will obtain that only the terms with c± can give an asymptotically nonvanishing
contribution and only when the following equations hold,

We have the identity v; extracting the root of the power 2m and

denoting h(~,,) = (A2", (~~))1/(z~n) &#x3E; 0 (the same Hamiltonian was introduced in 31,
subsection 3), we will obtain an equivalent identity h(~~(~)) _ A. Differentiating
it with respect to A, we get

h’ - dh~ dçn. By virtue of (2.15), the conditions (2.14) can be rewritten in the final
form

It only remains to note that = so that the signs of and h’
coincide. From (2.10) and the obvious inequality 0 (we are solving a problem
on the half line) it follows that for t  0 the conditions (2.16) are fulfilled only for
the terms with the index "minus," and these points move to the left along the x~,
half line with time. For t &#x3E; 0 the conditions (2.16) are fulfilled only for the terms
with the index "plus," and these points move to the right along the Xn half line
with time. Thus, we are actually dealing with the reflection of components of the
wave packet, with h’ playing the role of the group velocity.

It can be shown that the scattering matrix S(v) is invariant with respect to the
choice of local coordinates ~ _ (x’, 

The scattering phase is the main spectral characteristic of the continuous
spectrum. It plays the same role for the continuous spectrum as the eigenvalue
distribution function for the discrete spectrum, i.e., modulo the factor (27r)-l the
function is in fact the distribution function of the continuous spectrum. Con-

cretely, for v  the scattering phase is taken to be zero, and in the zones (2.8)
of the continuous spectrum it is an infinitely smooth function, which is expressed
in terms of the scattering matrix by the formula
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Here const is a real normalizing term. It is constant in each of the zones (2.8), but,
generally speaking, is different for different zones.

The missing normalization is given by a formula for the scattering-phase jumps
at the singular points of the continuous spectrum. We will write down this formula
for the case of a simple singular i.e., when the equation = vik)
has only one real multiple root ~n = ~* and this root is a double one (it is the

general situation). In this case

i.e., a simple singular point of the continuous spectrum gives a jump of the regular-
ized trace of the spectral projection equal to 1/4 of the jump given by an eigenvalue
(see (2.7)), only with an undefined sign. In (2.18) the plus or minus is taken ac-
cording to whether the singular point is soft or rigid, respectively. We say that
the point v (k) is soft if for v the problem (2.1), (2.2) has a solution of the
form

and rigid if it has no solution of this form. The choice of such a terminology is

connected with the classical equation of membrane oscillations -Au = À2u. Here
the boundary condition of a fixed edge ulr = 0 leads to (2.18) with the minus
sign, and the boundary condition of a free edge Ou/,9nlr - 0 (the condition of the
absence of forces normal to the membrane surface) leads to (2.18) with the plus
sign.
An important special case is when the simple reflection condition (see Definition

1.3) is fulfilled. In this case the continuous spectrum has multiplicity 1, and the
scattering matrix S(v) is of size 1 x 1, i.e., it is simply the number c+/c-. The
quantity (3(v) = Arg(c+/c-) is called the phase shift; see §1. The phase shift 
differs from the scattering phase pB(v) by a normalizing constant. If the strong
simple reflection condition is satisfied, then

(see [1]).
Substituting (2.7) into (2.4) we obtain the final formula for the coefficient cl in

the asymptotics (1.6):

Formula (2.19) is very convenient for concrete calculations in applications. On
the basis of this formula it proves possible to compute explicitly the coefficient ci
for all the main problems of the theory of elasticity up to the most complicated
problems of shell theory; a summary of results is given in [4].

It is also interesting that the formula (2.19) has a clear mechanical sense. Indeed,
for some types of boundary conditions in the original problem (1.1), (1.2) a sub-
series of eigenvalues can appear, with the eigenfunctions localized in a very small
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(x n .:S À -1 , i.e., approximately a wavelength) neighborhood of the boundary F. For
example, for a three-dimensional elastic body with a free boundary such a subseries
is generated by the so-called Rayleigh surface waves. It is clear that the eigenvalues
of the auxiliary problem (2.1), (2.2) correspond exactly to such boundary waves.
The first term in (2.19), being multiplied by ~~-1, describes asymptotically the
distribution of eigenvalues from this subseries. The mechanical meaning of the sec-
ond term in (2.19) consists, roughly speaking, in the following. The jump being
experienced by the phase of a wave at the moment of reflection from the boundary
is in fact equivalent to a variation of the distance passed by the wave by a small
quantity (of the order of a wavelength). The corresponding small increment of the
main term of the asymptotics due to such a displacement of the boundary of
the cotangent bundle T*M (see the integral (1.4)) is described by the second term
in (2.19).

It is also interesting that there exists a deep analogy between the formulas (1.4)
and (2.19), which determine the coefficients co and ci in the asymptotics (1.6). To
put it in evidence, we rewrite (1.4) in the equivalent form

(the subscript A emphasizes that this function depends only on the differential op-
erator A and is independent of boundary conditions). For fixed x and ~ the function
(2.21) is the eigenvalue distribution function of the operator of multiplication by
a fixed constant in IR 1, i.e., the eigenvalue distribution function of the
(1 x I)-matrix The trivial problem

has only one eigenvalue v = and the distribution function (2.21) can be written
down explicitly. The comparison of the formulas (2.20) and (2.19) shows that the
coefficients co and ci are organized roughly in the same way. In both cases integrals
are taken over a cotangent bundle: in (2.20) it is the cotangent bundle over the
manifold M, in (2.19) it is the cotangent bundle over its boundary r. In both cases
the integrand is the eigenvalue distribution function of a certain auxiliary problem.
In (2.20) it is the problem (2.22), which comes from the original one as the result of
retaining the top order differentiations, freezing the coefficients and taking a formal
Fourier transform along all the coordinates without taking the boundary conditions
into account. In (2.19) it is the problem (2.1), (2.2), which comes from the original
one in the same way, the only difference being that the Fourier transform with
respect to the "normal" coordinate is omitted and the boundary conditions are
taken into account. The specific characteristic of the formula (2.19) in comparison
with (2.20) is that (2.19) includes also the scattering phase in addition to the

eigenvalue distribution function NB(v). As has been mentioned above, the function
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’PB(v)/(21r) plays the role of the distribution function of the continuous spectrum
of the auxiliary problem (2.1), (2.2).
We must note that the expression for the coefficient ci has to include, in princi-

ple, an additional term with an integral of the subprincipal symbol of the operator
A over S*M (cf. [12]). Actually, we allow coefficients to be complex-valued, thereby
the subprincipal symbol of the selfadjoint operator A is, generally speaking, not
zero. However, in our case the indicated additional integral turns out to be zero
because the subprincipal symbol is odd with respect to g (our operator A is differ-
ential, not pseudodifferential).

§3. The Levitan wave method

Theorems 1.1 and 1.2 are proved by the wave equation method introduced by B.
M. Levitan [8] and extensively developed later by L.H6rmander, V.Ivrii and other
authors. This method is based on the study of singularities of the distribution

(here = f ±~ dA denotes the Fourier transform and .~t~~(~)
= (27r)-l f + " 00 exp(itA)(.) dt denotes the inverse Fourier transform). It is clear that
the right-hand side in (3.1) is not determined in the usual sense because the unitary
exponent

is not an operator of the trace class for any t. However, a( t) can be considered as
a distribution, if we, for example, set

with sufficiently large p.
The unitary exponent effectively constructed using the theory

of Fourier integral operators [13], [14], [10]. Techically this is done by solving the
nonstationary equation

with boundary conditions (1.2) (the equation and boundary conditions which the
Schwartz kernel of the unitary exponent (3.2) satisfies). With the aid of the theory
of Fourier integral operators one can represent the Schwartz kernel of the operator

outside a small neighborhood of the boundary r as a finite sum
of oscillatory integrals. Then the singularities of these integrals are calculated. In
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a neighborhood of r another (less refined) method is used. This method takes into
account the smallness of the boundary zone and reduces our analysis to that of
an auxiliary problem with "frozen" coefficients. As a result we obtain an effective
description of the singularities of o,(t).

Knowing the singularities, it is easy to reconstruct the asymptotics of the func-
tions 

-

and

where p E Co . Then one can retrieve the asymptotics of N(A) with the help of the
Tauberian theorem 3.1 formulated below (which is close in essence to the Tauberian
theorem used implicitly in [12]).

Let us denote by p a nonnegative even function on R 1 , which possesses the
following properties: p(A) E p(t) = 0x_t(p) E p(a) &#x3E; 0 for

)A) I  1, supp fi C ~-1,1~ and is sufficiently small, p( 0) = 1 (such a function exists
[11], [12], [13]).
Theorem 3.1. Let N(A) be a nondecreasing function, equal to zero 0,

and growing at most polynomially at +oo. Let

as a --&#x3E; +00. Then

If, in addition,

for any function e such that =y(t) _ E {0} ~ 
then

Remarks 3.2. In Theorem 3.1, n can be regarded as an arbitrary real (in partic-
ular, negative) number.

It is useful to discuss the physical meaning of Levitan’s wave method. As al-

ready pointed out, eigenvalue problems of the type (1.1), (1.2) usually appear when
one searches for natural frequencies of elastic bodies or resonators, i.e., when one
searches for motions harmonically dependent on time. Therefore, the transition
from (1.1), (1.2) to (3.3), (1.2) is a return to the initial nonstationary dynamical
problem. The nonstationary dynamical problem (3.3), (1.2) (we omit for now the
question of initial conditions, see §. 4 below for more details) contains all the infor-
mation on the spectral problem (1.1), (1.2), being at the same time essentially more
complex. It may seem senseless to replace the simpler problem (1.1), (1.2) by the
more complicated problem (3.3), (1.2). However, for the purpose of finding spectral
asymptotics it is not necessary to solve the nonstationary dynamical problem (3.3),
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(1.2) precisely-it is enough to be able to trace the propagation of the wave front
sets, which move with a finite speed due to the equal order of differentiations with
respect to t and x. The information on the propagation speed of wave front sets
allows one to determine the spectral asymptotics uniquely. Moreover, the longer
the time interval is, on which we can trace the propagation of wave front sets, the
more precise the spectral asymptotics are. A rough mechanical interpretation: the
greater the wave propagation speed, the higher the body stiffness, and the sparser
the distribution of the natural frequencies. The Tauberian theorem 3.1 formulated
above adds a quantitative sense to these qualitative considerations.

The Levitan wave method can also be interpreted as a method of reconstruction
of the asymptotics of the discontinuous function N(A) (which is inconvenient to deal
with) from the asymptotics of the infinitely smooth function (pT ~ N)(A). In this
connection, the transition to Fourier images is perfectly natural because it greatly
simplifies the operation of convolution by transforming it to a product.

§4. Characteristic properties of
distributions associated with the wave group

One of the main difficulties in the application of the Levitan wave method to
higher order (m &#x3E; 2) operators is the singling out the unitary exponent (3.3) out
of all the solutions of the "generalized wave equation" (3.3). A fundamental role in
the proof of Theorems 1.1, 1.2 is played by the abstract lemma formulated below
which allows us to avoid the consideration of an ill-posed Cauchy problem (in the
variable t ) for the equation (3.3).

Let us define precisely the functional spaces of our distributions.
Following Schwartz [19, §3.7] and H6rmander [20, §2.3] we denote by E(M)

the vector space of infinitely differentiable (up to the boundary!) complex-valued
half-densities v(x) on M equipped with the usual C"-topology defined by the
semi-norms

a

where k ranges over all int egers &#x3E; 0 and 1 x p E C °° ( M ) ,
supp x~ C M(P) , is some partition of unity on M with local coordinates in

coordinate maps M(P) . We denote by the subspace of consisting of
all the half-densities which satisfy the boundary conditions

the topology on £B(M) is taken to be the same as on ~(M) . By £’(M), 
we denote the dual spaces of E’(M~ , respectively (i.e. spaces of linear con-
tinuous functionals on E(M) , £B(M)) equipped with the dual (strong) topology
generated by the initial topology on E(M) , see [19, 333.2, 3.3 and 3.7].
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Obviously, £’(M) C ££(M) because £B(M) C ~(M) . The value of the functional
(distribution) u on the test half-density v will be denoted by (u, v)x with the

subscript x emphasizing the variable in which the distribution is acting.
Let T-  T+ be real numbers, finite or In accordance with traditional

notation we denote by D’(T- , T+) the vector space of linear continuous functionals
on T+ ) . The value of the distribution f E D’(T_ , T+) on the test

function 9 E T+ ) will be denoted by ( f , g~ t . For the sake of simplicity
we, following H6rmander [20, §2.1], equip D’(T- , T+ ) with the weak* topology
defined by the semi-norms

where g is any fixed function from T+).
By COO((T_, T+) x My; ~’(M~)) , COO((T_, T+) x My; 6’ B (M,,)) we shall de-

note the class of distributions from respectively infinitely dif-

ferentiably depending on (t, y) E (T_ , T+) X My as on a parameter (the sub-
scripts x and y are used to distinguish the two copies of the manifold M ).
By x My; D’(T_ , T+)) we shall denote the class of distributions from
D’(T_ , T+) infinitely differentiably depending on (x, y) E Mx x My as on a pa-
rameter. Here infinite differentiability is understood in the strong ( Fréchet ) sense
with account of the respective topologies in 6’(M,,), îk(Mx), D’(T_ , T+) .
We shall use the notation to describe the fact that the function

f (A) E COO(1R) vanishes faster than any given negative power of ~~~ I as A - -oo .

More generally, we shall use this notation for "functions" f (A, :1:, y) depending on
additional parameters x E Mx , y E My to describe the fact that f as well as any
given derivative of f with respect to x , y vanishes faster than any given negative
power of ~a~ I as A - -oo uniformly over Mx x *

Lemma 4.1. Let T-  0  T+ be real numbers, finite or ±oo, and let

be a distribution which behaves as a function in the variable t and as a half, density
in the variables x , y .

If

then
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for any g ( t ) E Cgo(T_, T+ ) .
Inversly, if (4.2), (4.3) hold, (4.4) holds for sorne g(t) E C’o (T_ , T+), 9 to,

and, in addition,

then (4. 1) is fulfilled.

Detailed proofs of Theorems 1.1, 1.2 and of Lemma 4.1 (in a slightly different
version) can be found in [3].
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