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1. INTRODUCTION.
Let C~1 be a bounded open convex set in H2 with smooth boundary rI such that

(i) 01 C E 1R2;xI  01@
(ii) ai =(0,0) E rl,
(iii) Fi is represented near ai as

where 1 is a positive integer&#x3E; 2,
(iv) the curvature of Fi does not vanish on Fi - 
Let 02 be a bounded open convex set in H2 with smooth boundary r2 such that

(i) (~2 C fX = &#x3E; dl where d is a positive constant,
(ii) 
(iii) F2 is represented nea,r a2 as

(iv) the curvature of r2 does not vanish on r1 - {a2~.

We set

and

Consider the following boundary value problem with parameter y e C

for g(x) E For Im p  0, (1.1) has a unique solution in L2(~). Denote the solution

Then by the regularity theorem for elliptic operators, U (¡.t) can be regarded as a continuous
operator from C°°(r) into COO(n). Thus, becomes an £( COO(f), C-(Q»-valued
holomorphic function in ty; Im y  0}, where ,C(E, F) denotes the set of all the continuous
operators from E into F.
We would like to consider the analytic continuation of into 01. The

main result that we shall show is the following theorem:

THEOREM 1. Assuem that

and set
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Then, for any 61, 62 &#x3E; 0, there exists a positive constant Cel.e2 such that U(J.L) can be
continued a,nalytically into

Background of the problem.
I would like to mention about the background of the above theorem. In the study

of scattering by obstacles, the problem to know relationships between the geometry of
obstacles and the distribution of poles of scattering matrices is one of the most important
and interesting problems. As to the distribution of poles of scattering matrices for trapping
obstacles, Bardos-Guillot-Ralston[BGR] first made consideration on the following example

where

Denote by the scattering matrix. They showed that, for any E &#x3E; 0, has an
infinite number of poles in the loga,rithmic domain

Next Ikawa[Ik 1] considered the same example and showed that there exists a positive
constant co such that, in the strip  Imp the poles of S(Il) distribute

asymptotically at the points -1 + ’ 

= 0, &#x3E; ~1 ±2, ’ ’ ’, where d = distance( Oi , 02).d
After that C.Gérard[Gé] proved that, for any a &#x3E; 0, the poles of S(Il) in the strip
0  Im ii  a} distribute asymptotically on the points

where

The constants c~ are determined by d and the geometry of rj near aj , j=1,2 where a,
and a2 are the point aj E = 1, 2 such that

The formula which gives cni indicates that, if the all the principal curvatures of rj at
=1, 2, become small, the constants cm beocme also small, and if the all the principal

curvatures vanishes at = 1,2, all the cm determined by the formula are equal to 0.
Remark that, even though the formula determining cm is valid for the case that all the

principal curvatures vanish at a j , the reasoning for the distribution of poles of [Ik 1] or of
[Gé] is no more valid.
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Thus it is natural to question whether there exist an infinite number of poles of S(y)
in  e} for any 6 &#x3E; 0 in the case that all the principal curvatures vanish at aj.
Concerning this question, we considered in [Ik 2] an example in 1R3 such that Fi and h2
are represented as

and

respectively, and showd that, if 1 &#x3E; 2, S(y) has infinitely many poles in Im il 
for some positive constant q.

By taking account of the results of (Ih 1] and [Gé], it seems very likely that the poles of
S(y) in the domain ty; Im y :5 exist only near the points -1 1 1 = ±1, ±2, ’ ’ ’.(~) f~ ~ ~~ ~ Y p 

d
Recall that the poles of S(y) coincide with those of Therefore, even though

Theorem 1 in this note is of the analytic continuation of for an obstacle in ff~2, it

gives us a partial answer to the above conjecture.

2. CONSTRUCTION OF ASYMPTOTIC SOLUTIONS.

For the construction of asymptotic solutions, it is essential to consider the behavior of
solutions near the periodic rays, which is the ray going and returning between al and a2.
Denote by Q( 8) (6 &#x3E; 0) the doma,in surrounded by the four curves

and set

We fix a small 8 &#x3E; 0. Let w E {w E lwl = 1}, and let f(x) E We
shall construct asymptotic solutions to boundary value problem (1.1) for an oscillatory
boundary data on SI (à)

We set

and

We shall show the following
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THEOREM 2.1..For a,ny constants ,Q &#x3E; ( 1 + Zc~)-1, ~ &#x3E; 0 and N positive integer, there
is an asymptotic solution of the boundaxy value problem (1 .2) for the oscillatory
data (2..I) With the following. properties:

,ralueclllolomorphic function in D /3,e,

Theorem 1 is derived from Theorem 2.1 by the standard argument. For the proof of
Theorem 2.1, the following proposition is crucial. Its proof of the following proposition is
fairly long, and we omit it.

PROPOSITION 2.2. Let w be a,n element of S’ near (1,0), and set

For any positive integer ~V, there is a, sequence of real valued smooth functions defined in
a neighborhood of Q(à) having the following expansions in 

a positive Cj( x), j = 1, 2, ... , M axe srnooth functions.
Moreover, = l, 2, ~ ~ ~ , , satisfy the eikonal equation

and the difference on the boundary satisfies

where a.nd éo(x) satisfy the follo1ving; estimate
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By using the sequence {~~ ~~° 1 of phase functions in the above proposition, we construct
a sequence of asymptotic solutions by the standard procedure. +  0 set

and we shall construt vjp successively by the following procedure:
Set

Let voo (x) be solution of

and vQp(x), p = 1,2,... , P be solutions of

Let j &#x3E; 1 and suppose that are defined. Define vjp as the solutions of

where we take = 0 and

By using the properties of yJ j mentioned in Proposition, we get the following asymptotic
expansion of vnp(X) in n-a:

Now we set
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Evidently u(x, /-l) converges a.1)sollltely for Re y = a  0, and we have the following rela-
tions :

and

Now let q ands be arbtrary positive constants. By using Proposition 2.2 we have from
(2.2)

We have from (2.3)

Similarly we have from (2.4)

If we use the argment used in 2] and that of [V] jointly, we can derive from the
estimates (2.5), (2.6) and (2.7) the assertion of Theorem 2.1 for Re M  0.

Next, consider the anlytic continuation of u(x,,y) and the above estimates. By apply-
ing Lemma 3.2 to each term of we see that u( x, J-l) and above estimates can be
prolonged analytically into D ¡3 ,ë.

3. ANALYTIC CONTIMUATION OF THE ZETA FUNCTION AND ITS
GENERALIZATION.

Let m be a positive integer and let z and s be complex numbers. For Izi  1 we define
the function F(z, s : m) by
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Obviously, the right hand side of (3.1) converges absolutely, which implies that the function
F(z, s : m) is holomorphic in z e ~z; 1 z 1  1} for any s e C.
We consider the analytic continuation of ~’. First assume Re s &#x3E; 0, and set

We see that, for each Re s &#x3E; 0, I(z, s : 1Tt) is holomorphic [1, oc). By the
standard way we have the following integral representation of F:

On the other hand, the definition (1) gives us that

Let a be a positive integer. Then we have for R.e s &#x3E; 0 and 1 z 1  1 the expression

from which we derive the following

LEMMA 3.1. For any the function F(z, s : m) can be continued holomorphically
into the domain D = C - [1,(0). Moreover, we have the following estimate:

where K is arbitrary compact set in D, a is an arbitrary positive integer and CK,a is a
constant independent of m.

PROOF: By using the fact that I(z, s : n-t) is holomorphic in z E D for any s E C, the
expression (3) proves Lemma 3 except the estimate (4). It is easy to show by the induction
that

where the coefficients = l, ?, ... , a are polynomials of m-1 of order less than a,
and they satisfy
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Thus, if we set

we have for all Re s &#x3E; 0

Substituting this estimate into (3.3) we get immediately for all Re s &#x3E; 0

Denoting s - a in the above inequality by s anew, we get (3.4). Q.E.D.

Set

For a  0, it is evident that the right hand side converges absolutely. Now we consider
the holomorphic extension of c~) in to (j &#x3E; 0.

LEMMA 3.2. Let j3 &#x3E; (1 + 2a)-l a,11d let e &#x3E; 0. For any positive integer r, R~(~c : q) can
be prolonged analytically into Moreover, we have the following estimates:

and

PROOF: Here we proof only the case where cj = 0 for all j &#x3E; 2. For each n &#x3E; 0 we have

, ;;;; U

where we set z = Evidently, it holds that tz = exp(-1,); , e is
contained in a compa,ct set I1 in D = C - [1, oo) for all r. Note that
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where m = Thus, by applying the previous lemma we have for all M E 

By using the facts that

and

we have
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