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Abstract

Some of the ideas related to tbe concept of the asymptotic completeness are
sketched. Both quantum and classical N-body systems are considered.
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1 Introduction

In this expose we would like to describe a number of properties of classical and quantum
scattering which are related to the concept of the asymptotic completeness. The most
interesting one is probably the asymptotic completeness of quantum long range N-body
systems. Nevertheless, we think that it is worthwile to compare this result with some

other results. In particular, we would like to describe some classical analogs of various
properties of quantum systems. We feel that, apart from its own interest, some results
on classical systems illustrate most of the main ideas that are behind the proof of the
asymptotic completeness in the quantum long range N-body case contained in [De2].

2 Quantum 2-body scattering
We would like to begin with a short description of the 2-body scattering. We start with
the quantum case. The results that we describe have been known for quite a long time,
references on this subject can be found eg. in [RS vol III, H6 vol II and IV, De1] .

Suppose that X is a finite dimensional vector space. Let V be a real function on X

such that
- - J -

with P, &#x3E; 0 and

with p &#x3E; 0. D will denote the momentum operator -iV. The full Hamiltonian is the
self-adjoint operator on 

The free Hamiltonian is defined as Ho :_ - 2 0.
If B is a self-adjoint operator and 0 C R then Eo(B) denotes the spectral measure of

B onto 0 and a(B) denotes the spectrum of B. denotes the pure point spectrum
of B and EPP(B) denotes the corresponding spectral projection.

Let us begin with the description of the so-called asymptotic velocity.

Theorem 2.1 Let J be a bounded continuous f unction on X. Then there exists

Moreover, there exists a unique vector of commuting self-adjoint operators P+ such that
2.1 equals J(P+). P+ commutes with H,
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and

Note that the spectral measure of ~P+, H) provides a kind of classification of all the
states in the Hilbert space based on their asymptotic behavior for large time. Wave opera-
tors, whose construction is described in the next two theorems, provide more information
on this spectral measure.

Theorem 2.2 (Short range case). Assume that Vi = 0. Then there exists

This limit is called the wave operator and will be denoted by Q+. Moreover, the f ollowing
ide~ztity is true.

Theorem 2.3 (Long range case). If we choose appropriately a function St(~~ then tlzere
exists

This limit is called a modified wave operator and, abusing somewhat the notation, it will

be denoted by Q+. The identity 2.5 is true also in this case.

Theorem 2.3 implies that the isometry Q+* intertwines and the mo-
mentum operator. By theorem 2.2 in the short range case there one can distinguish one
natural isometry with this property-the wave operator 2.4.

The above theorems imply also that the whole Hilbert space is the direct sum of two
subspaces:
1) subspace of bound states
2) RanEC(H) = subspace of scattering states.
This statement is usually called the asymptotic completeness.

3 Classical 2-body scattering
Classical two-body scattering theory is also well understood [Sim,He,RS vol III].

In the classical case it is convenient to impose the following assumptions on the po-
tentials.

for 
Our basic object of interest will be solutions (trajectories) of the equations of motion

generated by the Hamiltonian

In the classical case one can also define the asymptotic velocity.
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Theorem 3.1 For any trajectory t ~-r x(t) there exists

Next let us state the analog of the theorems 2.2 and 2.3 about the existence and
completeness of wave operators.

Theorem 3.2 (Short range case). Suppose that J-l &#x3E; 1.

a) For any P+, y+ E X such that p+ ~ 0 there exists a trajectory x(t) such that

b) Let x(t) be any trajectory such that = p+ ~ 0. Then there y+ G .Y
such that 3.9 holds.

Theorem 3.3 (Long range case).
a) Let xi(t) be a trajectory such that 7~ 0 and let y+ Then there 

a trajectory X2(t) such that 

X2(t) be two trajectories such that = ~ 0. Then there
exists

Note that theorem 3.1 allow us to give the following classification of trajectories based
on their behavior for large time:
1) bounded trajectories (more precisely, bounded for t &#x3E; 0);
2) "almost-bounded trajectories" (trajectories which are unbounded for t &#x3E; 0 but for

which limt-x&#x3E; = 0);t
3) "scattering trajectories" (with flfl ~ 0).

Clearly, scattering trajectories are classified according to their asymptotic velocity.
Theorems 3.2 and 3.3 give their further classification. If we fix p+ # 0 then the set of
trajectories with the asymptotic velocity p+ is naturally isomorphic to the vector space
X in the short range case and to the affine space X in the long range case.

Note the following differences between the classical and quantum scattering.
1) The main aim of the scattering theory is to classify states in the quantum case and
trajectories in the classical case according to their asymptotic behavior. But, in a certain
sense there are many more scattering trajectories then scattering states. (The former are
parametrized by (X)(0) ) x X whereas the latter are described by a spectral measure on
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X).
2) In the quantum case there are no analogs of almost-bounded trajectories.

Note that in the 2-body case almost bounded trajectories always have zero energy.
They have also the following property.

Proposition 3.4 Let x(t) be an almost-bounded trajectory. Then

Proof. Let := lxl). Note that r is convex. We easily compute

Setting 6 := 2(2 + ~C~-1 optimizes 3.12. For this value of 6 3.12 is greater or equal than

Hence

Let

We consider separately two cases.
1) Let a &#x3E; al &#x3E; 0. Then

Therefore Ix(t)1 I &#x3E; ao + alt, which is impossible, because = 0.
- t

2) Let a  0. Then
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decreases. Thus either Ix(t)1 ::; tS or

QED
Note that the proof which we presented above gives some flavor of the proof of the

asymptotic completeness of N-body long range systems. For instance, the number 6 :_
2(2 + ~c~-1 plays an important role in both proofs.

Let us remark that one cannot improve the bound 3.11. To see this consider the

Hamiltonian

One easily checks that for an appropriate Co the function

is an almost-bounded trajectory for this Hamiltonian.

4 Quantum N-body scattering
Next we would like to discuss analogous problems in the N-body case. We will use the
formalism of the so-called generalized N-body Hamiltonians, introduced by S.Agmon [A].

Let X be a Euclidean space. Let E ~4} be a family of its subspaces closed
with respect to intersection and containing Xam,n := X. The orthogonal complement of
Xa will be denoted X a. For any x E X we will write xa and xa to denote projections of x
onto Xa and X°‘ respectively. We will write a C b iff Xa ~ Xb. Note that a E ,,4}
contains f1 aEAXa which will be denoted 

If a E ,~l then #a denotes the maximal number of distinct ai E ,A such that a = an C
... C a, = amax. We set lV := E ,A~.

We also define

Note that X is the disjoint sum of (Za : a E .~4}.
The above geometric definitions were common for classical and quantum systems. Now

let us introduce some notions specific for quantum N-body systems.
Let D, Da and Da denote the operators and on L2 ~X ) respectively.

Likewise, A, Aa and ~a denote the Laplacians corresponding to the variables x, xa and
xa respectively.

We assume that for every a E ,A we are given a real function xa 3 xa ~ Va(xa). Let
fls &#x3E; 0 and 1 &#x3E; 0. We will assume that Va(Xa) = vsa(xa) + Vla(Xa) and the following
conditions are satisfied:
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and

We set

and

Our basic Hamiltonian will be the self adjoint operator I~ defined by

It will be also useful to introduce subsystem Hamiltonians

Clearly, H = 
We may identify L~(X) with L2(Xa) 0 Then we can write:

where

is the internal Hamiltonian of the subsystem a.
It turns out (which is almost a miracle) that also in the lV-body case one can introduce

the observable of the asymptotic velocity. The proof of the following theorem, based on
the ideas of [Graf], can be found in [Del,2].

Theorem 4.1 Let J be a bounded continuous fonction on X. Then there exists

Moreover, there exists a unique vector of commuting self-adjoint operators P+ such that
4.18 equals J(P+). P+ commutes with H,
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Next let us state the theorem on the existence and completeness of wave operators in
the short range case. This theorem was first shown by V.Enss (E1,2~ in the N = 3 case
and by I.Sigal and A.Soffer in the case of an arbitrary N (SigSofl~.

Theorem 4.2 (Short range case). Assume that Vi = 0. Then foi every a E A the1.e
exists

This limit is called the wave operator corresponding to the subsystem a and will be denoted
by 9+. Moreover

and

The following theorem was first proven by V.Enss in the N = 3 case (E1,2~, by I.Sigal
and A.Soffer in the case N = 4, p = 1 [SigSof2] and by the author in the general case
[De2].

Theorem 4.3 (Long range case). Let it &#x3E; B/3 2013 1. If we choose f or instance

then there exists

This limit is called a modified wave operator and, abusing somewhat the notation, it will

be denoted by 1~.~~ and .~.~~ are true also in this case.

Note that theorems 4.2 and 4.3 on the existence and completeness of wave opereators
give a kind of a classification of all states in the Hilbert space which is valid for p &#x3E; ~-1.
Theorem 4.1 contains a somewhat poorer classification-in terms of the joint spectral
measure of (P+, H). This classification has the advantage of being valid for any ft &#x3E; 0.

5 Classical N-body scattering
In this section we consider N-body classical systems. We would like to present a number
of their properties, which we think are analogs of some of the properties of quantum
~V-body systems. Proofs of these results can be found in (De3~.

We will assume that
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for 

V and Va are defined analogously as in the quantum case. The full Hamiltonian is

and the cluster Hamiltonians are defined as

The asymptotic velocity exists, as described by the following theorem.

Theorem 5.1 Let x(t) be a trajectory of the Hamiltonian 5.25. Then there exists

It defines a function on the phase space P+(x, ç) where ~, ~ are the initial conditions of a
given trajectory.

We think, that the theorems which we state below can be viewed as analogs of theorems
4.2 and 4.3 about wave operators.

Theorem 5.2 (Short range case). Suppose that p &#x3E; 1. Let x(t) be any trajectory such
~ -Pa there a G ~ thatthat 

t 

t 
= + E Za. Then there exists ya E ~ such that

Theorem 5.3 (Long range case). Let J1 &#x3E; y’3 - 1. Let two ~j’ec~rze.s
such that limt-too = x2Y1 E Then there 

Note that the asymptotic velocity P+ gives a partial classification of all the trajectories.
Theorems 5.2 and 5.3 give for it &#x3E; 3 - 1 a somewhat more detailed classification of
trajectories with a fixed value of P+ E Za which is based on the asymptotics of the
external variables. If f-l &#x3E; 1 then they are naturally parametrized with the vector space
Xa and for V3 - 1  p  1 they are naturally parametrized with the affine space .1~~ ,
Still, this is not a one-to-one parametrization, because it ignores the asymptotics of the
internal ( "super-a" ) motion.

Let us mention that one of the key idea needed in the proof of theorem 5.3 is the

following generalization of proposition 3.4.
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Proposition 5.4 Let x(t) be a trajectory such that E Za. Then

Sketch of the proof. To simplify notation we set a = and assume that Xamax ==

f 01. Then Zamax == We need to modify the function r used in the proof of proposition.
We set 

I

We choose pn appropriately to guarantee that for any a E ,A there exists c &#x3E; 0 such that

r depends just on za on dist(x,Xa)  el. Note also that r is convex. The rest
of the proof is very similar to the proof of proposition 3.4. QED

Note that many of the ideas underlying the construction of the function r are due to
[Graf]; in fact, the so-called Graf vector field is essentially equal to 2 ~r2. The idea of
using a function similar to r first appeared in [Ya].
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