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An iff solvability condition for the oblique derivative problem

by Nicolas Lemer

Foreword

The purpose of this note is to prove the following result.

Theorem

For the oblique derivative problem, condition (yr) is equivalent to solvability.

As a matter of fact, the proof is a modification of the argument we used to handle the two dimensional

case of the Nirenberg-Treves conjecture for pseudo-differential operators in [6] . The basic remark is that the oblique
derivative problem is equivalent to a pseudo-differential equation of a very particular type :

where 92 is a non-negative pseudo-differential operator and a a smooth function. The main feature of this symbol is

that a is a function on a lagrangean manifold, so that the spectral behaviour of its quantization is scalar. In

particular, a monotone function is monotone -matrix for these kind of operators. This natural factorization yields an

energy estimate , following the lines of [6]. The main reference on local solvability is chapter 26 in H6rmander’s

four volumes book [5] where the reader will find most of the background of this paper.
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1. Condition (y)

Let P be a pseudo-differential operator of principal type ( i.e. the hamiltonian field Hp of the principal
symbol p is independent of the Liouville vector field ). The symbol p is said to satisfy condition if the

imaginary part Imp does not change sign from - to + along the oriented bicharacteristic of 1Rep ( see definition

26.4.6 in [5] ) . This condition was proven invariant by multiplication by an elliptic factor in [11] (see also lemma

26.4.10 in [5] ). We ’ll say that p satisfies the (0/) condition if p satisfies condition 

The importance of this geometrical condition was stressed by Nirenberg and Treves [11] who conjectured

condition is equivalent to local solvability and proved it in a number of cases. The first non solvable equation
was found by Hans Lewy in 1957 and the simpler models Dt + i t 2k+1 Dx by Mizohata [9] later on.

The necessity of condition (y) for local solvability is established for general pseudo-differential equations
after the works of Moyer [10] in two dimensions and H6rmander in the general case(Corollary 26.4.8 in [5] ).

The sufficiency is proved for differential equations (see Nirenberg-Treves [11] with an analyticity

assumption, Beals-Fefferman [1] in the general case for local solutions, Hormander ([4] and theorem 26.11.3 in [5])

for a semi-global existence result). Note that for differential operators, condition is equivalent to condition (P)

which rules out any change of sign of Imp along the bicharacteristics of 1R ep (see definition 26.5.1 in[5]).

Moreover, the sufficiency in two dimensions is proved in [6] . H6rmander’s work on subellipticity ( theorem

27.1.11 in chapter 27 of [5] )showed that if a symbol p satisfies condition and a finite type assumption (27.1.8

in [5]) then the associated operator is hypoelliptic and thus the adjoint operator is solvable. In more than three

dimensions, the sufficiency of condition for solvability is an open problem.

Since local solvability of an operator P is equivalent to an a priori estimate estimate for the adjoint

operator , we ’ll try to stick with the following notations :

the solvability of at + Q(t) is equivalent to an a priori estimate for Dt + i Q(t) ,

where Q(t) = Q(t,x,Dx) is a first-order pseudo-differential operator with real principal symbol q such that

Property (l.l) is the expression of condition for the operator at + Q(t). It was shown by Nirenberg

and Treves through localization and homogeneous canonical transformation that any principal type operator

satisfying condition (yr) could be reduced to at + Q(t) , with q satisfying (1.1). We refer the reader to theorem 21.3.6

in [5] and to the Egorov theorem ([2] , theorem 25.3.5 in [5] ).

Let q be a smooth function satisfying (1.1) and define 8(X) for X = (x,4) by

if this set is empty .
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Note that 0 is a bounded measurable function such that, for t E (-1, +1),

and

In the remaining part of this section, we wish to give a few very simple examples which may help the

reader to understand the geometric complexity allowed by condition (yr). First of all, the function 0 need not to be

continuous as shown by

with co -e 0 which gives

Moreover, the boundary of the set where q is positive is not a manifold in general, and it is even not

possible to separate the open sets { q &#x3E; 0 } and { q  0 } by a manifold :

an example is provided by q = ( t 3 + x 2 ) I ç I .

However we’ll see that the latter example, though unpleasant geometrically, is symplectically simple since

the important parameters are not conjugate, i.e. q is the product of a non-negative symbol with a symbol on a

lagrangean manifold. We can also check on the former example that, even when a manifold does separate the sets

( ~ q &#x3E; O}, the hamiltonian field of the real part could be tangent to this manifold.

On the other hand, the operator Dt + i Q(t) , with q given by

is subelliptic but somehow generates the worst simple example with

where a is a C°° non-negative function.

We should also keep in mind that all the previous functions q could be multiplied by a non-negative

symbol and still satisfy condition (yr).
Let’s now remark that bounds on the first derivative of the function 0 imply local solvability. Note first

that, since the symbol q is assumed to be positively homogeneous, the function 0 is homogeneous of degree zero

with respect to the t-variables.
Remark 1.1: if the function 0 is locally lipschitzian , then the operator at + Q(t) is locally solvable( it is

enough to assume I 9x . I- 1 + q II ç I locally bounded ). This follows easily from the computation

of
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oo n Wick 
, ,

for u in C o (]R n ), suppu c {11!  5 T ) . Here , a Wick stands for the ordinary quantization of a regularization
of a ( see the proof of theorem 18.1.14 in [5] with 0 gaussian ; the Wick quantization of a is given by the formula

(18.1.18) ).

2 . The oblique derivative problem

Let Q be an open, bounded subset of &#x3E;Rn with smooth boundary r. Assume r has finitely many connected

components. Let X E be a smooth real vector field.We write X = L + a a , wherep ( r 
a 

o an s 
. av

L is a smooth real vector field tangent to r , a is the interior unit normal and a is a smooth real function on r.g v

Let P be a second order elliptic operator with C°° coefficients and real principal symbol uniformly elliptic in S.

We are interested in the following boundary value problem :

Our main assumptions will be

(2.2) a(m)  0 imply a(exptLm) _ 0 for t &#x3E; 0 ( condition (Nf)),

(2.3) The set (mE r, a(m)= OJ does not contain a maximal integral curve of L.

We have then the following results :

Claim 2.1

Under the previous assumptions , the problem (2.1) is solvable. There exists a finite dimensional space
s

X of smooth densities on r such that, for every s _ + oo if f is orthogonal to Jf and belongs to then

one can find w E H (F) so that u = Gw satisfies (2.1) ,where G is the Dirichlet kernel for P in C2.
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Theorem 2.2

Under the previous assumptions (without (2.3)), condition (y) (2.2) is equivalent to local solvability for

the pseudo-differential operator XG on the boundary r. -

The proof of the theorem 2.2 is given in section 3. We won’t give here a complete proof for claim 2.1;

we refer the reader to chapter 26 in [5] and in particular to proposition 26.6.1 and theorem 26.6.2 which should be

modified accordingly to our situation. In any case, theorem 2.2 is an important step in the proof of claim 2.1 and

gives a modified version of the Nirenberg-Treves estimate ( see section 26.8 in[5] ).

Let’s begin with a few remarks. The boundary value problem (2.1) reduces to a pseudo-differential

equation on the boundary , XGw = f . The pseudo-differential operator P = XG is of principal type since X is non-

vanishing ; P is elliptic when a is different from zero, so this problem is generically non-elliptic except in two

dimensions . In this framework, condition (yr) for P means that if X is outgoing at one point of r, it should be

outgoing later on the integral curve of L. That condition is necessary for local solvability of P ([10] , [5] ). The

global assumption (2.3) means that the integral curves of L start and end in an elliptic region .

Let’s now recall some classical works on the oblique derivative problem : after the works of Egorov and

Kondrat’ev [3] , Melin and Sj6strand [8] gave a construction of a right parametrix for the oblique derivative problem,
with transversality assumptions ; with the present notations, they assumed that the regions { ± a &#x3E; 0 } are

separated by a smooth manifold to which L is tranverse ( and of course points into { a _ 0 ). This is a very strong

hypothesis, but they were able to give an explicit integral form for the solutions, using the powerful tool of Fourier

integral operators with complex phase, introduced in [7] . They performed the construction of exp itP and considered

the integral

Let’s note here that an explicit integral form could certainly be obtained for the solutions of pseudo-differential

equations satisfying the (P) condition, using the non-homogeneous reductions of Beals and Fefferman [1] and the

fact that the following problem is well-posed:

where Qo is a self-adjoint operator on a Hilbert space H, fE L1 ( ~t , H ) , Eo (+~ ) the projections on the half-axes
for Qo , a a non-negative function ; the unique solution v belongs to H ) and its norm is controlled by the

L1 norm of f and the norms of w+, - .
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3. Proof of theorem 2.2

Our main reference in this section will be our paper [6] . Solvability for the pseudo-differential operator

XG can be reduced locally near a non elliptic point to proving an energy estimate for

where (t,x,t) is a non-negative classical symbol of order 1 and fi a smooth function such that ( fi = - a ,

where a is given in section 2 )

We compute then, for u E Cl’ , 8 standing for the function defined by (1.2) with q = ~3 , H for the Heaviside
function,  , &#x3E; for the L2 product ,

Using the lemmas 2.3.1 - 2.3.4 in [6] , we get that the expression (3.3) is bounded from below by

where II . II is the L2 norm in all the variables, I . I the L2 norm in the x variables, and Ci a constant depending

on semi-norms of the symbol P K2 . Since this can be done for any point t (and not only 0 ), we get , if the

range of t is small enough ,

which gives local solvability for the adjoint operator ( Note the estimate we get here is slightly better than (2.20) in

[6] , since it provides an L°°, L1 inequality ) and proves theorem 2.2.
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