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0. Introduction

A manifold with corners in our sense will be a space K which is outside of some one-
dimensional sheleton Ki a C°° manifold, and KI contains a finite system of points

= ~vl, ~ ~ ~ vn~, the corners of K, such that KI B I~a are the one-dimensional C°°-edges,
emanated from the corners. In addition there will be imposed locally close to any v e 1(0
the structure of a cone (B x [0, 1»I(B x {O}) with a base B being a manifold with conical
singularities. B will also be replaced by the stretched manifold B which has the structure
X x ~0,1) near any (stretched) conical point, with a C°° manifold X, closed, compact,
which is the base of the cone to the corresponding conical point. Locally close to any
t E KI B Ko the space K has the structure of a wedge ~ (X x [0, 1)) /(X x (0)) x ( a, b),
t E (a, b) C Kt B Ko. For the analysis on K it will be convenient to talk about the
corresponding stretched space K, locally being near (stretched) corners like B x ~0,1 ) ;
whereas K near the emanated edges looks like X x (o,1) x (a, b). The points in the
corresponding choice of coordinates are denoted by (x, r, t), and t will also be called the
corner axis, r the cone axis variable. x sums over the base X of the "model cone" of the
wedge.

The programme of the analysis of elliptic equations on K is to understand the nature
of parametrices and the elliptic regularity in weighted Sobolev spaces with (and without)
asymptotics. Analogous questions are natural on more general manifolds with singularities,
i.e. with ligher edge and corner orders. In classical special cases the problems are well-
understood. This concerns, in particular, conical singularities (cf. [Kl], [S3,I], edges in
form of boundaries of C°° manifolds (cf. [Bl], [Sl]. [S3], VII]), where the model cone
is R+ and plays the role of the inner normal to the boundary, or edges with non-trivial
(stretched) model cones like X x R+ (cf.[Sl], ~54~ ). The general edge theory is already
rather complex, because of the additional data along the edges (similar to boundary and
potential conditions as in ~B1~) and of the variable asymptotics of solutions along the edges.
Since K B { stretched corners} is a manifold with edges, all this does occur also for K, but
this theory has to be combined with ideas from the cone theory along the corner axis, now
with operator-valued Mellin symbols operating globally along B. Then we will also get a
corner contribution to the asymptotics. The operators in consideration are degenerate in
a typical way. For instance, the Laplace-Beltrami operator belonging to dt2 
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with a Riemannian metrie g on X will be of that sort. The ellipticity is to be described here
in terms of three leading symbolic levels namely the interior, the edge and the corner ones,
denoted by and oil respectively, M being the order of the operator. Parametrices
are obtained by inverting the symbols and there follow Fredholm operators between the
corner Sobolev spaces.

1. Edge-corner degenerate differential operators
A differential operator on int K (near any stretched corner) will be called edge-corner

degenerate if it is close to t = 0 of the form

with certain ajk(r, t) E C°°(io,1) x [0, 1), ak(t) E C-([O, 1), Diffp-k
(intB)). Here Diff(...) is the space of differential operators on (...) with C°° coefficients in
local coordinates. w(r) is a cut-off function in r, i.e. in Cgo(R+) , w(r) = 1 close to r = 0.
In order to describe the operator-valued symbolic levels of (1.1) we need the weighted
cone Sobolev spaces. for sEN, (3 E R will denote the subspace of those u E

for which (in the coordinates (x, r) near r = 0) r) E
R+) for all a E with lai + k  s(n = dim X). For arbitrary

s E R we define the by duality and interpolation. Moreover for

X n = X x (x, r) will denote the space of all wu + (1- w)v with r) belonging
to w1-{8,P(B) and v to H8(xn), where the latter space is the standard Sobolev space on
Xn of smoothness s (in the special case of X = @ Rn+l B 101 it corresponds to

far from the origin).
With (1.1) we can associate the ordinary homogeneous principal of

order y which is a function on T*(intK) B 0. Moreover by inserting z E C instead of
and freezing coefficients at t = 0 it follows the conormal symbol of A of order p

This may be regarded as a z-dependent operator family
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for arbitrary s E R, with any fixed Q E R. Finally we can form the homogeneous principal
edge symbol -

which is an operator family

s, Q E R, parametrized by (t,T) E Ko) B 0. The homogeneity of (1.4) is to be
understood in the sense

for ail À &#x3E; 0. Here is an operator family on defined by
, . - , ,-

Similarly to the edge theory in general the ellipticity with respect to the edge sym-
bolic level does depend on the weight (3. Moreover we will have to pose additional edge
conditions, in general being of trace and potential type along the edge. That means that
(1.5) has to be completed to a family of isomorphisms

for T ~ 0 and all t. Here it is to supposed 1)-1 for all t,
and T # 0 , a &#x3E; 0. If (1.7) consists of isomorphisms then (1.5) is necessarily a family of
Fredholm operators (with index M - N). This is the case if A is elliptic with respect to

(cf. the more precise description below) and of the "subordinated" leading conormal
symbol with respect to every conical point of B

is a family of isomorphisms for all t, and w E C with Re w = (n + 1)/2 - ~3, for a certain
s E R. The subscript M indicates the relation to the Mellin transform

and (1.8) comes from (1.1) where (apart from the weight factor r-l) it was inserted r = 0
and -r8/ar replaced by zv, according to (M(-rô/8r)u)(w).

It is well-known that the interior ellipticity implies that (1.8) are isomorphisms for all
s E R and all Q E R B with some sequence of exceptional weights, 1 - oo as
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2. Parameter-dependent cone operators and corner Sobolev spaces
As noted in the beginning the finite-dimensional entries of (1.7) play the role of ad-

ditional edge symbols of trace and potential type, similarly to Boutet de Monvel’s theory
in the case of boundary value problems, cf. [Bl], ~51~. Their behaviour is very close to

that of Green operators in the left upper corners to be introduced below. For rotational
convenience we shall restrict our consideration from now on to left upper corners. The
extension to the general case is straightforward.

The nature of the corner Sobolev spaces as well as of corner Mellin symbols will be
determined to a large extent by the nature of certain families of cone pseudo-differential
operators along B, with a parameter T. Let us first remind of some notations on parameter-
dependent pseudo-differential operators in the usual set-up. If Ü c Rn is open, we
have the standard space Li’ (~2) of ÇD0’s of order li E R over n, defined in terms of symbols
Sil(Ç2.., x n,,, x R~ ) (= Hôrmander’s symbol class for p = 1 , 6 = 0). We shall content
ourselves here with the classical ÇD0’s. Further Le (Ç2 ; Rm) will denote the
space of parameter-dependent ÇD0’s, defined in terms of classical symbols a(x, z’ , (, T) e

x R~ x Rm) , Rm) being identified with x n», the
Schwartz space of COO(Ü x H)-valued functions on Rm. Analogous notions make sense
globally over X or X n = X x R+, i.e. we have the spaces Le (X ; Rm) , 
We mainly need the cases m = 0,1, 2. The spaces of parameter-dependent ÇD0’s are
Fréchet in a natural way. If U C C is open and F any Fréchet space then ,A( U, F) will
denote the space of F-valued holomorphic functions in U.

Definition 2.1. Rm) for any M E R will denote the space of all E

,4(C, Le (X ; Rm» , w E C, with h(b + i p , T) E Le (X ; uniformly in every finite
strip c  6  c’ , c,c’ E R.

For m = 0 we get by definition MÓ(X). All our spaces in question have a natural
locally convex topology. This will tacitly be used in the sequel. In particular the spaces of
Definition 2.1 are Fréchet.

Now let us introduce the weighted Mellin ÇD0’s with parameters

for y e R , h(w,r) E MÓ(X Rm), cf.(1.9). The inverse Mellin transform is taken in the
sense (M’lg)(r) with integration along r1~2. Here

If w(r) , wo(r) are arbitrary eut-off functions, then we get continuous operators
for all s E R, dependent on Tm ( )( ) ( ) ( ) p

as parameter (n = dim X). The cone ÇD0’s in general also contain Mellin operators with
meromorphic operator-valued symbols, associated with any sequence
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pj E C being the poles of multiplicities mj + 1 , Re pj 1 2013~ oo as j~ 1 - oo, and
Nj C L-°°(X ) are finite-dimensional subspaces of finite-dimensional operators. Let

denote the space of all h(w) E ,A(C 1 7rcR , L-°°(X )) , 7rcR = Ulpj 1, such
that h(w) is meromorphic with poles at pj of multiplicities mj + 1 and Laurent coef-
ficients at (w - p~)-~k+1~ in N~, and further X (w) h (w) E L-OO(X ;ft,1 ,1
uniformly in c  b  c’ for all c, c’ E R, for any x(w) E C°°(C) with X(w) = 0 for dist

(w ; 7rcR)  e , = 1 for dist (w ; 7rcR) &#x3E; 2~ with some e &#x3E; 0. Here L-°°(X ; rb) is
to be understood as L-°°(X ; R) under the identification Occasion-

ally we will write sg( h) = 7rcR.
The smoothing parameter-dependent Mellin operators of the cone theory are related

to a given weight (3 E R and some weight strip

They are of the form

with being a polynomial in 7 E R of order  j, 7 -+ [7] a strictly positive Coo function
with = jr for 1 -r 1 &#x3E; const &#x3E; 0, úJ ii arbitrary cut-off functions, E with

&#x3E;

certain Ri as mentioned, cf. (2.3), and weighs {3j satisfying r+1)/2-a _ 0, and
fi; + j &#x3E;0 for all j = 0,~~~,1~-1. 

Parallel to the pattern of poles of meromorphic Mellin symbols there will be organized
the asymptotic types of distributions over X ’~ close to r = 0. They are sequences P =

with pj E C , Re pj  (n + 1)/2 - {3 , Re pj - -oo as j --3 00, and

L ~ C C°°(X are finite-dimensional subspaces. Then denotes the subspace of all

u(x, r) E K;1J,p(xn) with asymptotics k= (ik(x)r-pj logk r for r --~ 0, with certain
(ik E Lj , 0  k  (uniquely determined by u). The precise meaning of the asymptotics
may be found, for instance, in [SI], [S3,I].

Proposition 2.2. (2.5) induces for every T continuous operators

for every s E R and every asymptotic type P with another asymptotic type Q, dependent
on m(T) and P. If riz(T) is of analogous structure as m(T) with the same h J , but With

another choice of (3j and cut-off’s, then g(T) := m(T) - m(T) induces continuous operators

with certain asymptotic types Q1, Q2, dependent on g (not on s~.
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g*(T) in (2.7) refers to the scalar product of Let us set 

+ (1 - with obvious meaning of the sum, S(In) := C°°(X ) 0,
S(R+) (on being the completed projective tensor product). Analogous notations such as

@ make sense for finite asymptotic types P i.e. where 7rc P is finite and
contained in the weight strip 0 = (-k, 0] on the left i.e. in (n + 1 ) /2 - q - k 
Re w  (n + 1)/2 -,y. Remainders of finite asymptotic expansions then belong to

The operator families (2.6), (2.7) are in fact operator-valued symbols with T as covariable,
according to the following general definition (here being given for "constant coefficients").
Let E be a Banach space, C be a group of isomorphisms (u
indicating the strong operator topology in l(E)). Example : E = K.;s,p(xn), (xÀu)(x, r) =
X(n+,)/2U(X@ Br). If Ê is another Banach space with a corresponding group 
then E, Ê) for v E R denotes the space of all a(T) E C°°(R, £(E, Ë) with

with constants c = c( j ) &#x3E; 0. The subspace of classical symbols St,(R ; E, É) is defined by
const, for all

j . We will now employ the straightforward extension of these notions to Fréchet spaces ~,
cf. [Sl], [S3,VII]. -

Définition 2.3. Fix weight data il = {{3, (3 - ¡t, 9) with (3, ¡t E R and (2.4), and let
v E R. Then Cé;(xn,l1 RT) is the space of all g(T) E 

s

which induce even elements

for all s E R, with (finite) asymptotic types Q1, Q2 dependent on g, with 7rc:Qi,7rcQ2
in the 0-strip on the left of the corresponding weight lines r(n+l)/2-P+p and r(n+1)/2+P’
respectively. The g(T) are called Green operator families (of the parameter-dependent cone
theory).

Globally over B we will need the space Cà’(B, ri ; R) of all g(T) E
fl s RT, ,C ?9’ B , for which also g*(r) E rÎ £(1is,-P+P(B), 
8 1 a 

2

Here is defined as the subspace of those u E 1i"’Y(B) such that wu C for
Q Q

some cut-off function w, supported by a tubular neighbourhood of X). The latter *
refers to the scalar product in 

Next we shall formulate a result on a "Mellin operator convention" for parameter-
dependent "degenerate" symbols. Let open finite covering of X by coor-

dinate neighbourhoods, ;  N be a subordinated partition of unity,  j  N
== == = =

be another system of functions in Cgo(Uj) with = Vj for all 1
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Theorem 2.4.-

(~ being local coordinates in Uj) and form

indicates the pseudo-differentiaI operator with respect to the (x, r)-variables,
pulI-backed to UJ ; this depends on the parameter T). Then there exists an m(r, w, T) E

Rr )) such that for := rrz ( r, w, rT ) we have 
f 1 (T) mod R,).

the space of all operator faxnilies

with eut-off functions (r), w=(r), i = 0,1, satisfying 

with f o, fi being as in Theorem 2.4, further m(,r) being of the form (2.5),

Note that the eut-off functions wWi in (2.10) may be chosen different from those in
(2.11) without changing the class of operators.

We shall also write rb) when R, is identified with 176 = b + ir.

Theorem 2.6.- For every E R there exists an operator family E Ce

(B, q ; RT) with q = (~i, ~i - ~, 8), such that

is an isomorphism for every fixed T E R, and all s E R.

The parameter-dependent cone operator families of the class C"(B, 17 ; R) will be
the starting point below for introducing the meromorphic corner Mellin symbols, where
T plays the role of Im z for the complex Mellin covariable z to the corner axis variable
t. The special families (2.12) may be used for introducing the corner Sobolev spaces over
Bn := B x R+ (the infinite stretched corner with base B).
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Définition 2.?’. Let s = (Q, a) E R2. Then is the completion of
Cô (intb x R+) with respect to the norm

Remark 2.8. If b’(T) is another operator family with the mentioned properties then the
associated norm is equivalent to (2.13).
Remark 2.9. The spaces 1i8’"Y(Bn) are over B x (tl, t2) for every 0  tl  t2  00

equivalent to the corresponding wedge Sobolev spaces from Chapter 3 (or (S4)). This
enables us to introduce the global corner spaces in terms of the corresponding
properties under localizations close to t = 0 and onbide any neighbourhood of t = 0.

Remark 2.10. Analogous by to Definition 2.5 it makes sense also to introduce

Rm) with the parameters T = (TI,...,Tm) E Rm. In particular, for m = 0
we get the usual class of cone cf. (S 1 J, [S3,I]. As noted above all these
spaces have a natural locally convex topology (here the inductive limit of Fréchet spaces).

3. Mellin operators and edge-corner asymptotics
Analogously to Definition 2.1 (for m = 0) we now introduce holomorphic operator-

valued Mellin symbols where X is to be replaced by B. Since B itself has singularities
there will be inharited the weight data ri = (Q, (3 - y, 0), cf. Definition 2.5.

Definition 3.1. the space ofaN

with h( Z) Ir 6 E Cil (B, fJ ; r 6) uniformly in every finite strip c ~ «5  c’, c, c’ E R.

Similarly to the cone theory we will also have smoothing Mellin symbols with a mero-
morphic structure. They are associated with any system R = {(Pj, mj, with Pi, m
being of the same meaning as in (2.3), but now N~ C CG(B, ri) are finite-dimensional
spaces of finite-dimensional operators, where the asymptotics types are independent of j
(here CG(B, r~) equals Cà’ (B, -q ; Rm) for m = 0).

Now MiOO(B, q) is the space of all h(Z) E ,4(C, TrcR, n 7l°°·a-‘(B)))
9ER

which are meromorphic with poles at all pj of multiplicities mj + 1, with Laurent coefficient
at belonging to Nj, for all 0  k  m~ and X(Z)h(Z)lr6 E r6)
uniformly in c ~ «5  c’ for all c, c’ E R and any 7rcR-excision function x(Z).

The edge-corner asymptotics P = (Pl, Po) of distributions in ?~s~’~(K), s E R -
(~Q, a) E R2, will consist of an edge and a corner part
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respectively. Here
C°°(X ) is of finite dimension, and pj E C, (n + 2)/2 - a &#x3E; Re Pi, -oo as j --~

00 , m; E N, L C ?-°°’(B) is of finite dimension. The "non-smooth singular functions"Pl
of the edge asymptotics along Ko, described by Pl, have the form

with Ath (X, t) E Ai), 0  h  mi. Here is the Fourier transform along the

edge. Close to t = 0 we take instead of this the Mellin transform M-,.t in the weighted
sense, with the weight a - (n + 1)/2,T = Imz, where the non-smooth singular functions
are

This is compatible to (3.1)
modulo smooth singular functions in intersections of coordinate neighbourhoods on 
(the latter ones are allowed in addition anyway ; Pl is assumed to satisfy the shadow
condition, cf. [Sl], [S3]). (3.2) is the edge contribution to the corner asymptotics. The
corner contribution Po to the asymptotics contains global data along B. It is of the form

corner asymptotic type. We will denote by the subspace of all u E with

asymptotics of type P.

Now let us come to the edge-corner themselves. The smoothing elements form
a space CG(K, 17), called edge-corner Green operators, associated with the weight data
q = «(3, (3 - Jl, 8 ; a, a - Il, 8). It is defined as the set of all G E n ~C(?-~s~’~(K), 

s

which induce continuous operators

for all s E R, for certain edge-corner asymptotics types P, ~?, dependent of G (and associ-
ated with the corresponding weight). * refers to the scalar product of 1t°,(O,O)(K).
Definition 3.2.- Let and q be as mentioned. Then CJI(K,7J),
the space of al1 edge-corner "pDO’ s with constant discrete asymptotics, is the space of all

P of the wedge
class on K B {stretched corners} (with constant discrete asymptotics, cf. also
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associated with the weight data and w(t),wO(t),WI(t) being arbitrary cut-off functions,
furthermore

with arbitrary hj
aU j and finey i

Remark 3.3. The differential operators (1.1) belong to CI&#x26;(K,’7), where in this case M
and G disappear.

Theorem 3.4.- Every A E C"(K, q) with ri = (fj, fj - ~, 8 ; a, a - ~, 0) induces contin-
uous operators

for y = (a, ~Q), every s E R, and every edge-corner asymptotic type P with another
edge-corner asymptotic type Q, dependent on P and A (not on s).
Remark 3.5. The operator classes can be generalized to classes of matrices
with additional trace and potential conditions, similarly to (1.7). Another generalization
concerns the asymptotics in the continuous sense, formulated in terms of vector-valued
analytic functionals (cf. [S3], [S4]).
Remark 3.6. The symbolic levels oM as they have been described for v = p in
Section 1 make sense analogously also over C"(K, q), and they are multiplicative under
compositions of operators (which preserves the nature of our operators, where the order
of the composition is the sum of orders of the factors)
Remark 3.7. If vanish on A E C"(K,17), then
is compact for all s E R.

4. Ellipticity and parametrices

Definition 4.1. A E is called elliptic with respect to the weights ~y = 
if

(i~ ~~(A) ~ 0 on T*(int K) B 0, and if in addition it remains 0 after putting rp = fi
= T close to t = 0, rtT = fo close to r = 0, t = 0, now up

to r = 0, t = 0, after removing the weight factors, and (£, fi, f), ... being interpreted
as new covariables,

(ü) is bijective in the sense (1.5~ for some s, for all (t,,r) E Iio) 10,
and it remains bijective close to t = 0 up to t = 0 after putting tr = f and removing
the weight factor 

(iii) U" (A)(z) is bijective in the sense (1.3) for some s, for all z E r(n+2)~2-a~
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is a Fredholm operator for E R.

For obtaining a parametrix of A within our class with constant discrete asymptotics
we need an extra assumption, namely

the points w ~ C of non - bijectivity te) 
(4.2 )fin the sense of (1.8) are independent of t . Ae (A) (t 1 W) 
(4.2)

Theorem 4.3.- Under the condition (4.2) an elliptic operator A 6 Ce(K, q) has a
parametrix P ~ C’"~(K, () with ( = ({3 - ti, P, 0- ; a - p" a, 0), in the sense that AP 2013

Theorem 4.4. Let A E Ce(K, be elliptic. Then Au = f E E

implies u E for all s E R. In addition, if (4.2) holds, then
Au = f E Q for some edge-corner asymptotic type and u E implies
u E 1-l"p+p..-r (K) for a resulting edge-corner asymptotic type P, independent of s E R.
Remark 4.5. The concept of edge-corner 1/JDO’ s can be generalized to the continuous
asymptotics, analogously to the corresponding cone and edge theory from ~51~, (54~. This
larger class is closed under constructing parametrices of elliptic operators. In particular
there always exists a parametrix in this sense for elliptic A E CJ’(K, ri) without the condi-
tion (4.2). Analogous results hold with additional edge trace and potential conditions.
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