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1 would like to consider local and microlocal semiclassical spectral asymptotics with
highly accurate remainder estimates and present their applications to asymptotics of an
eigenvalue counting function. It is easy enough to derive asymptotics with respect to other
parameters (e.g. with respect to a spectral parameter) starting from semiclassical asymp-
totics ; however inverse considerations are complicated and may be even impossible. I start
from completely (micro)local results ; then I consider the case of non-periodic Hamiltonian
flow and present Weylian asymptotics with more accurate remainder estimate than a stan-
dard one ; some of these results were obtained in cooperation with A. Kachalkina ; then
I consider the case of periodic Hamiltonian flow and present Weylian and non-Weylian
asymptotics with very accurate remainder estimates.

1. Let us consider an h-pseudo-differential operator A = aW(x, hD) in X = Rd with the
Weylian symbol a(x, ç) such that

where here and below parameters p, y satisfy condition

s and 6 &#x3E; 0 are arbitrary, 11 = 6, s) is large enough. We assume that

(1.3) a(x,ç) is a Hermitian D x D-matrix for every (z, g) ; then

(1.4) A is a self-adjoint operator in ~2(X, H) with H = CD.
Let E(T) be a spectral projector of A ; I am interested in semiclassical asymptotics of

where QI and Q2 are h-pseudo-differential operators means dual operator, e( x, y, T) is
a Schwartz kernel of and Tr and tr mean an operator and a matrix traces respectively.

I start from assertions of microlocal character. The first result is a trivial enough
Theorem 1. Let conditions (1.1)-(1.3) be fulfilled and Q, S~1 be domains in T*R dsuch
that

Moreover, let Q i = where

Then

(i) Following rough estimates take place :
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(ii) Moreover, if

for every T E T2~ then

where y, Tl, T2) is a Schwartz kernel of E(Tl, T2) = E(T2) - E(Tl ).

(iii) Moreover if

(1.10~ symbol a(~, ~~ satisfies in Q condition (1. ) with p = -y = 1

then (1.9~ and (1.9~’ remain true if we replace (1.8) by a weaker condition

(iv) Moreover, if (1.10) is fulfilled and

(1. 11) There exist a symbol ao (x, ~~ and a real valued function À(x, ~) such that 
satisfy (1.1) with p = 7 = 1 in S2 and

for 7 = 71 and 7 = T2 then (I.9), (I.9)’ remain true if we replace (I.8)’ by a weaker
condition

More sophisticated is the following
Theorem 2. Let conditions (I. I~-(I.3~, (I.S~, (1.6), (1.10) be fulfilled and

Then

(i) For every L e [il/2-6, 1] the following complete asymptotics
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has place with C = C(d, 6, s), r,,, E S’(R) where

n(x, e, T) is an eigenvalue counting function for ~) and we assume here that

(1.15) = 1, 2) are scalar symbols.

(ii) Moreover if (1.11) is fulfilled then (1.13) remains true for every L E [hl-6, 1].
(iii) On the other hand if (I.8)’ is fulfilled for some T = ro E R then one can calculate
number values of and

,.,-’"

(iv) Moreover if (I . I is fulfilled then one can replace in the previous assertion (1. 8)’ by
(1.8)’~.

Now I am able to formulate main results of this section :

Theorem 3. Let conditions (1.1)-(1.3), (1.5), (1.6), (1. 10) be fulfilled and for T = T°

(1.17) For every (x, ç) E Q there exists a vector field T E such that ITI  1

and 

Then are regular functions near T = T° and

Theorem 4.- Let conditions (1.1)-(1.3), (1.5), (1.6), (1.10~, (1.I1~ be fulfilled and

(1.19)r For every (x, ~) E Ç2 either

or (Hess À) (x, ç) has r eigenvalues counting their multiplicities f l, ~ ~ ~ , f 2 with
i ,· i . -1,~ ,

Then

(i) For r &#x3E; 2 estimate (1.18) remains true and

(ii) is fulfilled (this means that Il and f2 have the same sign in (1.19)2) then
(1.18) remains true and moreover

where ET = !1, T is an eigenvalue = 8rn( x, ç, T) is a natural

density at Er, j3 == f3( d, 6) &#x3E; 0 is small enough.

(iii) If d = 1 and (I.19)2 is fulfilled then (1.18) remains true.
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2. In order to obtain more precise remainder estimates it is necessary to make certain

assumptions of a global nature. First we consider the case of non-periodic Hamiltonian
flow ; these investigations were inspired by results of A. Volovoi.

Let A,, - - ., A,, be closed subsets of and 1  T1  ~ ~ ~  Tn numbers such that

(2.1) Tn  where here and below po = hU,¡o = h 1 /2 - s , ~. - ~ ( d, S ) &#x3E; 0 is small enough,

(2.2) For every point (x, ç) of the ¡o-neighbourhood of Aj

where h-1(a - ao) satisfies (0.1) with p = 7 = po in !1,

(2.3) Through every point (x, ~) of the -yo-neighbourhood of Aj there passes a Hamiltonian
trajectory (~(t~, ~(t~) of Àj with (~(0~, ~(0~) _ and either t E [0, Tj] or t E

along which

(2.4) Conditions (1.1) with p == ~ = po and (2.2) remain true,

where the left-hand expression is a norm of the Jacobi matrix,

here (2.6) is a uniform and refined non-periodicity condition.

Our main result here is

Theorem 5. Let conditions (1.1)-(1.3), (1.5), (1.6), and either (1.17) or (1.11),
~J.J9~ be Moreover let closed sets Ai, " ’, An and numbers 1  Tl  ~ ~ ~  Tn
satisfy (2.1)-(2.6). Then

where To == 1, Ao = ~TO 1 (111 U ~ ~ ~ U and ~T, are introduced in theorem 4.
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3. Variants and modifications.

In this section some modifications of theorem 1-5 for h-differential operators are pre-
sented. The emphasis is that the assertions of theorems 1-5 remain true with no condition
of a global character excluding self-adjointness of an operator and in the modification of
theorem also conditions along Hamiltonian trajectories are added. In the second part of
this section there is treated the case when the presence of the boundary of the domain is
essential and in the modification of theorem 5 Hamiltonian trajectories with reflection at
the boundary are considered. In this part only a Schrôdinger operator is treated ; however
theorem 9 has a wide generalization.

So let X be a domain in R’ and

an h-differential operator with the Weylian symbol a(x, ~) ; we assume that

in B(0, 1) where B(y, z) = 1 x - yi  r}.
Theorem 6.- Let conditions (3.1), (3.2), (I.4) be fulfilled and

Moreover, let conditions (1.5), (1.6) be fulfilled and Q1 = 
32 =~2(.ï’)~(.c,~D) where

On the other hand conditions (1.1), (1.2), (1.10) are no longer assumed to be fulfilled.
Then

(i) A~I the assertions of theorems 1-5 remain true ;

(ii) Moreover, if A is elliptic in B(0,1) i.e.

and all the conditions (excluding ~.6~ are fulfilled in 52 = T*B(0, 1) then all these asser-
tions remain true with Qj = 0. and ivith E(T) replaced by
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with of the same nature as in theorem 2 ; certainly coefficients should be

changed by the same way ;

(iii) Moreover if A is positively elliptic in B(o,1) i.e.

and all the conditions (excluding (I.6)) are fulfilled in Q = ~’*B(0,1~ then all the assertions
of theorems 1-5 remain true with Qj = Oj and with no modification of E(T) and 
moreover in this case

Theorem 7. Let conditions ~.J~-~.5~ ~.4;)-~~ and either ~J7,) or (1.11), (1.19)t
be fulfilled and let closed sets I~l, ~ ~ ~ and numbers 1  T1  ~ ~ ~  Tn satisfy conditions
(2.1)-(2.6) Where it is also assumed that along Hamiltoniall tra jectories

Then estimate (2.7) remains true. Moreover, assertions (ii), (iii) of the previous theorem
remain true in this new situation.

On the other hand let us consider a Schrôdinger operator

with real-valued functions g - gkj, Vj , 1’ such that

Then (3.7) are fulfilled and (1.19)t is fulfilled automatically provided d &#x3E; 2.
Theorem 8.- Let d &#x3E; 2 and conditions (3.10), (3.2), (1.4), (3.4), (3.11) be fulfilled alid

Moreover let us assume that

(3.13) On ax f1 B(o,1) either Dirichlet or Neumann condition

is given.

Then all the conclusions of theorems I-4 remain true with Qj = Çj and (3.8) also
remains true.



VI-7

Theorem 9. Let all the conditions of the previous theorem be fulfilled and let closed
sets Ai " -, An and numbers 1  T1  ~ ~ ~  Tn satisfy (2. I~-(2. ~~ ; here we consider Hamil-
tonian trajectories with reflection at OX and we also assume that along these trajectories

and in every point of these trajectories either (3.9) is fulfilled or

where

and on ÙX n either Dirichlet or Neumann boundary condition is given ; here
p and the type of the boundary condition depend on the point of tra jectory.

Then estimate (2.7~ remains true wjth Qj = 
Theorem 8 in fact is proved for more general operators and boundary value prob-

lems ; theorem 9 is proved for slightly more general boundary condition. Moreover under
naturally modificated conditions both these theorems are also proved for a Dirac operator
uniformly with respect to mass m e [0, oc) ; in this case we assume that (3.3) is fulfilled
and replace E( T) by E( T) - E(T’) with finite T, T’.

4. Applications
We discuss here only applications of theorem 9.

(i) Let X be either polyhedral (or polygonal for d = 2) domain or a ball or a planar
elliptic domain and A = -0+ lower order terms with the Dirichlet boundary condition at
Yo C âX and the Neumann boundary condition at Y = Yo (This operator is defined
by a quadratic form). Let us assume that

as s - 0 where Y and Yo are closures of Yo and Yi, mesa x denotes ~d -1~-dimensional
Lebesgue measure at aX,8 &#x3E; 0. Then

where N(À) is an eigenvalue counting function, KO = vol X, KI = 
is a volume of B(0, 1) in Rd, (3 = (3(d,h) &#x3E; 0.

It is very likely that for a general planar domain with smooth strictly convex boundary
the remainder term is 0(~~dm)/z~ ln ~~ but it is not proved.
(ii) Let X = Rd, A is given by (3.10) with h = 1 where gjk = gkj, V are real-valued
smooth functions, (3.11) is fulfilled in Rd and
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where in both cases

is a Weylian expression, g = aqd, g = (m + l)/2m,~- == &#x3E; 0
and the best known before remainder estimate is o(Àq(d-1)).

Here quadratic and Coulomb potentials Vo are forbidden because for these potentials
all the trajectories are periodic (these trajectories are ellipses with the center in the origin
and Keplerian ellipses respectively).

5. Let us consider now a case of periodic Hamiltonian trajectories. We assume that

(5.1) A = aw(x, hD) is a scalar operator, (1.1), (1.5) are fulfilled and in Q a, ao and

h-1 (a - ao) satisfy (1.1) with p == ~ =1,

where Ot is a Hamiltonian flow generated by 
It is well-known from the Hamiltonian mechanics that in this case T(x, e) =:

for a generic point (r, g) E Q where To is a smooth function (however the
existence of subperiodic points with To(x, ç) E Z B f 1~ is possible) ; if we replace A
by operator A = f (A) then we can take ao = f (ao) and in this case To(ao) = To(ao)/f’(ao)
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where f’ denotes the derivative of f and hence for an appropriate function f we obtain
To -1 ; 1 so without a loss of generality we can replace (5.4) by a condition

It is also well-known that in this case

where

(5.6) B = b- (x, hD, h) is a self-adjoint operator and b(x, ~, h) satisfies (1.1) with p = q = 1
for 0,

an action 00 = fô (a - o Ot dt is a constant in S2 and 01 is the Maslov’ constant. Here
P = P’ denotes that norms of operators (P - P’)Q and ~(P - P’) are less than Chs for
every operator Q = qW(x, hD) satisfying (1.1) and (1.6).

However it is possible that symbol b( x, ç, h) is uniformly small in S2 and hence let us
assume that

On the other hand if we take A = aô (x, hD) + hD) with ai satisfying ( 1.1) with
p = ~y = 1 and y e [h, h8] then it is easy to prove that for this operator condition (5.5)’ is
fulfilled with q _ ¡th -1 and with

Hence let us assume that yy e [hl, h-6J and replace (5.1) by
( 5.1 ~’ A = is a scalar operator, (1.1), (1.5) are fulfilled and in n a, ao and

h-1(r¡ + 1)-l(a - ao~ satisfy (1.1) with p = y = 1.
First of all we consider gaps in the semi-classical approximation to the spectrum :

Theorem 10. Let conditions (I.4), (5.1)’, (5.2), (5.3), (5.4)*, (5.5)’, (I.5) and (1.6)
be fulfilled. Moreover let condition

be fulfilled for every T E [ri, 7-2]. Then (1. 9), (1.9)’ hold.

The most important and sophisticated is the following
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Theorem 11. Let conditions (1.4), (5.I)’, (5.2), (5.3), (5.4)*, (5.5)’, (I.5) and (1.6)
be fulfilled and let A,, - - -, 1 be closed subsets and ’"T1
numbers such that for 7 = T°

(5.9)T For every (x, fl) E n either c-1 or Hess 0 has r eigenvalues f 1, ~ ~ ~ , fr
(counting their multiplicities) with Ifj 1 &#x3E; C-1 Vj
where b, is a restriction of b to £r = (x, E = 7} and

where Ot, is a Hamiltonian j9ow generated by and 6 = é( d, 6, c) &#x3E; 0 is small enough.
Then the following estimate holds for T = ro :

with 27r-periodic functions f(fl), f(fl) = 7r 2013 ~ at [0, 2~r~.
It is obvious that we can omit the last term in the right-hand expression in (5.11)

provided either r &#x3E; 3 hr/2-6-1. Moreover, for iî &#x3E; h-j3 with 0 = 2/(r + 2) the
non-Weylian term is negligible and the same estimate remains true for R1 ;
here and before r is arbitrary provided C-1 in ~2. On the other hand this non-
Weylian term is very important for ri  1 because in this case its oscillation at the interval

~T1, T2~ with T2 - Ti x h is of the same order as oscillation of the principal term (moreover
inside the gap their oscillations compensate one another).

Let us return back to spectral gaps :
Theorem 12. Let conditions (I.4), (5.1)’, (5.2), ~5.3), (5.4)*, ~5.5~’, (1.5) and (1.6)
be fulfilled. Moreover let condition (5. I0~ be fulfilled for j =1, Ti &#x3E; + 1) and (5.8)
be fulfilled for some T. Then

, ’T

where Ao = S2 ~ A1,

are 27r-periodic with respect to ( functions, smooth at (0, 2~r~ x R2d with jumps
at ( = 2Jrm(m E Z), supported in R x 5~1.
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Our investigation was inspired by papers of Yu. Safarov ; his assertions are more
general but our results are more precise.

6 Variants and modifications.

(i) Let us assume that satisfy in Q ( 1.1 )
with p = ~y = ho’ and that supp qj C n1 C Ç2, dist h’ ; we no longer
assume that it is true for 7 = 0 (look conditions (5.1 )’, (5.6), (1.5), (1.6)) ; moreover,
let us replace in (5.2), (5.9)2 ineqalities C-1 by

ho,, ho,, If11 ~ h’ respectively. Then for small enough a = a( d, b, s) &#x3E; 0

theorems 11-13 remain true with an additional factor h-6 in the right-hand expressions
of every estimate.

(ii) For h-differential operators our results remain true after modifications like in section
3 provided Ç2 C X x Rd ; so here we consider Hamiltonian flows without reflections.

7. Applications
(i) Let A = -~ be a positive Laplace-Beltrami operator on X = Sd, d &#x3E; 2. It is well-
known that the spectrum of A consists of eigenvalues ~n = n(n + d + 1) of multiplicities
r(n) where here and below r(n) is a polynomial of degree d - 1 and n e Z+. Hence
.-:- - . . -

Let us consider a perturbed operator

with a differential operator A’. If the perturbation A’ is either a first-order operator with
small coefficients or a potential V then A has a cluster spectrum

with

where Co = Co (d), index denotes an order of A’ and v is a C-norm of coefficients of A’.

Moreover calculating exp 27rz»A one can improve these estimates for perturbations anti-
commutating with the antipodal map p,

Namely, in this case
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where here v is a CK-norm of coefficients.

Let us consider a (2d - 2)-dimensional manifold K - of Hamiltonian tra-

jectories on S*(Sd) where is a sphere bundle over X and let us consider a function

where a’ is a principal symbol of A’.

Then theorem 12 implies that

with an provided

with r =1, 2, 3 respectively where

It is easy to prove that for a generic p-th order operator A’(p = 0,1) condition (7.7)r is
fulfilled with r = 3(r = 2) provided d &#x3E; 3, d = 2 respectively and hence for a generic p-th
order operator A’(p = 0,1) asymptotic formula (7.6) has place with arbitrary &#x3E; = 0)
provided d = 2 (d &#x3E; 3 respectively).

It is easy to prove that these assertions remain true for a generic p-th order operator
A’ commutating with the antipodal map p.

On the other hand b - 0 provided (7.4). However it is possible to define in this case
symbol b(x, e) positively homogeneous of degree 2p - 3 with respect to e such that

and transfer above results to this case. One can obtain similar results for a general manifold
with a periodic geodesic flow ; however in this case certain hypotheses concerning the
behaviour of this flow near subperiodic points are assumed.
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(ii) Let A = -~ + lx 12 in Rd, d &#x3E; 2. Then its spectrum consists of eigenvalues Àn = 2n + d
of multiplicities r(n), n e Z+. Let us perturb A by an operator A’ = D) where

for p = 0, 1 respectively. Then for p = 0 and small enough lim)V) 1 as 1 x 1 - oo spectrum
has the cluster character.

On the other hand let us assume that

a( d, m, 6) &#x3E; 0 is small enough,

ai = + is the Hamiltonian flow generated by h. Moreover, for m &#x3E; 0

(7.10) remains true with F(À) = 0.

(iii) Let A = Then its spectrum also consists of eigenvalues ~n of multiplicities
r(n) with an N 2013l/2~~,(À~+i 2013 An) - 1/n3as n ---&#x3E; oo. (Moreover, for odd d modulo
finite number of eigenvalues ~n = -1/2n 2).

Let us perturb A by the same operator A‘ as before and assume that

Then for p = 0 and generic v and for p =1 and generic ~ v, wl , ..  , wd ~

where Q = a(d,m,8) &#x3E; 0 is small enough and F(() is given by formula with

Remark : We didn’t treat in (ii), (iii) the highly sophisticated case of odd v and even
(W1,..., wd~ ; in this case 6 &#x3E; 0 is no longer arbitrary small.
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8. Idea of proofs
I discuss only proofs of the most sophisticated and refined theorems 5,11 (proofs of

theorem 7,9 are based on the same ideas as proof of theorem 5 ; however proof of theorem
9 is more complicated because of the presence of the boundary). In order to prove these
theorems it is necessary for us to treat a long-time propagation of singularities and apply
obtained results to the investigation of singularities of the function

where u(x, y, t) is a Schwartz kernel of U(t~ = 
Let us start from

Definition 13. Let v be a family of functions such that  Then v is s-

negligible in the family of boxes II = {(x, ) : x  7j? lçj - [j 1 :::; pj vj - 
with hl-s Vj (uncertainly principle) ifand only if C h 8 for every
symbol q supported in II and satisfying inequalities

A standard definition with fixed II i.e. with fixed (x, è) and ’7d guids us to a
notion of oscillatory front set which is too rough for our purposes.

In the proof of theorem 5 the crucial step is

Theorem 14. Let (1. 1) - (1.6) be fulfilled with p = y = ’70 = h1/2-6 and let (~, g) Ç2
and through every point of’7o-neighbourhood there passes a Hamitlonian trajec-
tory cPt(x, ç) generated by -A(x, ç) with either t E [0, T] or t E [-T, 0], 0  T  h-a
along which (I.1~, (2.2) with Bj = A and (2.5) are fulfilled with p == ’7 = po - h’ with
small enough a = a(d,h,n,s) &#x3E; 0. Let llvll  Ch-n and vlt=o and (hDt - be

negligible in ’7o-neighbourhoods and ç) respectively. Then v is negligible
in -y,-neighbourhood with yl = h1/2-6/2.

Here pl, ~ ~ ~ , yd must be equal because of a rotation along trajectories and hence
uncertainty principle yields that pi = ... _ ~,d &#x3E; h1~2-b ! hence the elementary (the
lowest distinguishable) distance is yo = h1/2-s.

The proof of this theorem I discuss only for operators with scalar principal symbols ;
the general case can be reduced to this one. Let us consider operators Q and Q(t) =
U(t)QU(-t) ; then

Assuming that Q(t) is an h-pseudo-differential operator we replace (8.1) by a sequence of
recurrent Cauchy problems
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where q = etc, as is the subprincipal symbol of A.

It is easy to prove in frames of theorem 14 that if qn are supported in lo-neighbourhood
QI of (~, ~) and satisfy (1.1) with p = 1 = yo then solutions qn(t) of (8.2)1,2 are supported
in Utot(Q) and satisfy

with L = L(n, a, (3) and hence q = satisfies (1.1) with p = 1 = h1~2-~~~. Then
Q’(t) = qw(t, x, hD, h) satisfies (8.1)1~2 modulo negligible operators and then it is easy to
prove that f~(t) - Q’(t) also is a negligible operator. Theorem 14 is a simple consequence
of this construction.

Finally we obtain from theorem 14 that is negligible for h’ [  Tj/2 provided
Q is supported in the 70-neighbourhood of A ; and all the conditions of theorem 5 are
fulfilled ; similar assertions are proved also in frames of theorems 7,9.

In the case of periodic Hamiltonian flow we are able to treat a very long time propa-
gation. First of all we prove that (5.5)’ yields an equality

with a small enough constant s. Then we prove that

Hence singularities of u propagate along bicharacteristics of ao which are drifting along
bicharacteristics of b with the velocity qh provided q  h-1/2-u and a slightly modified
assertion remains true for q E [h -1/2-u, hb-1~.

Let us assume for a sake of simplicity that c-1 V(x,Ç-) E Supp Q. Then it
follows from (8.4) that uQ(t) is negligible   s. Then

QQ(t) is negligible provided (5.10) is fulfilled on Supp Q with Tj
replaced by T, h(q + 1)  T  E 2 . Then for ri &#x3E; h-° we obtain immediately for 
the Weylian asymptotics with a remainder estimate

where S~’ is yo-neighbourhood of Supp Q.
In the case ri  h-n’ our considerations are more sophisticated. We observe that for

n E Z, (n~ 1  iî- 1 h-U expinr¡B is an h-pseudo-differential operator with a symbol satisfying
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(1.1) wit h p == 1 == 
f 

were 1
modulo 

Then using (8.4) we can calculate

with T’ = and moreover with T’ = where X E 1]), X = 1
at ~-1~2, 1/2~, XTI (t) = X(t/T’). Then Tauberian arguments give an estimate

where M = dxd~ : dao and Fo is connected with singularities of at t E Z, 0 :
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