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1. Introduction and Theorems :

The content of this report is joint work with H. KnÕrrer and E. Trubowitz (ETH-
Zürich, Switzerland), [BKT].

We consider a lattice r C R3 of maximal rank and Lit(R3 If) the Hilbert-space of
square-integrable real-valued functions on the torus R3 If. Let q be in Lit(R3 If).

For each e R3 the self-adjoint boundary value problem

has discrete spectrum, customarily denoted by

The eigenvalue 1, defines a function of k called the n-th band function. It is
continuous and periodic with respect to the lattice

dual to r.

The physical Fermi surface for energy A is the set

For example, if q(x) = constant, then Fphys,À(q) is the union of the spheres

Theorem 1. If q is in and if for a single A in R one of the components
of is a sphere (not necessarily centered at a point of the dual lattice), then q is
constant. 

Actually the same conclusion holds if contains an algebraic component X,
which fulfills certain assumptions, (see section 3). These assumptions are fulfilled if X is
an ellipsoid.

To prove Theorem 1 we complexify the Fermi surface. The (lifted) complex Fermi
surface is defined by FÀ (q) := ~l~ E C3/ there exists a non trivial solution 1jJ in 
of (-~ + AÇ(z ) satisfying 0(x + y) = for Ir

Clearly, the dual lattice r~ acts on by l~ ~ 1~ + b, be r~. Furthermore we have
FÀ(q) n R3 == 

It is easy to show, using regularized determinants (see [KT]), that is a complex
analytic hypersurface in C3. The main purpose is to construct a directional compactifi-
cation of Fa(q) in the sense of [KT]. The above theorem follows from the analysis of the
points added at "infinity" .

To compactify -FB(9) we first embed C3 in a quadric Q lying in P4. For each affine line
g = e R} in R3, where b, c E Ire and b is primitive, we blow-up two distinguished
points of p4 that lie on the quadric Q, to get, by using inverse limits, a space .J~I. Denote
by El (g) and E2 (g) the corresponding exceptional divisors.
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Theorem 2. The directional closure of in the space M intersects El(g) and
E2(g) along curves both of whieh are isomorphic to the one-dimensional Bloch-variety

Here is the E F’ ’ without loss of gen-
erality we assume that has volume one). Recall that in [KT] the complex one
dimensional Bloch-variety for P(x) E L2(R/lbIZ) is

13(p) _ ((k, A) E C x C/ there is a non-trivial function 0 in satisfying

2. Sketch of the proof of Theorem 2
First we construct a compactification of C3, which serves as the ambient space for the

directional compactification of Fa(q). This compactification will be independent of q. It’s
construction is motivaded by considering the free Fermi-surface FA(0) . Fa(0~ is the union
of the quadrics

If we compactify C3 in the naive way to p3 or P’ x P’ x P’ we would have to perform
many blow-up’s before the components of FA(0) are in general position at infinity. Instead
we embed C3 in the complex projective 3-dimensional nonsingular quadric

by mapping (~1,~2~3) to (~1,~2~3,~ + ~2 +~,1).
The image of the embedding is the complement of

The closures of the components of FA(0) in Q are the intersections of Q with the hyper-
planes Hb in p4 given by

If b j4 b’, then HbnHbl is a plane in P~. It intersects Qoo in the set consisting of
two points, given by the equations

One checks that Db,bl and Db" ,b’ll are disjoint if b, b’, b", b"’ do not lie on a line and that
Db,bl == if these four points of r# are on a line. Thus we can denote the points Db,b,
by D(g), where g is the affine line through b and b’. The group T~ acts by translation on
C3. This action extends to Q and it maps D(g) to D(c + g) for c e F~.
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If b and b’ E re are different points on the line g = ci + Rc2 (ci E then Q n Hb
and have different tangent planes in the points of D(g). Therefore we can separate
Q n Hb and Q fl Hb, by blowing-up the points of D(g). Precisely, for each line g =
ci +Rc2 (ci E re), let M (g) be the space obtained from p4 by blowing-up the points of
D(g), the strict transform of Q in .M(g) and El(g), E2(g) the two exceptional divisors
over the two points of D(g). As compactification M of C3 we take the inverse limit of all
the spaces M (G), where G is a finite set of affine lines and M (G) is obtained from p4 by
blowing-up the points of UgCGD(g), defined by the natural maps M(G1) -4 ~l(G2~ for
G2 c G1.

Using the action of Fe we consider .M(g) where g passes through the origin, and after
rotating and scaling we further assume that g = t(i, 0, 0).

Then

Consider now the exceptional divisor El := lying above the point (o, i, 1,0, ), the
other divisior is treated similarly. Near this point we take coordinates  - i,  ,  ).3 1 3 3 1 3
In M (g) we have coordinates (.1, £2, y’, z) such that 

For convenience we perform the change of variables

In these coordinates the blow-up map 7r : -j p4 is

Q(g) intersects El in the plane ~=~2=0. The strict transform of the hyperplane
~b, b G does not meet El if b2 i- 0 or 0. Further, the strict transform of 
intersects El in

Remember that the strict transform of is the closure of a component of the free
Fermi-surface and that the one-dimensional Bloch-variety for potential zero is

This shows that for q - 0 the union of the closures of the components of FA(0) meets
El rl Q(g) along a curve isomorphic to the one-dimensional Bloch-variety for potential
zero. Observe however that the closure of Fa(0) in Q(g) is bigger than the union of the
closures of its components. This indicates that it is necessary for the general case to restrict
the way one takes limits to El, i.e. the directional closure in Theorem 2 is made precise
by introducing a subset S(g) of C4 such that the closure of E(g) in Q(g) intersets
Ei (g) and E2(g) along a curve each isomorphic to the Bloch-variety B(qg).
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An equation for FA(q) outside of the free Fermi-surface is given by (see [KT]),
assuming without loss of generality q(0~ = 0,

This determinant can be computed by taking limits of finite principal minors. (It is not
difficult to get an equation for Fa(q) on the whole C3, but to get the notations as small
as possible we work with the above equation~. In the coordinates (~i ,~2? /~ ~) of M(g) the
entries of the matrix for (-Ak + q - À) o (-Ak - a)-1 are

Block the matrix in the form

With this notation (bClbl + ql b12°’°) )1 bl Ez This is the matrix whose(t, +bl )2 -il &#x3E;

determinant describes the Bloch-variety of the averaged potential qg outside of B(O). Fur-
thermore on El = ~z = Ê2 - 0} the matrix B = 0 and D = 1.

The square of the Hilbert-Schmidt norm of

is bounded by

Definition :

The restriction of det2 ,~ to S(g) is continous at z = 0 :

Therefore we have :

To prove the converse we need information about the structure of 2:(g) in the neighbour-
hood of any point of El :
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Lemma 1. For every point p = ~.~1, ~~, ~c*, 0~ and for ail A &#x3E; 0 there is a

neighbourhood U of p in and an open set Zee having 0 as a cluster point such
that

The proof of Lemma 1 is technical, very long and done by contradiction. One has to
estimate the functions in the sums defining E(g) outside of little discs centered at

since

We do not know if E(g) is path-connected, i.e. if Z is.

Let us fix now a smooth point p = (Ê*, 0, y*, 0) of Q(g) n 8(gg). For simplicity
we assume that p doesn’t lie on the free Bloch-variety B(0) in Q(g) n El. By Lemma 1
there is a neighbourhood of p in and an open subset Z C C having 0 as a cluster
point such that T C S(g).

It is easy to see (using the definition of S(g) and the fact that det2 is continuous in
Hilbert-Schmidt norm) that we have

Lemma 2. The restriction of the function

to T has the following properties :

ii) There is a constant C, such that

For any z E Z the mapping f (., z) i8 differentiable and
(~1,~2~~) H continuous on T.

iv) :l (p) and (p) are not both equal to zero.(911
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We apply this lemma as follows :

Since Q(g) intersects El transversally, we can choose (Êl, J-l, z) as local coordinates
on Q(g) fl Lf =: V near p (observe that there exists a A &#x3E; 0 such that ~~2 ~  Aizi for
all points near p in Q(g)). Assume ~ (p) ~ 0 (the other case is treated similarly using
8l2J;’Z)(p) = 0) and consider the continous mappingaw

defined by

It is not difficult to apply the implicit function theorem to F, by imitating it’s proof, to
get a sequence ((~1, Zk)kEN in V x Z with Zk =1 0 converging to ((0, 0~, 0~ such that

= 0. Therefore p lies in the closure of the zero-set of f in (Q(g)-strict
transformofQ,,) nT, hence in the closure of FA(q) n S(g). From [Bo] one knows, that
the equation defining the one-dimensional Bloch-variety B(qg ) is reduced. So the smooth
points are dense in the zero-set of 01 M, 0) and we get

(1) and (2) imply the Theorem 2.

3. Sketch of the proof of Theorem 1
First we claim :

Assume that q is a real potential and that Fa(q) contains an algebraic component X.
If the closure X of X in Q contains of the E y = 0} with
c e rU, then q is constant.
Proof :

Foi b e Ie - {0} let gb be the line {c + tb~t e R). Then X contains all the sets

D(gb), b E Fe. By Lemma 1 the closure of X n ~(gb) in Q(gb) meets El(gb) and E2(gb)
along a (non-empty) algebraic curve, namely the intersection of the strict transform of X
with resp..E2 (gb ). Hence by Theorem 2 the Bloch-varieties of all the averaged
potentials qb, b E re each contain an algebraic component. As each qb is real, Borg’s
Theorem [Bo] implies that qb is constant. Therefore q is constant. a

The assumption of the claim is fulfilled if contains a sphere around a point of 1~.
Assume that is irreducible. Then, if X where any algebraic component of FÀ(q),
by Theorem 2 there would be an afhe line g, such that X n ~(g) intersects Ei(g)(i =1,2)
along a curve, and one would deduce the fact that q is constant as above.

Theorem l’ shows, under further assumptions on X, one does not need the irreducibil-
ity of FÀ(q)/fU to conclude Theorem 1.
Theorem 1’.

Let q E Lit(R3 If). Assume that FA(q) contains an algebraic component X whose
closure X C Q is transversal to Qoo at almost every point of X n Qoe . Then q is constant.
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This is the case if for example X is a sphere or an ellipsoid.
For the proof of Theorem l’ it suffices to show that

Let D := K2, K3, 1, 0~ E there are M, T &#x3E; 0 such that for all b E 101 one
has

Then one shows (by blowing up the point p e p4 and using the methods to prove the
Theorem 2).
Lemma 3. Let q e and p = (r~,1, 0) E D. Then there is no algebraic
component of FÀ(q), whose closure passes through p and is transversal to Qoo in this
point.

If C is a component of which is not contained in y, 0) e b) +
y = 01, then C meets ~(k, y, 0) E Q,, /y = 01 in only finitely many points, i.e.

is an affine curve and by Lemma 3 consists of only finitelv many points. One shows
that this leads to a contradiction :

Let Do be the set of points (!/i~2?!/3) ~ P2(R) which fulfil a diophantine estimate

with some K, T &#x3E; 0. Clearly a point (k, l, 0~ E Q,, with k ~ 0 lies in D if its imaginary
part Imk represents a point of Do. Consider the map

The image of 7ro intersects Do in only finitely many points. On the other hand one easily
verifies that P2(R) - Do has measure zero. Hence by Sard’s theorem 7ro does not have
maximal rank anywhere. From this one can conclude that C’ is contained in a plane.
Therefore it exists are C3 such that

Since 7ro har rank  1 1 is either purely real or purely imaginary. We discuss here the
case 1 e R3. We may now assume that

We have to show : -y E i.e. (*) is true.
So let q / Consider for k e C3 - 101 with kf + k3 = 0 v(k), the unit vector

in R3 such that Rek, Imk, v(k) form an oriented orthogonal basis.

Put Dl := tv E R3/1vl = 1, v -1- 2013 for all b E Ie - 101 and there are only finitely
many be rU such that IV - 1  

It is easy to see that the complement of Dl in the unit sphere S2 has Lebesgue measure
zero. Further one shows
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Lemma 4.- For any k E C3 - {0} wjth ki + k3 = 0 and v(k) E Di there is a
f0}

But the map C’ --~ S2, (k, 1, 0) H v(k) has maximal rank almost every where. There-
fore for all points (k,1, 0) outside a set of Lebesgue measure zero in C’ there is a ~1 &#x3E; 0

such that (~1~, b~~ 1 &#x3E; for all b E re - ~0~.
Now the map

is surjective and submersive. Thus Theorem l’ follows immediatly (since then C‘ n v
consists of infinitely many points) from

Lemma 5.- The set of points x E P for which there is T &#x3E; 0 such that b) + 11 ] &#x3E;

Klbl-r has positive Lebesgue measure.

4. Appendix
It is possible to show that Fx(q)/re for split potentials of the form q(x) = pl (xl, x2) +

p3(x3) for a lattice r = with (a,, a3) = (a2, a3~ = 0 is always irreducible.
One uses three facts :

i) The Bloch-varieties B(pi ) and ~3(p2) are irreducible (see [KT])

ii) The map 4b : x B(p2) - + p2 ) is surjective

iii) Introducing
B

the Fermi-surface is the fibered product

Therefore we have

Theorem 3.-
and the Fermi-surface the same as Fphys,A( q’), 

is a split potential of the above form, then q also splits.

Let us close this report by the remark that for the discrete periodic Schrôdinger
operator FA(q)/rU is always irreducible (see [B]).
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