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1 would like to report on several papers by Bra,d Osgood, Peter Sarnak and myself
([1,2,3]). The problem was colorfully stated by Mark Kac as’ can you hear the shape of
a drum ? That is given a manifold E with metric 9 and corresponding Laplacian Ag
with Dirichlet boundary conditions, how many- metrics have the same Ag-spectrum. In
this count we ignore repetitions given by isometric metrics. Little is known about plane
domains where this number may well be one. In the case of closed 2-manifolds Vigneras
and Sunada have shown that there are arbitrarily large sets of isospectral metrics. Our
main result is

Theorem 2. An isospectral set of closed Rieinanniaii 2-inanifolds is compact in the
C’-topology. Likewise an isospectral set plane doma,ins is also compact in the C(X)-
topology.

It is known that the spectrum of the Laplacian determines the topology of the manifold
so that E is fixed. The C’-topology on nonisozrietric classes of metrics is defined as
follows : Let 9’(E) denote the usua,l C"-topology on metrics and D°°(£) denote the
group of diffeomorphisms in ~. Let

Then [g]n -~ [g] means that there exist gn e [g]n and g E (c~~ such that in ~~(E) :
An important ingredient in our analysis is the notion of height introduced by Singer

and Ray. If 0  Ai  ~2  À3 ... denotes the spectrum of -Ag , then formally

To make sense of this one need some regularization procedure such as the zeta function :

This can be written in terms of the heat kernel as

where

Note that

It can be shown that Z (.s) is meromorphic and regular at s == 0. This allows as to define
the height as
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It is obvious from this that the height is a,n isospectral invariant. Further within a conformal
class the Polyakov-Alvarez variational formula holds, that is for g = 

here Vo, Ao, 80 are taken with respect to go and J{ = Gauss curvature, Ï~ = geodesic
curvature on DE.

Our results hold for 2-manifolds of two 1;inds : Sp, closed manifolds of genus p and
plane domains of connectivity n. For example

For plane domains .~1 = 0 and so for g = e2’Pgo c.p will be go-harmonic and as a
consequence in (*) we will have 0.

Now both area and the length of 9E are also isospectral invariants. Hence we can
without loss of generality scale the metrics to normalized isospectral sets so that

in the case of closed manifolds and

in the case of plane domains.

Note that is g = ,2 go then

where X denotes the Euler characteristic. We denote the space of normalized classes of
metrics by Ro(S)’

Next we introduce the notion of a uniform metric. In the case of ~~ a uniform
metric has consta,nt Gauss curvature JY where for plane domains S’ the boundary DE two
constant geodesic curvature ~. The following are examples of uniform metrics :
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5~ : standard round metric,

E’ 0 flat torus (I1 = 0),

Ep hyperbolic metric (I1  0),

Eî Euclidean metric in the unit disk,

E~ : cylinder (k = 0).
Theorem 2. In any conformal class of metrics in RO(E) there is a unique uniform
-metric and it is the unique global minimum of the height within this conformal class.

The moduli space for E consists of conformal structures in Ro(E).
It follows as a corollary to Theorem 2 that the set of uniform metrics in RD(E) rep-

resents the moduli space for E ; we denote it by Ma(£). It can be shown that Ma(£) is
finite dimensional. Our principal result in À4 a (£) is

Theorem 3. becomes infinite approach the boundary of 

In the case of E’ and S? where then is only one conformal class there is nothing to
prove. For El (torus) and S’ (annulus) the height can be explicitely evaluated in terms
of the eta function and theorem 3 proved directly. In the case of Ep (closed 2-manifolds
of genus p) The degeneration of the moduli space can occur in only one way, that is when
the length of a the closed geodesic approaches zero :

Theorem 3 was proved in this case by Wolpert.
For plane domains of connectivity n &#x3E; 3 the boundary of is more complicated

and this is reflected in the proof. The ingredients of the proof for n &#x3E; 3 are as follows :
1) An explicit description of M a (£fl ) in terms of conical metrics in the complex plane

C :

when the Ty are n distinct points, ~c~ &#x3E; -1 and -2, and

The following types of degeneration can occur :
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as well as combinations of the above.

2) To sort these degenerations out we introduced the notion of a valuation :
Let 7i, = 17j - : Euclidean distance,

The proof is then divided into three cases
i) For some i, v ( Ti )  const,

ii) For some z, const but -~ oo,

iii) For all i, - oo.

Cases (i) and (ii) are proved inductively by mean of the

Insertion Lemma : If a Jordan curve F decomposes E into two parts f21 U ~2 and r is
"well separated" from OE, then

where the error term 0( 1 ) depends only in the separation.
In case (iii) we are able to get an explicit approximation for the height and verify

theorem 3 directly, to complete the overall induction.

Remark : When p.n 1= 0, H. Khuri showed that Theorem 3 is false (Stanford Thesis).

Finally we come back to the problem of isospectral metrics. We represent cach g in the
isospectral set an terms of the uniform metric in its conformal class : g = According
to Theorem 2,

By Theorem 3, u must stay away from and hence lies in a compact set of uniform
metrics. Using the Polyakov-Alvarez formula we can easily get a bound on the W1 Sobolev
bound in the p’s.

Next we use the heat invariants on £ to get a grip in I1 (for or l~ (for E~).
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The a§s are isospectral invariants. They are universal polynomials in Vo) in the ’Eb
case and in (~, 8so) in the case, for which the highest ordre derivation term dominates.
From this one can show that Iî is G’°°-compact for Sp and that is C"-compact for 2:~.
For S’ this result is due to R. Melrose.

Using the relations

together with the above two results, it is easy to shoBv that the ç’s are C(X)-colnpact, as
need for Theorem 1.

We note that the heat invariants are not by them self enough to give the C(X)-

compactness of the metrics. For example in o, we could have

with remaining uniformly smooth in this degeneration where the metric blows up.
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