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ASYMPTOTIC SOLUTIONS 0F EQUATIONS WITH SLOWLY VARYING

COEFFICIENTS

V.P.Maslov (MIEM, MOSCOW, USSR)

An important problem which has been investigated for the

last years is the propagation and decay problem for bell-shaped

and shock wave-like initial conditions for equations of mathema-

tical physics. Such problems arise when we consider equations

with constant coefficients such as Korteweg de-Vries (KdV) equa-

tion, Kolmogorov, Petrovsky and Piskunov (KPP) equation, Sine-

Gordon equation etc. We want to understand how we can correctly

generalize these results in the case of equations with variable

coefficients and to notice certain general properties which are

characteristical for asymptotics of both linear and nonlinear

problems. This approach allows to look at certain well-known

effects from a principally new point of view.

First we consider the Cauchy problem for the KdV equation

where 4~(J;) is a smooth rapidly decreasing function. The exact

solution of this problem for an arbitrary is

of course, unknown. However, as it is well-known, in the case

const the solution can be defined for large t
Namely, the Cauchy problem solution (1~ can be represented for

t+ 0,0 (accurate to the summands tending to zero as 
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in the form of solitons sum~ the quantity and velocities of

which depend on the function ~(ri) and can be calculated.

This result cannot be generalized in the case when ei. andOvp
are not constants, but arbitrary smooth functions. However, a

class of variable coefficients exists for which we can genera-

lize the Theorem on the Cauchy problem solution asymptotics for

,t ~ GO. Such coefficients are called slowly varying coeffici-
ents. Let 0~~~~ 1 be a small parameter. The coefficients

eî are called slowly varying if 

It is evident that the coefficients vary by a

value 0 Ce) on any compact r~ ) independent

of Î/ . This fact explains the name given to this class of

coefficients. The equation with slowly varying coefficients can

be rewritten in the form of an equation with a small parameter

at the derivatives. We set SOC. L . Then problem

(1) with slowly varying coefficients can be rewritten in the

form

We note that

Thus, the first important fact is that the problem considering

the behaviour of problem (1) solution can be reduced as À2"°°

to a problem dealing with the asymptotics construction for

problem (2) solution as É -* 0. The KdV equation in the form

(2) is one of the problems for which the Whitham method 2
of asymptotical solutions construction is developed.
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We also note that since the function 4?(Q:,) decreases

rapidly,the initial value of problem (2) is small for ~ &#x3E; p

 w 0. vie can draw this function as follows
Ir 11, 1-1

We recall the methods of the Cauchy problem solutions asympto-
tics construction for linear equations which can be regarded as

models of problem (2).

As the first example we consider the wave équation (denoting
again the "slowly " variable by 0~ , and £ t by.t)

We assume that

A function satisfying (3) accurate to O(’and having the
f orm

where

is called the one-phase asymptotical solution

of problem (3).

Me substitute the function defined by (4) into equation

(3) and group the summands which contain equal powers of the

parameter &#x26; . Then we ontain
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Here

By equating to zero the coefficient at in (5) obtain
- 1 -

the equation of characteristics for the function

By equating to zero the coefficients at

the transport equation

in (5), we obtain

where is the differential operator of the first order

By equating to zero the coefficients at

ly obtain equations for the functions

we similar-

where are functions known on .the j-th step and

d ~

which can be calculated explicitly due to ~~~ · For example,
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Equation (6) can easily be integrated. Let
be a solution of the problem

ûJe assume that the equations X 1:. (~o, are

the Jacobians

do not vanish and the follcwing statement holds.

THEOREM 1. The asymptotical solution of problem (3) has the
--+ e- ~W

form

We note that according to this formula the dependence of

the solution on the "rapid Il variable 51:/ &#x26; for t"7 . 0 is

the same as at the initial moment, and therefore it is rather

arbitrary.

For equations with dispersion this property does not hold.

As an example of a linear equation with dispersion we consider

the Cauchy problem for the linearized KdV equation

solvable with respect to and denote their smooth solutions

by lx ± z .+ (z t 
0

by ‘x = x 0 problem (6) has two solutions

S i (~t, ~) ~ .
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where 9 ex) e 
()(J 

t the iunction ÙÔ(é£ is the same as above.i  )
In this case the substitution of the form (4) leads to an ordi-

nary differential équation ( so called standard équation)

from whieh we can define the dependence of the functionn1 ô onfrom which we can define thé dependence of the function 
0 

on

the The solution of this equation bounded with

respect with all ils derivatives has the form

The function $(lÎ/&#x3E; É)satisfies the Hamilton-Jacobi equation

Thus the function Il has the form of WKB asymptotics

Evidently, such a function does not satisfy the initial condi-

tion (7), where T~) is an arbitrary decreasing function
However, since the equation is linear, the Cauchy problem solu-

tion can be represented as a superposition of such functions

Further, it turns out that ~ 0 the Cauchy problem

solution is close to a certain function of the form (8). This

fact may be regarded as an analogue of the facts when the Cauchy

problem solution for the KdV equation is represented as a super-

position of lil solitons and the Cauchy problem solution of the

KPP equation is represented as a self-similar wave.
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In this paper we give only the final results for problem (7).
Let t/ , ~(Pc) C~ be solutions of a system of ordinary
differential equations for te 10 1 Ir 1

We assume that for the Jacobian

does not vanish and denote by

equation

the solution of the

We introduce the phase

THEOREM 2. For 0  ô~ L ~ t the solution of problem (7)

has the form

where

In this case the asymptotical solution has the form (4)

outside the neighbourhood t~ 0 ( this case differs from (4)

since we expand with respect to half-integer powers of the pa-

rameter 5 , though it is not essential).
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Thus, the asymptotical solution of problem (’7) with arbitrary

initial conditions does not have the form (4), but it is close

to this form for L ~ g &#x3E; 0, t "~ o.

How to derive the formula given in Theorem 2 we shall demon-

strate by using the well-known linear Schrodinger equation.

We consider the Cauchy problem

In accordance with current notations we denote the small para-

meter by iv ~ the is the same as above.

Evidently, the equality holds 
, , ,

_ 
1

Cl’d

is the Fourier transform of the function 1&#x3E;( .
Thus, like in the WKB method the solution of problem (9) can

naturally be represented for É P 0 in the form 131,

where d6 is the Jacobian.

It is easy to see that the function ~JP~~~) satisfies

the Hamilton-Jacobi équation
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We shall use the stationary phase method for 1 ~~ ~ &#x3E; 0

to the integral in formula For this purpose we calculate

the coordinate ? of the stationary point (which depends on

the parameters by means of the equation

We have 1 and

where

The functions in (11) can be calculated by another method. We

consider the boundary problem

and assume that it has the single solution À ($Î, 1 ,t).
We introduce the function S ( ~~~ ~ ~ which is called an

action Q

where L is the Lagrangian, Îa ’ r2. - VL*y . We recall that
the întegral in the formula for action is calculated along the

extremal trajectory which, in this case, is the solution of the

boundary problem (12). The following equalities hold
r - ~ ,
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and equality (11) can be rewritten in the form

In the case when the bpundary problem

has n solutions xi( 1) m t, ~) and the

constructed with respect to actions

corresponding to the extremal ~trajectories -X .,0 0 5 do

not vanish, then the asymptotics of problem (9) solution has

the forml4lfor t. ’) 0

where $ k is the Morse index of the trajectory .
Thus, the number of phases ("rapid" variables) in the asymp-

totical solution depends on the number of solutions o~’ boundary

problem (12). In particular if Y(2, =. ’l.4 ,then problem

(9) solution cannot be represented in the form ~1~~ for any

~ as &#x3E; 0. The solutions of the form (14) are

superpositions of ~ waves with the phases S!, ... , S 61B, .
A well-known analogue of the n-phase solution for nonlinear

Equations is the n-soliton solution of KdV equation.
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So, now we shall consider nonlinear equations, For non-

linear équations variable coefficients the vihitham method

is thé nonlinear analogue of the WKB-method, it allows to con-

striacft certain spécial solutions which are self-similar solu-

tions. Since the superposition principle does not work in the

nonlinear case, it is impossible to construct using these spe-

cial solutions thé solution of a rather general Cauchy problem.

However we have a remarkable property of the equations men-

tioned above, namely, the asymptotical solutions of the Cauchy

problem tend to these special solutions as ’É? &#x3E; Q . Thus,
the wave profile which is arbitrary at first can bellimproved"

by a nonlinear equation and accepts the profile described by

the standard equation as it was in the linear case (see

Theorem 2).

We give such a result for the KdV equation;

The appropriate asymptotical solutions have the form of soli-

tons with variable amplitudes and velocities; outside the

collision points they have the form 151
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where the functions

liai equations:

satisfy the ordinary differen-

The functions Ù.(É) satisfy equations of the second order whichài
we do not give here because of their cumbersomeness. As was

already mentioned, thé remarkable fact is that the Cauchy

problem solution for an arbitrary initial boundary layer func-

tion § (%) , after a very small period of time, either turns
înto or becomes equal to ~ / ) ~ ’ Ù °

Now we formulate the result. We assume, without loss of

generality, that (0) ~ 0 , C(0) = i . Then we consider
the Sturm-Louiville problem:

Since 1 is finite, this problem can have only a finie
number of eigenvalues At’ 1.t ,..., ~ B’V . Bi1e denote by el,, $1 1

the solutions of the system of ordinary dmfferential

equations mentioned above which satisfy the 
conditions:
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THEOREM 3. For

equalities hold

the following

where 1 1tl are defined by a linear system of ordinary

iifferential équations, which we do not give here, since they

are very cumbersome.

1 
Theorem 3 is illustrated by the following figures-- - J

= const, Theorem 3 turns into the well known result

by A.B.Shabat.

So far we considered equations with small dispersion. Now

we shall consider nonlinear equation with small viscosity. Thèse

equations describe quite différent processes. Here the Cauchy

problem solution also turns into a single solution.

As an example, we consider the Kolmogorov-Petrovski-

-Piskunov equation with variable coefficients
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First of all we note that the single phase solution of this

équation has the form eU = ~L~"c~ ~ 1dl The standard equa-
tion in this case has the form

It turns out that thé asymptotics of a solution with arbitrary

initial conditions which have a finite derivative can be ex-

pressed in terms of the single phase solution.

Namely, let the initial condition have the form

For any such initial condition the solution becomes 

a singel phase one whose front propagates according to the

The wave profile has the f orm

where ~  1 , ( is the solution of the standard équation

for t::..2, , satisfying the conditions ~0)~/~ ~r~/ = 0 $
~( &#x3E;a) ~= i .

New we consider en équation in two-dimensional space

with the same initial conditions
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The solution of this problem is also a single phase solu-

tion which is an inner boundary layer of the second type. The

boundary layer ,f-l 1 t front surface is the levet surface of the

function is defined by the equation

The front form is the followingJ’2’t

the funetion the same as in above.

equational (15) is the eikonal equation
which is well known in geometrical optics and the function2
plays the role of the index of refraction.

rIn order to construct the wave front i ,we can use

the Huygens principle, which says that the position of the

wave front at time t- is the envelope of the wave fronts

coming out from point sources on the front at the initial

instant of time.

In the case of a variable index of nefraction, the initial

plane front of wave will band.

If the derivative ~ll (J~) of the initial condition

is not finite in then by finding the asymptotics of

the function # i we see that the Cauchy

problem solution 0 , 6.~ 0 turns into the single

phase solution which is associated with the solution of the

standard équation .
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For example, 11

where Î is an arbitrary number 1 then in relation above

the function Él( 1’) should be changed to the solution 11(
of the following-differential equation

The front motion law will have in this case the form

If the solution consists of peaks, as it was in the case

of KdV equation, then these peaks scatter ! as a rule, and the

solution is, in essence, a sum of single phase solutions. Even

if the peaks collide, then their interaction lasts for a short

time, after which the solution is again a sum of peaks (elastic

collision of peaks).

In the case when we have small diffusion in the équation

of reaction-diffusion, the situation varies sharply. Thé

front’s collision becomes non-elastic.
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New we consider an example of fronts collision in the

case of a parabolic equation with cubic nonlinearity, which

was used in the theory of combustion by Zeldovich and Frank-

Kamenetski, and which is also used for describing signais in

a long line without inductance 17J

We assume that the initial condition is the sum of two fronts

of (generally speaking) arbitrary form with given exponential

asymptotics at infinity
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Obviously, it is impossible to use the single phase asympto-

tics only. 
-

The two-phase asymptotical solution of this equation has

the form

By substituting this function into the équation and equating

to zero the sum of summands independent we obtain
- - 11- ~" ~ %k) -

Then we change the variables by setting
- .. r w A A 

we denote the function t" in the variables ’$, by

( § ,1 &#x3E; t+,£) . Then for Vo we obtain the équation

i.e. we obtain the initial equation, but with constant coeffi-

cients. The solution of this équation has the form



19

where are arbitrary smooth functions.

We consider the case whon the phase Sj is stationary

and is equal to zero. Returning to the initial variables

we obtain

The solution of the initial Cauchy problem turns into into the

two phase solution constructed before for -L &#x3E; 0 ~ 0 "~0

where
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